Fission Fragment Kinetic Energies of Cf²⁴⁶, Cf²⁴⁸, and Cf^{254†}

A. M. FRIEDMAN, J. W. MEADOWS, A. B. SMITH, P. R. FIELDS, J. MILSTED, AND J. F. WHALEN Argonne National Laboratory, Argonne, Illinois (Received 27 March 1963)

(Received 27 March 1903)

Fission fragment kinetic energy spectra of Cf²⁴⁶, Cf²⁴⁸, and Cf²⁵⁴ were measured by comparison to Cf²⁶². The most probable fragment energies were (in MeV): Cf²⁴⁶, 84.8 \pm 1.3 and 110.8 \pm 1.5; Cf²⁴⁸, 81.6 \pm 0.9 and 107.1 \pm 0.8; Cf²⁵⁴, 83.0 \pm 2 and 103.1 \pm 2.

A SURVEY of the kinetic energy of fission fragments from spontaneous fission or neutroninduced fission shows an increasing amount of kinetic energy in the fragments as the fission parameter Z^2/A increases.¹ It appeared interesting to determine how the fission kinetic energy varied as the mass number varied for a given Z. A convenient series for this study was the californium isotopes Cf²⁴⁶, Cf²⁴⁸, Cf²⁵², and Cf²⁵⁴. Cf²⁵² had already been studied^{1,2} and recently data on the fission kinetics of Cf²⁵⁴ has been reported.³ In this paper the fission kinetic energy of Cf²⁴⁶, Cf²⁴⁸, and Cf²⁵⁴ are reported and compared with Cf²⁵².

Cf²⁴⁶ and Cf²⁴⁸ were prepared simultaneously by irradiating curium containing 98% Cm²⁴⁴ and 2% Cm²⁴⁶ with 41-MeV helium ions in the 60 in. Argonne cyclotron. The californium was isolated from the curium by a series of ionic exchange columns. The californium was prepared in a form suitable for measuring the kinetic energies of the fission fragments by volatilizing the oxide onto a quartz plate in a special vacuum evapora-

 TABLE I. Most probable fission fragment kinetic energies (in MeV).

Isotope	E heavy	E light	E total	Mass ratio
$\begin{array}{c} Cf^{246} \\ Cf^{248} \\ Cf^{252} \\ a \\ Cf^{252} \\ cf^{254} \end{array}$	84.8 ± 1.3 81.6 ± 0.9 79.8 ± 1 83.0 ± 2	$\begin{array}{c} 110.8 \pm 1.5 \\ 107.1 \pm 0.8 \\ 104.7 \pm 1 \\ 103.1 \pm 2 \end{array}$	$\begin{array}{c} 195.6{\pm}2.0\\ 188.7{\pm}1.3\\ 184.5{\pm}1.4\\ 186.1{\pm}2.8 \end{array}$	$\begin{array}{c} 1.31 \pm 0.03 \\ 1.31 \pm 0.02 \\ 1.31 \pm 0.03 \\ 1.24 \pm 0.05 \end{array}$

^a Standard; see Ref. 2.

tor. At the time the source was prepared 99.5% of the spontaneous fission events of the source was due to the 35-h Cf²⁴⁶; after about 30 days essentially all the spontaneous fissions observed were due to the longer lived Cf²⁴⁸.

A highly enriched sample of Cf²⁵⁴ was prepared by utilizing the small electron-capture branching ratio $(\sim 0.1\%)$ of the 38-h isomer of Es²⁵⁴. Es²⁵⁴ was prepared by irradiating a sample of Cf²⁵² for 6 months in the Materials Testing Reactor. The Es²⁵⁴ was chemically separated from the californium and fission products and allowed to decay. The products Cf²⁵⁰, formed from the α decay of accompanying Fm²⁵⁴, and Cf²⁵⁴ from the electron capture decay of Es²⁵⁴ were isolated. The mass ratio of Cf²⁵⁰ to Cf²⁵⁴ was about 1000 to 1. These isotopes were then separated in the Argonne isotope separator. In the final product the Cf²⁵⁰ made a negligible contribution to the total fissions. The separated Cf²⁵⁴ was collected on aluminum and contained 1 spontaneous fission per min; this was used directly for energy measurements.

The fission fragment kinetic energy spectrum of each sample was measured with silicon diffuse junction detectors and compared to a Cf^{252} standard at frequent intervals during each run. Due to the small amounts of activity it was only feasible to measure single-sided non-coincident spectra.

Table I lists the most probable kinetic energies found for the high- and low-energy peaks in each sample. The values used for the Cf²⁵² standard were 104.7 \pm 1 and 79.8 \pm 1 MeV.² A Gaussian analysis was used to determine the energies. The energies were normalized to the data taken by the time-of-flight measurements.² More accurate values would have been obtained by correcting the measured energies for the kinetic energies carried off by the neutrons; however, this was not done since ν is unknown for the isotopes involved.

^{*} Based on work performed under the auspices of the U. S. Atomic Energy Commission.

¹A. B. Smith, P. Fields, A. Friedman, S. Cox, and R. Sjoblom, in Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958 (United Nations, New York 1958).

 ² J. C. Milton and J. S. Frazer, Phys. Rev. 111, 877 (1958).
 ³ R. Brandt, Lawrence Radiation Laboratory Report UCRL-10481, 1962 (unpublished).