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It is shown that there are three-body clusters in all orders of the Goldstone expansion for the binding 
energy of nuclear matter and that they converge extremely poorly. A r matrix is denned which, on expan
sion, is shown to generate this infinite sequence of three-nucleon clusters. It is shown that the r matrix can 
be evaluated in terms of a three-body correlation function for which a differential equation is derived. 
Solving this equation leads to the evaluation of I \ This demonstrates that a finite sum does exist for these 
cluster diagrams, and gives a method for finding it. Finally, it suggests that for strong short-range potentials 
it is better to expand the binding energy in powers of the density rather than in powers of the interaction. 

1. INTRODUCTION 

THE Brueckner-Goldstone many-body theory gives 
rise to an expansion for the binding energy of 

nuclear matter in powers of the reaction matrix G and 
the single-particle potential U.1,2 The terms in this 
expansion can be represented by a series of Goldstone 
diagrams,1 of which the lowest order ones give the 
first approximation to the binding energy. The effect 
of the higher order diagrams was considered to be small, 
and methods were suggested to incorporate their effect 
into the first-order terms by making a suitable choice 
of the single-particle energies. The best work in this 
direction done by Bethe et al? absorbs certain third-
order diagrams (there being no second-order terms in 
the formalism) into the first-order ones by an ap
propriate choice of U. 

I t was then shown by the author4 that the rest of the 
third-order diagrams, which are genuine three-body 
clusters, are large and comparable to the ones con
sidered by Bethe et al. and that these could be treated 
in a similar manner. 

This then prompts us to look at the higher order 
diagrams in order to estimate the rate of convergence 
of the series. Upon doing so, we find that there are 
three-body cluster terms even among diagrams of the 
fourth or higher order in the reaction matrix. These 
are the diagrams involving only three hole lines, and 
are larger than the other higher order terms. A simple 
estimate of their magnitude shows that they are 
comparable to the third-order diagrams. A fourth-order 
diagram, as compared to the third-order one, has one 
extra G/e matrix to be integrated over the one addi
tional intermediate state involved, where e is the energy 
denominator. With a potential containing a hard core 
of radius c, G/e has a maximum proportional to cz for 

* Supported in part by the Office of Naval Research. 
f Based in part on a thesis submitted to the Faculty of the 

Graduate School of Cornell University in candidacy for the degree 
of Doctor of Philosophy. 

X Present address: The Tata Institute of Fundamental Re
search, Colaba, Bombay 5, India. 

1 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 
2 K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344 

(1955); K. A. Brueckner, ibid. 97, 1353 (1955). 
3 EL A. Bethe, B. H. Brandow, and A. G. Petschek, Phys. Rev. 

129, 225 (1963). 
*R. Rajaraman, Phys. Rev. 129, 265 (1963). 

momenta of the order of 1/c, and then falls off.3 Now, 
1/c is about 2.5F"1 compared to a fermi momentum TIF 
equal to 1.5F"1. When G/e is integrated over particle 
states, the result is about (l/c3)c3, as compared to about 
kF

3cz on integration over hole states. Thus, when the 
additional intermediate state in the fourth-order 
diagram is a particle state, this diagram is of roughly 
the same magnitude as the third-order term. Similarly, 
higher order diagrams constructed by adding inter
mediate particle states only, will also have the same 
magnitude. This results in an infinite series of diagrams, 
all with only three hole lines, with an absolute rate of 
convergence of the order of unity. Therefore, one is not 
justified in assuming that the fourth- and higher-order 
diagrams do not contribute much to the binding energy. 
Owing to the hard-core nature of the internucleon 
potential, we have three-body clusters of comparable 
magnitude, in all orders of the reaction matrix. 

Thus, it becomes necessary to show that a finite sum 
exists for this series and to find a method of estimating 
the same. That is the purpose of this work. I t is shown 
that on making certain approximations similar to the 
ones used in the reference spectrum method of Bethe 
et al? these three-body clusters of all orders combine 
to form a "three-body reaction matrix," T. This matrix 
is finite and can be written as an integral of a three-body 
correlation function. A Schrodinger-type differential 
equation is derived for this function. A solution of this 
equation would lead to the evaluation of the T matrix, 
in terms of which we can find the three-nucleon contri
bution to the binding energy. 

Whereas it has been shown4 that all third-order 
diagrams in the Goldstone series can be treated as 
inserts in the single-particle energies, the three-nucleon 
clusters of higher orders cannot be so absorbed, and 
their sum will have to be evaluated explicitly. 

2. THE T MATRIX 

Let Vij be the two-particle potential between particles 
i and j . Consider a three-particle operator « capable of 
acting on products of three single-particle plane wave 
states, and given by 

{bib2bz | co | aia2az)=Vi2dhzai+V2zdbiai+vudb2a2. (1) 
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Let 
{bibjbz | co | CiC2Cz)Q(ciC2Cz | r j aia2az) 

(bib2bz\T\aia2az)=(bib2b3\a)\aia2az)— E , (2) 
«ic2C3 e {c\C2Cz; a>\(i2(iz) 

where the energy denominator e is a function of the states in parentheses and will be defined later on, and 
Q is an operator which requires that at least two of the three intermediate states should be above the Fermi 
sea. On expansion 

(bib2bz I co I ciC2Cz)Q(ciC2Cz | co | aia2az) 
(bib2bz\T\aia2<iz)=(bib2bz\o)\a^dz)— E 

ciacz e(CiC2Cz', CZ1CZ2C73) 

(bib2bz I co I did2dz)Q(did2dz \ co | C\C2Cz)Q(c\C2Cz \ w | dia2az) 

+ E E . (3) 
eic2cz did2dz e(did2dz\ aia2dz)Xe(ciC2Cz'} di^^z) 

The terms in the above expansion can be expressed 
diagrammatically, bearing in mind Eq. (1) for the 
operator co. The dashed horizontal lines represent the 
potential v and the vertical lines the wave functions. 
A typical diagram will be as in Fig. 1. Any diagram 
drawn with an arbitrary combination of the v inter
actions will belong to the expansion for T, with the 
stipulation that at least two of the intermediate states 
be above the sea. I t can now be seen that all the 
diagrams in the Goldstone series with three hole lines are 
contained in our expansion. For example, consider the 
two diagrams shown in Fig. 2. Figure 2(a) is a typical 
Goldstone diagram and Fig. 2(b) is the equivalent of 
that diagram in our T matrix. The directions of the 
arrows in Fig. 2(b) have no significance other than to 
indicate that the upgoing lines are states above the 
Fermi sea and the down-going lines are states below 
the sea. I t is, of course, more elegant and convenient 
to draw the diagram as in the Goldstone theory, but 
Fig. 2 (b) helps us to see that the same diagram satisfies 
the requirements for belonging to the expansion for 
(lmn\T\lmn). In this manner, it can be seen that all 
direct diagrams in all orders of the reaction matrix G 
involving the three hole states /, m, and n belong to 
(lmn\T\lmn). The exchange diagrams belong to the 
corresponding exchange matrix elements of T. Thus, the 
diagram in Fig. 3 belongs to (lnm\T\lmn). Thus, one 
would expect the sum of all the three-body clusters to 
all orders of perturbation, i.e., all the diagrams in
volving three internal hole lines, to be (lmn\T\lmn) 
plus its exchanges, summed over the holes /, m, and n. 
Of course, from spin and isospin considerations, the 
different exchange diagrams have different signs and 
relative weights. For a pure central potential, Goldstone 
diagrams with two closed loops have a relative weight 

b, b2 b3 

FIG. 1. A typical term in the T 
matrix expansion. 

o, o2 a3 

of —|, and ones with a single closed loop have a relative 
weight of +rg-.4 These correspond to V matrix elements 
with one or two pairs of states exchanged, respectively. 
Thus, the sum of all the three-body clusters should 
correspond to 

i E Qmn ITI Imn) 

lmn,<kF 

~~ i{ Qwm [ r [ lnm)-\- (Imn [ T [ nml)-\- (Imn [ V | mln)} 

+T&{(lmn\Y\mnl)Jr(lmn\Y\nlm)}. (4) 
Therefore, if a procedure could be found for evaluating 

the T matrix, we might expect to have essentially 
summed all the three-nucleon contributions to the 
binding energy. However, two major difficulties have to 
be cleared up before the above statement becomes true, 
and herein lie some of the weaknesses of the method. 
These difficulties are: 

(1) In order for the corresponding diagrams from 
the Goldstone series and the T matrix expansion to be 
equal, we have to ensure that the energy denominators 
in the two cases are equal for all the intermediate states. 
The problem is then to pick a suitable function for 
e {C1C2CZ; CZ1CZ2CZ3) in Eq. (2) such that it generates the 
appropriate energy denominators. 

(2) Even though all the three-body cluster terms in 
the Goldstone series are present in the V matrix, the 
latter contains some spurious diagrams, which do not 
belong to the former set, and have to be corrected for. 

I m n 

t t t 
c—1+> 1 

FIG. 2. Corresponding [X Z l T n I r 1 
diagrams in the Gold- . I 1 /fc^=4/ + t -—-1 
stone and the r matrix ' T t J T m J f 
expansions. I / J\T t- 4 I 

T I T 

I m n 
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m 
FIG. 3. An "exchange" diagram belonging 

to (lmn\r\lntn). 

We will now discuss the first of these problems. The 
energy denominator required by the Goldstone theory 
is HQ—EQ, where HQ is the unperturbed Hamiltonian 
and E0, the ground-state energy of the "vacuum." 
This is equal to the energy of the particle states present 
minus the energy of the hole states. This quantity 
clearly depends on the single-particle energies assigned 
to these states. If we use the recent choice of the 
reference spectrum,3 then, for states above the Fermi 
sea, 

Eib) = (W/2Mni*) (b2+2AkF
2), (5) 

where 

and 

fib, the momentum of the state, is >fikF, 

w*=0.88 , 

A=0 .75 , 

fikF = Fermi momentum, 

M—mass of the nucleon. 

For states below the sea, we have 

E(l)=(fi2/2Min*)P. (6) 

Now, a Goldstone diagram with three hole lines, will 
either have two nucleon loops or three, at any inter
mediate state. Thus, in Fig. 4(a), the energy de
nominator ez is given by 

ez= (W/2Mm*)(c2+d2+b2-P-n2-ni2+6AkF
2), (7) 

while e2 is given by 

e2= (W/2MM*)(c2+a2-l2-ni2+4AkF
2) 

= (h2/2Mni*) {c2+a2+n2-~l2-m2-n2+±AkF
2). (8) 

(bibjbz\V\lmn)=(bib2bz\^\lmn)— £ 

* 2 -

• 3 " 

FIG. 4. Energy 
denominators in the 
corresponding dia
grams. 

(o) (W 

If the diagram in Fig. 4(b) is to be equal to the one in 
Fig. 4(a), then the corresponding energy denominators 
in the two should be equal. Remembering that the 
energy denominators in Fig. 4(b) are generated as in 
Eq. (2), we find that the function 

e{C\C2Cz\ #102#3) 

= (fi2/2Mm*){cl
2+c2

2+czz- • <Zi 2—a 2
2—a% 2+rAk F

2) 

will give the correct denominator for e^ii r=6 and for 
e2 if r=4. However, one must have a unique value of e 
as a function of the intermediate state momenta, in 
order that it may be used in Eq. (2) for the definition of 
T. Thus, a definite value of r has to be chosen. An 
appropriate value clearly lies between 4 and 6, and has 
to be a suitably averaged number. This average should 
incorporate the relative effects of the two-particle-hole-
pair intermediate states and the three-pair states. This 
is very difficult to do exactly. We will use for simplicity 
the value r = 6. This is not so unreasonable as we will be 
subtracting later on the effect of the leading terms which 
involve two-particle-hole pairs, leaving behind pre
dominantly three-loop intermediate states. With greater 
effort, perhaps, a more accurate choice could be made. 

3. THE THREE-BODY REFERENCE EQUATION 

With the above definition for the energy denominator, 
we then have 

(bib2h I oo | Cic2cz)Q{c\C2Cz \ T | Imn) 

we* (fi2/2Mm*)(ci2+c2
2+cz2~l2-m2-n2+6AkF

2) 
(9) 

The operator Q restricts the summation over ch c2, and 
c% by requiring that at least two of them be above the 
Fermi sea. However, if we drop this restriction, and 
include in our summation momenta below the sea as 
well, the error made is not large. This is not only 
because the phase space occupied by hole states is small 
compared to that occupied by particle states, but also 
because, owing to our choice of the energy spectrum, 
the energy denominators remain fairly large even for 
intermediate state momenta below kF. I t is to be 
noted that we are only extending the range of momenta 
of the intermediate states, and that their energies are 
still given by Eq. (5), as if they were particle states. 
Therefore, the Q operator, which has a complicated 
form in coordinate space, can be dropped as a reasonable 

approximation. This is analogous to the procedure used 
in the reference spectrum method.3 

Putting <2=1 in Eq. (9) and summing both sides 
over the complete set of states bib2bs, we get 

1 
T\lmn)=o)\lmn)— 2 w|cic2cz)-{cic2cz\Y\Imn), (10) 

where e stands for the energy denominator. 
Let us define a three-body wave function \p0 given by 

l * o > = ( 1 oH—co-co j W ) , (11) 
\ e e e / ) / 

where 

|$o)= | /ww)=exp[ i ( l - r i+m-r2+n- r 8 ) ] . 
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Using (10), 

therefore, 

Then 

(lmn\T\lmn)= 

| * o > = ( l - - r ) | * 0 ^ ; 

r i \ 

— $o>=$o—^o=x (say). (12) 
e I / 

h2 

-(l2+m2+n2-l2-m2-n2+6AkF
2) 

m 

2Mm* 

X< 

Mm* 

fi2 

Mni* 

/ \L\ \ (lmn\—\lmny 
\ I e ! / 

/ !rl \ 

\ l e i / 

•3Aft^<#o|x>. (13) 

Therefore, once we know the "three-body correlation 
function" %> we can find the T matrix element using 
Eq. (13). In order to find an equation for x> we note 
from Eq. (11) that 

f1 * 1 M \ 
X = $o—^o=( -u co-aH 1 <£o> 

\e e e ) \ ' 
1 ! \ =-w m >. 
e I / 

Therefore, 
«|x> = w|^o) . (14) 

If the above equation were to be written in coordinate 
space, the operator e would take the form 

-(-V1
2-V2

2-V^~P-m2-n2+6AkF
2), 

2Mw* 

where the V2 operators are with respect to the 
coordinates of the three bodies. This gives us 

h2 

2Mm* 
-(Vl

2+V2
2+V^+P+m2+n2-6AkF

2)x 

= co($o--x) 
or 

(V 1
2 +V 2

2 +V 3
2 -2 7

2 )x 

-(^12+^23+^13) ( $ 0 — x ) , (15) 

where 2y2=6AkF
2—I2—m2—n2. 

This equation, which may be called the three-body 
reference equation, has to be solved for x under the 
appropriate boundary conditions. The function x has 
to vanish as any of the relative coordinates ru, r2s, or 
rn goes to infinity. If the potential Vij contains a hard 

FIG. 5. A spurious diagram of 
the first kind, 

I m 

core, x is equal to <£>o inside this core and is continuous 
across the core surface. A three-body Schrodinger-type 
equation like the one we have is hard to solve even 
approximately for the simplest potentials. Numerical 
methods will have to be employed with their complexity 
depending on the nature of the potential used. 

Once x is found, however, the evaluation of 
(lmn\T\lmn) is relatively easy with the help of Eq. 
(13). The exchange matrix elements, which are off 
diagonal, may be found in a manner analogous to the 
one described above for the diagonal element. Thus, 

h2 

(nlm ITI Imn)= 3 AkF
2(& \ x), 

Mm* 
where 

|(l>/)= \nlm). 

We may then employ Eq. (4) to add these terms and get 
the total three-nucleon contribution to the binding 
energy, provided the spurious diagrams mentioned 
before are corrected for. 

4. SPURIOUS DIAGRAMS 

Among the diagrams generated from the expansion 
in Eq. (3) there are some that do not belong to the class 
of three-nucleon Goldstone diagrams. The most 
important of these are the terms where one of the three 
particles does not interact at all. Thus, Fig. 5, which 
will arise in the T matrix expansion, is not a three-
nucleon cluster, but belongs instead to the first-order 
term. The sum of all such diagrams is clearly the sum 
of the two-body G matrices between all pairs of nucleons, 
evaluated consistent with all our approximations. 

Then there are spurious diagrams of a second type, 
arising because of the neglect of the Q operator. As we 
argued earlier, this approximation of letting all inter
mediate states occupy all of momentum space, does 

I m I m 

FIG. 6. Spurious dia
grams of the second 
kind. 
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not change the value of most diagrams substantially. 
However, it introduces some diagrams in the second 
order which would otherwise not exist and certainly 
don't belong to the Goldstone series. A typical diagram 
of this class is shown in Fig. 6 (a) and the sum of some 
such ladders is shown in Fig. 6(b), where the wiggly 
lines are G matrices. The intermediate state mf above 
has the same momentum as m, but has the reference 
energy given by Eq. (5) rather than Eq. (6). Figure 
6(b) is essentially equal to 

1 
Lmn IGI mn) (Im IGI Im). 

Therefore, if we directly calculate the two-body 
reaction matrix G, then we can evaluate these spurious 
diagrams of both kinds and subtract them from the T 
matrix element to get the pure three-nucleon 
contribution.5 

However, it would be more desirable to do the 
subtraction in the wave function % rather than in the 
final result for the energy. This subtraction is relatively 
easy for diagrams of the type in Fig. 5. One merely 
subtracts from the % resulting from Eq. (15) the two-
body correlation functions of the three pairs of particles 
involved. These two-body correlation functions can be 
found4 from a two-body reference equation similar to 
Eq. (15). The corrected x function, when used in Eq. 
(13), will automatically exclude the contribution of 
spurious diagrams of this type. I t is not quite as easy 
to subtract the effect of the diagrams of the type shown 
in Fig. 6 directly from the x function. These may be 
considered to correspond to one of the particles being 
in the range of interaction of the other two, which do 
not interact with each other. A corresponding corre
lation function will have to be found in coordinate 
space, and will have to be subtracted from %• If both 
these corrections could be made directly in %, then the 
resulting function could be used to get the three-
nucleon contribution. 

5. CONCLUSION 

An attempt was made by the author6 to evaluate the 
X function and the three-nucleon contribution to the 
energy using a pure hard core potential. Even for such a 
simple potential, the differential equation (15) could 
be solved only very approximately. The main problem, 
typical of three-body interactions, arises from the fact 
that, while the boundary conditions and the potentials 

5 For detailed discussions of two-body reaction matrices, see 
Refs. 3 and 4. 

6 R. Rajaraman, Ph.D. thesis, Cornell University, 1963 
(unpublished). 

depend on the relative coordinates, the differential 
operator does not have a simple form in these co
ordinates. A partly numerical and partly analytical 
method was used to give a result of about 10 MeV per 
particle for the hard core part of the three-nucleon 
contribution to the binding energy. The 10-MeV energy 
was the difference between — 30 MeV for the T matrix 
and —40 MeV for the spurious terms. This result, 
while not unreasonable, does not have much significance, 
owing to the various approximations that were used 
in its evaluation. 

However, with more effort, and moderate use of 
computers, a much better solution can be found for 
the x function, not only for the hard core, but for more 
realistic potentials as well. This would lead to a meaning
ful value for the three-body term in the binding energy. 
This term provides the largest correction to the binding 
energy after the first order term, which is just the 
two-body reaction matrix. From Eq. (4), it is clear 
that the three-body contribution per particle is going to 
be proportional to p2, where p is the density. This is to 
be expected from simple physical considerations. 

Whether the above method is convenient for compu
tation or not, it clearly shows that a finite closed sum 
exists for these three-nucleon diagrams. Hitherto, not 
much attention was given to higher order diagrams, 
let alone to the convergence of such terms. We have 
shown that there are terms in all orders of the Goldstone 
expansion, which are large and comparable. Thus, 
unless a closed sum is found for these, it is not of much 
value to use lower order terms as an approximation for 
the binding energy. We have seen that these clusters 
can be summed in coordinate space, yielding a result 
proportional to p2. The four-nucleon cluster terms, 
which would again appear in all orders of Goldstone 
theory would give a sum proportional to p3 and so on. 
This shows that owing to the strong- and short-range 
nature of the internucleon potential, the binding 
energy can be expanded more naturally in powers of 
the density,7 than in powers of the interaction. This 
expansion in density should lead to a series which, 
although the successive terms become harder and harder 
to evaluate, at least gives better convergence and, 
therefore, more justification for stopping after the 
first few terms. 
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