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The problem of pair emission from light nuclei where the emitting state is oriented is examined. More 
specifically, as long as the polarization of neither member of the pair is observed, only nuclear alignment plays 
a role. Detailed plane wave calculations presented for the pure magnetic multipole show that if the dihedral 
angle between the planes of the alignment axis and recoil momentum and the plane of the pair is summed 
over, the distribution of pairs is the product of the unaligned distribution and the angular distribution of 
spin-one particles (photons). The ratio of pairs with fixed angle between the two members and fixed angle 
between the alignment and recoil directions to the number of photons with the latter angle also fixed is in­
dependent of alignment. For electric transitions the corresponding pair distribution is an incoherent sum 
of transverse and longitudinal parts. The first part, with nuclear orientation, is again multiplied by the spin-
one angular distribution function but the longitudinal part is multiplied by a spin-zero angular distribution 
function. Hence, alignment will influence the ratio of pair and photon angular distributions because of the 
presence of the longitudinal field in the electron-nucleus interaction. 

I. INTRODUCTION 

THE measurement of the branching ratio of 
internal pairs to y rays in radiative transitions 

has become a useful tool in nuclear spectroscopy. This 
branching ratio, sometimes referred to as the internal 
pair conversion coefficient, has been discussed for 
emission from unoriented nuclei several years ago.1 

Somewhat later the extension to the case of oriented 
nuclei was considered by Goldring.2 

For axially symmetric alignment, which is the case 
of greatest interest, the transition probability for pair 
emission, NT, depends on three angles and the positron 
(or electron) energy, if the measurements are made 
with energy discrimination. The angles are: @, the 
angle between electron and positron momenta, p+ and 
p_; 6 the angle between the alignment axis ft and the 
recoil direction3 k = p + + p - and h the dihedral angle 
between the p+, p_ plane and the k, ft plane. In addition, 
the angular momentum transfer L, the energy transfer 
ko and the nuclear parity change enter parametrically.4 

For our considerations only pure multipole transitions 
need be discussed as will be clear from the remarks 
made below. In any event, whether or not the obser­
vations include a summation over energy, the distri­
bution of NT in the three angles will depend on the 
statistical tensors which describe the orientation.5 When 
the orientation is produced by low-temperature tech­
niques these statistical tensors are (usually) unknown 
parameters which depend on coupling constants in the 
spin Hamiltonian. In the more practical case that the 
orientation is produced by defining the direction of a 
radiation feeding the pair-emitting state, in which case 
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1 M. E. Rose, Phys. Rev. 76, 678 (1949); 78, 184 (1950). 
2 G. Goldring, Proc. Phys. Soc. (London) A66, 341 (1953). 
3 For alignment there is no need to distinguish between n and 

— n or between k and — k. 
4 In the paper cited in Ref. 1 the notation used was q for k, k 

for ko and / for L. In all our considerations, we take m = c = n= 1. 
6 See, for example, M. E. Rose, Phys. Rev. 108, 362 (1957). 

ft is just this direction, the statistical tensors depend on 
the dynamics of the reaction leading to this state and 
are essentially unknown from a theoretical standpoint. 
Of course, these tensors can be determined by measuring 
the distribution in 6 of the emitted 7 rays. But the 
central question is: How do these tensors enter into 
the pair distribution function? 

The purpose of this paper is to provide the answer to 
this question for the case in which the measurements 
sum over the dihedral angle d. It is not difficult to 
provide an answer for the case in which all three angles 
are present but, if the summation cited above is carried 
out, there emerges a particularly simple result which 
provides for a clear insight into the physical aspects of 
the problem. It is our intention to present results for 
the more detailed problem in a subsequent publication. 
It should be recognized that in practice summation 
over 5 is equivalent to summing over all directions of 
alignment around a cone with half-angle 6 and with k 
as axis. This is certainly a feasible operation if ft is 
defined either by a crystal axis in the target or by the 
direction of an emitted radiation, e.g., a ^-particle 
transition feeding the pair-emitting state. 

II. MAGNETIC MULTIPOLE CALCULATION 

In this section we present the details of the pure 
magnetic multipole case as an illustration of the method 
used. We also present the results for electric transitions. 
For the situation envisaged there is no interference 
term in mixed magnetic-electric transitions. 

The notation used below is as follows: The number 
of pairs emitted per unit time in the range dW+ sin©d® 
XsinOdOdd is 

NT(®,d,8yW+)dW+ sinOJO smddddb, 

The number per unit time, after summation over 5, 
per unit range of the remaining variables, is 

Nr(Qfi,W+)= d8N(®,e,8,W+). (la) 
Jo 
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One can then define, in a corresponding way, 

Nv(Q,W+)= f sfaddONr(@,0,W+) 
Jo 

N*(W+)= f sm&dQNr(Q,W+). 

and 

Finally, the total pair rate is 

/

/to—l 

dW+NT(W+). 

(lb) 

(lc) 

(Id) 

Experimentally, it is possible to observe the distribu­
tions integrated over W+ but not over the angles. 

For the competing y ray the number of photons 
emitted per unit time in the range sinddd is 

N7(d)sinddd, 

and the total number of photons per unit time is 

Ny= / sindddN7(6). 

The total pair formation coefficient is 

TL=Nr/Ny, 

(2a) 

(2b) 

but one can define partial pair formation coefficients 
as follows6: 

and 
yL(Q,W+) = Nr(®,W+)/Ny (3a) 

TL(W+) = N„(W+)/N7. (3b) 

We shall also be interested in the branching ratio 
wherein both pairs and y rays are observed with k in 
the direction making an angle 0 with A. Here k is also 
used as the photon propagation vector. This branching 
ratio is denoted by 

yL(®fi,W+) = N„(®,0,W+)/Ny (6). (3c) 

The starting point of the calculation7 is 

N,(Gft,6,W+)= {2ir)-'ap+pJ¥+WS\m\K (4) 

Note that an integration over an irrelevant azimuth 
angle has been performed. Here p± are the magnitudes 
of the positron (+) and electron (—) momenta and 
W± give the corresponding energies including rest 
energy. The matrix element $ft is given by 

• / / 

pikoR 

J*V) MrWdr, (5) 

6 In Ref. 1, yL(®,W+) was denoted by yi(®). 
7 Our procedure here is different in form from but equivalent 

to that used in Ref. 1. 

where R— |r—r'[, /M is the 4-vector which describes 
the dynamic nuclear four-current density and 

is the corresponding quantity for the electrons. For 
these particles plane waves are used as usual. In (4) S 
comprises: summation over electron and positron spin 
directions, summation over magnetic quantum numbers 
of the final nuclear state and averaging over the initial 
nuclear state with appropriate elements of the density 
matrix describing that state. Specifically, the last 
operation is carried out by applying the operation 

E pm^T, E a&v+iyWUivfcmfi). (6) 
m{ mi v 

Here, ji and m4- refer to the angular momentum and its 
projection on the orientation axis in the initial nuclear 
state while v, which gives the tensor rank of the orien­
tation, runs from 0 to 2ji. The normalization is such 
that 

which implies that 
ao=(2i<+l)-1 . 

The nuclear alignment is given by 

Tr [3 i 2
2 - i , ( i ,+ l ) ] A 

(7) 

i , ( 2 i ~ i ) 

2ji+l •OVH)(2iH-3)- il/2 

vs L i;(2y~i) 
«2» (8) 

where A , the initial state density matrix has diagonal 
elements pmi so that T r A = 1. In general, the statistical 
tensor av are related to the Gv discussed elsewhere5 by 

av=(2ji+l)~^Gv. 

In Eq. (5) we write 

/M(e**oB/*)iM= Jir G- }-PNGoPe, (9a) 

where JN, ipN=Jfx; j , ipe^jn- Also, G= I[exp(ikoR)~]/R9 

I being the unit dyadic, and Go=[_exp(ikoR)^\/R are 
the dyadic and scalar Green's functions. We expand G 
and Go in the usual way into multipole fields and 
assume8 r^r\ Then 

Go=4irffto E JL(hrf)hL(hr)YL
M*{f)YL

M(f) (9b) 
LM 

8 One does not need to make this assumption since with plane 
waves the integration over the electron coordinates is easily 
carried out giving the Moiler potentials. However, in calculating 
Nr/Ny the nuclear matrix elements will then be slightly different. 
Our assumption which corresponds to saying that koRN<Kl, 
where RN is the nuclear radius, makes the matrix elements the 
same. We note that in all cases k<k0. Obviously, in cases of 
practical interest, the condition koRN<Zil is extremely well 
fulfilled. The expansions of Go and G are given in M. E. Rose, 
Multipole Fields (John Wiley & Sons, Inc., New York, 1955). 
A different definition of TLLM and the radial functions was used 
there. 
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G=4«Ao £ A*** (r'; r ) Bz,* (r; T) , (9c) 

with r = e , w, Z meaning transverse electric, magnetic, 
and longitudinal, respectively. The three fields for the 
standing waves are 

AL
u(m) = jLTLLM, 

/ i + l \ 1 / 2 

(10a) 

\2L+lJ 

\2L+ 

L \1/2 

w ) j L+1*LL+1 

I L V/2 

\ 2 Z + 1 / 

/L+l ^1/2 

\2Z,+ 1 
JL+ITLL+I* 

= VjLYL
M/k0, 

with the spin-one angular functions 

TLX
M(r) = E C(X1L; M - M , M ) 5 V - * M ? „ (10d) 

/* 

in terms of the spherical basis vectors < .̂ The C symbols 
are Clebsch-Gordan coefficients. For the B fields the 
spherical Bessel functions j \ are replaced by their 
Hankel counterparts h\. 

For the magnetic multipole case we select one value 
of L and r=m only. The M sum is also incoherent 
since w / = w t - + M where ni/ refers to the final nuclear 
state. The electronic matrix element 

with 

b- e-ik'ThL(k0r)TLL
Mdr (11a) 

b = U/*aUi ( l ib) 

and u/,i are the Dirac amplitudes, is readily evaluated. 
We find 

4w(-i)L+1 kL 

Tle(m) = b-TLL*(k) ( l ie) 
k2-k0

2 k0
L+1 

and TLLMW is defined as in (lOd) with k replacing f. 
The sum over the spins of electron and positron, after 
squaring, gives 

(4TT)4 /k\2L 

W+W_Se\Wle(m) \2 = -

(ko2-k*)AkJ 

X { ( W W - + 1 - P + - P - ) | T L L ^ | 2 

+ 2 Re p + . TLLMP-- TLL M *} (12) 

and 

Nv(Q,d,B,W+)= ( - ] SN{'-'}\mN\\ (13a) 

WIN= [dt'JN.AL
M(m), 

where 

(13b) 

and SN is the nuclear part of the S summation. The 
curly bracket in (13) is the quantity in braces in 
Eq. (12). 

The rate of Y-ray emission is obtained by calculating 
(10b) the matrix element of JJV-A where A is the vector 

potential of a plane wave in the direction k, normalized 
to a total photon energy of ko in a box of unit volume. 
This plane wave is expanded into multipoles ALM(r',r) 
with r = e, m? Then, after integrating over an irrelevant 
azimuth angle, we find 

(10c) Ny(d) = 2T(2L+l)koZSN\DMpLCk)\2WN\2, (14) 

where P= ± 1 refers to right (left) circular polarization. 
In (14) DMPL(k) is the rotation group matrix element. 
After carrying out the indicated operations, we obtain 

7\^(0) = 4 7 r M 2 i / + l ) E avFv^{Ljfji)Pv{k^), (15) 

and only even v occurs in the sum. Here we have 
omitted the square of the reduced matrix element of 
SD? .̂ The same omission will be made in the evaluation 
of (13). Also Fv

a)(Ljfji) is the well-known angular 
distribution quantity which enters in 7-ray angular 
correlations.10 For convenience we give its definition 
here 

FVV (Ljfji) = ( - ) a-*-1 (2ji+ iy* (2L+1) 

XC(LLv;l,-l)WUijiLL;vjf) 

and W is a Racah coefficient. For the total number of 
photons per unit time we have 

Ny = S7rko(2jf+ l)/(2ji+l), 

since F0
(1 ) (Ljfji) = 1. 

We now perform the 8 integration in Eq. (13). I t 
will be noted that only the second term in the curly 
bracket contains 5 and that 

V+^LLMV-^LLM^-\V+^LLM\\ 

since k'TLLM=0. We decompose p+ according to 

p + = p + - M + v + , Y+=kX (p+X&), 

9 In the form used here this expansion appears in M. E. Rose, 
Elementary Theory of Angular Momentum (John Wiley & Sons, 
Inc., New York, 1957), p. 137. 

10 This quantity was first introduced by L. C. Biedenharn and 
M. E. Rose, Rev. Mod. Phys. 25, 729 (1953). It was there denoted 
by F,(Ljfji). 
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and then 

d8\v+'TLLM\2= I d8\v+-TLL
M\* 

I JO 

Tp+
2pJ 

= i r ( v + ) 2 | T L L " | ' = s m 2 © | T L L ^ | 2 , 
k2 

since k is constant in the integration. 
I t is clear now that after the 6 integration N*(®,d,W+) 

appears as a product of two factors, 

where 
Nr(®ft,W+) = N(Q,W+)F(e), (16) 

327rap+p^/k\2 

N(Q,W+) = - -
(ko2-k2)2\kJ 

X W W _ + l - p + . p „ -
(P+Xp-)2 

k2 
(16a) 

which is independent of the nuclear orientation and 

F(d) = SN\TLLM\2\mN\2 (16b) 

which does depend on the orientation. 
The calculation of F(6) is straightforward though 

lengthy. The definition of TLL
M in (lOd) is used and 

the coupling rule of spherical harmonics applied. By 
standard Racah techniques we find 

1 
F(0) = -(2jf+l)ZavF^(Ljfji)Pv(k'H) 

4TT 

-Ny(d). (17) 
167T2&o 

Here again v is even so that polarizing the nucleus has 
no effect. Of course, if the polarization of either electron 
or positron were also measured there would be an 
effect of nuclear polarization. 

We observe that the angular distribution of the 
resultant momentum, or of the nuclear recoil momen­
tum, is the same as for the competing y ray. Moreover, 
for the aligned source, 

2a p+p_ k2L 

7T (k0
2-k2)2h 

x\\+w+W-- p+.p_-

V2L+1 

(P+Xp-)2" 
\Ny(6) 

= yL(®,W+)Ny(0). (18) 

Here yL(®,W+) is the same as for no orientation as is 
trivially to be expected in view of preceding remarks. 
Hence, if the pair distribution is measured for fixed © 
and 6 with the dihedral angle 5 summed and the y rays 
are measured with fixed 0, the pair to y ratio, 

7L(©,0,"FKf), is independent of nuclear orientation, 
independent of 0, and is equal to 7z/(©W+)- The ratio 
of pairs with fixed © and 0 to the total number of 7 
rays is 

Nr(9fi,W+)/Ny=yL(®,W+)lNy(e)/Nyl, (19) 

where obviously 

Ny(e) 2 j , + l 
fv 

Ny 
- E a , F , < » P , ( * - d ) , (20) 

which is the -y-ray angular distribution normalized 
according to 

/»7T 

/ i (0)s in0<»=l . 

I t is also clear that if one considers the angular distri­
bution of pairs integrated over W+ the same remarks 
apply. Alignment multiplies the distribution by the 
function f1 (0) and for the ratio of such pairs to photons 
emitted in the same direction 6, there is no effect of 
alignment. 

Turning to the electric transitions the procedure is 
very similar but the results are somewhat different. I t 
is important in the multipole expansions in Eq. (9) to 
keep the transverse electric and longitudinal contri­
butions separate. The distribution NT(&,6,d,W+) in all 
three angles shows an interference term in the trans­
verse and longitudinal parts arising from the alignment 
but on summing over 8 this disappears. I t is also 
worthwhile noting that the nuclear matrix elements for 
the transverse electric and longitudinal potentials are 
related by 

PNJLYL*dt' / JN.AL
M(e)dr> 

JN.AL
M(l)dr 1N-kL

M{e)dr 

-<—T 
\L+\J 

(21) 

by virtue of the fact that koRN<£l. In the matrix 
element obtained after integrating over the electron 
coordinates the TLLM is replaced by & X T L L M in the 

transverse contribution. 
Then we can express the branching ratio without 

nuclear orientation in the following way: 

L 
yL(®,W+) = 7L*(©,^+)+YLe(©,TF+), (22a) 

.L-j-1 

where the first term arises from the longitudinal part 
and is given by 

7 L • 

2a 
-P+P-

h 2 L ~ 2 W+W..+p+-p--l 

~ W k2k0
2 

(22b) 
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and the second term arises from the transverse electric 
part and is given by 

2a /. 

7T&0 ^ 

2a /k\2L-2W+W--v+-kp--k+l 
yL*=—p+p_(-) . (22c) 

This is identical with yL-i(®,W+) for magnetic multi-
poles as obtained from Eq. (18). 

When the nucleus is aligned we obtain 

Nr(Q,6,W+) L 

Ny X+l 
-YLlM6)+yL'Me). (23) 

Here f\ is as defined in Eq. (20) while /o is the angular 
distribution function, similarly normalized, for spin-
zero particles.11 Specifically, 

2 * + 1 
/o(0) = T,ct,FWpv(k'ii), (24a) 

2 

and 

i?v(o)= (-yf-u(2ji+l)1/2(2L+l)C(LLv-, 00) 

XWUijiLLivjf) (24b) 

with Fo(0) = 1. We now recognize that the ratio 

N*(®,0,W+) L /o 
- 7 1 / hYzr 

N7(6) L+l fi 
(25) 

and will show an effect of nuclear alignment. I t is 
convenient to remember that 

C(LLv; 00)Zv(v+l)-2L(L+l)l 

= 2L(L+l)C(LLv,l, - 1 ) . 

When one considers what is taking place here the 
interpretation to which one arrives is that by averaging 
or summing over the dihedral angle 8 one effectively 
decouples the variables of the problem in such a way 
that the distribution of p + and p_ relative to k is 
unaffected by the orientation but k is distributed 
relative to it in the same way as a "particle" of spin s 
would be in similar circumstances. For the transverse 
fields s=l which is a way of saying that the distribution 
of radiation in the emission of such a particle from an 
aligned state is a geometrical property and has nothing 
to do with such physical questions as the dispersion 
relation between the energy and momentum of the 
particle. We have in mind the fact that the virtual 
quanta which are involved in the electron-nucleus 
interaction are not on the mass shell since k^ko. For 
the longitudinal fields s=0 which is hardly surprising. 
I t is to be noted that the particles in question are 
represented by plane waves and so no physical param­
eters such as those describing the electrostatic electron-
nucleus interaction play a role. I t may be conjectured 
that the present results would be modified if the 
Coulomb distortion of the electron wave functions were 
taken into account. However, as a purely formal 
question, it may be also conjectured that for high 
energies (ko —» oo) the results presented here would 
again be valid even if a Coulomb field were present.12 

Nevertheless, since the plane wave approximation has 
been demonstrated to be a good one for internal pair 
formation one may expect that for the light nuclei, 
where this phenomenon is usually observed, the results 
presented above would be applicable to experimental 
situations. 

11 See Ref. 8, pp. 176-179. 

12 Indications that this would be so appear in related problems: 
See M. E. Rose, L. C. Biedenharn, and G. B. Arfken, Phys. Rev. 
85, 5 (1952); and R. L. Becker and M. E. Rose, Nuovo Cimento 
13, 1182 (1959). 


