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Pion-Nucleon Scattering in the Boundary-Condition Model. 
I. Inelastic Effects on S Waves* 
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(Received 25 March 1963) 

^S-wave amplitudes for both T= J and T—\ ir-N scattering in the 0-500 MeV range are constructed by 
means of the boundary-condition model. Included in the Hermitian F matrix is a production channel in which 
the two outgoing pions are assumed strongly correlated in the T = 0, J=0+ state. The behavior of the 
amplitude so derived is in agreement with the present analyses of the experimental data, and shows in a 
simple manner the mechanism for obtaining a maximum in the cross section through the introduction of 
an inelastic channel. 

I. INTRODUCTION 

IN the past few years several attempts have been 
made at an understanding of the ir—N interac

tion. In particular, dispersion relations for the w—N 
partial wave amplitudes using the singularities derived 
from the Mandelstam representation, in conjunction 
with phenomenological representations of strong TT—T 
interactions in various channels, have been used by 
several authors1,2 to explain the available s-wave ampli
tudes. The difficulties with these approaches have 
mostly involved rather severe approximations about 
the contributions to the dispersion integrals of the dis
continuities across the T-\-TT—> N+N cut (the circle 
cut) and the elastic cut in the complex s plane. I t is the 
aim of this paper to outline an approach to the problem 
using the boundary-condition model (B.C.M.), which 
incorporates unitarity and as much of the analyticity 
as is desired, and which permits a direct comparison 
with the requirements of the relativistic theory. 

In a recent paper3 (hereafter referred to as FL) the 
application of the B.C.M. to the problems of elementary 
particle physics was discussed and justified on several 
grounds. The application to IT—N scattering was also 
mentioned. In Sec. I I we shall repeat a few of the theo
retical arguments in favor of the model with special 
reference to the w—N case. In Sec. I l l the experimental 
s-wave data will be presented and discussed. Section IV 
will deal with the effects of inelastic channels as a 
possible explanation of some of the data. Section V will 
set forth both the single and multichannel forms of the 
B.C.M. and derive some of the pertinent equations. The 
T=\ and T = f cases will be dealt with separately and 
the best fits will be presented in Sec. VI. Section VII 
will contain conclusions drawn from the fits and a dis
cussion of further uses of the model for the TT—N 
interaction. 

* This work is supported in part through funds provided by the 
Atomic Energy Commission under contract AT (30-1)-2098. 

f IBM Predoctoral Fellow. 
1 J. Bowcock, N. Cottingham, and D. Lurie, Nuovo Cimento 

19, 142 (1961). 
2 J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. (to be 

published). This contains references to earlier work by Hamilton 
and others. 

3 H. Feshbach and E. L. Lomon Ann. Phys. (N. Y.) (to be 
published). 

II. RELEVANCE OF THE B.C.M. TO 
STRONG INTERACTIONS 

The double spectral representation for the w—N 
scattering amplitude contains terms of the form 

/ ds' I dtf—^-
p(* ' / ) 

(s'-s)(t'-t) 

The limits of integration may be found by unitarity 
and the conservation laws. In particular, the double 
spectral function p(s'/) for processes of the type in 
Figs. 1 (a) and 1 (b) vanish outside the shaded areas in 
Fig. 2. 

At energies where inelastic scattering is not im
portant, it may be hoped that we can represent the 
effects of the shaded strip a by a superposition of 
Yukawa potentials in deriving the asymptotic ampli
tude. However, if strip p [i.e., diagram 1(b)] plays an 
important part, then, as explained in FL, the inter
action is extremely nonlocal and the boundary con
dition may dominate. (The form of the boundary con
dition will be given in Sec. V.) We shall try a pure 
B.C.M. in a first attempt, hoping that the potential 
tail contributions [Fig. 1(a)] will not cancel the im
portant effects to be discussed. The supposition was 
made mostly for ease of computation, but it has turned 
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FIG. 1. (a) Lowest order contribution to a. strip of double 
spectral function, giving rise to long-range "potential" effects. 
(b) Lowest order contribution to 0 strip of double spectral func
tion, giving rise to shorter range B.C.M. effects, (c) Lowest order 
contribution to peripheral production. This may be related to the 
contribution of (a) through unitarity. 
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out to be sufficiently correct to accomplish the present 
objectives. 

As shown in FL, the B.C.M. partial-wave amplitude 
is consistent with the analytic properties of the S 
matrix in the k2 variable (where k is the momentum of 
the particles in their center of mass) as derived from 
the Mandelstam representation for the total amplitude, 
except possibly the asymptotic property. The various 
unphysical cuts are obtained by the choice of potential 
tail. For these reasons, we shall employ the model in 
this paper using full relativistic kinematics. The use of 
wave functions to derive the amplitude may be justified 
in that it gives a scattering amplitude with the correct 
analytic properties in the relativistic k2 variable when 
the latter is formally substituted for the nonrelativistic 
one. Since we are not now concerned with the crossed 
7r+7r —> N+N reaction, the fact that crossing sym
metry is not inherent in the model is not of importance 
in this case. Crossing between various partial wave 
channels (such as between the T—\y J — \~ s-wave and 
the T—\, J=\+ ^-wave amplitudes) can later be im
posed ad hoc, as has been done for the TT—T interaction 
in FL. This will place consistency requirements on the 
parameters involved. Inelastic unitarity, of great im
portance to the present discussion, is automatically 
contained in the model. 

III. DISCUSSION OF THE s-WAVE DATA 

A. T = i 

We express the JT = J diagonal ^-matrix element as 
7]ie2ialj where 771 and ai are real and O^r j i ^ l . The 
available analysis of the data is plotted in Fig. 3 . 4 - 8 
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FIG. 2. Regions of the s't' plane outside of which 
the double spectral function vanishes. 

4 S. W. Barnes, B. Rose, G. Giacomelli, J. Ring, K. Miyake, 
and K. Kinsey, Phys. Rev. 117, 226 (1960). 

5 H. Y. Chiu and E. L. Lomon, Ann. Phys. (N. Y.) 6, 50 
(1959). 

«S. M. Korenchenko et al., Dubna Report P-431, 1959 
(unpublished). 

0 10 2.0 3.0 
k(Pion momentum in the TT-H Center of Moss, 

in units of JJC) 

FIG. S.T = i s-wave elastic phase shift «i and inelastic parameter 
i)i from analyses of experimental data. Reference to source of 
analysis is given by number at the point. 

The outstanding feature in the energy behavior of the 
phase shift is the apparent "knee" not far above the 
inelastic threshold followed by a fairly sharp rise. This 
suggests a discontinuity of some kind and, thus, 
perhaps the onset of a new channel. The low-energy 
data have not been put into the plot but they are con
sistent with a scattering length ai=0.173/z~1.2 [Here 
we set fi = c— 1, and n is the charged pion mass. Lengths 
are thus measured in units of yrl, the pion Compton 
wavelength and momenta and energies in units /x. The 
scattering length ai is defined as linn_>o(ai/&).] The 
data on 771 show virtually no absorption until & = 2.4/z; 
then rather strong absorption seems to arise over a 
small energy interval, again suggesting the possible 
importance of the inelastic channel. 

Here (see Fig. 4) we have no apparent structure 
effects in the phase shift a3.7-12The absorption parameter 
773 has not been plotted since it is essentially 1 through-

7 W. D. Walker, J. Davis, and W. D. Shepard, Phys. Rev. 118, 
1612 (1960). 

8 J. Deahl, M. Derrick, J. Fetkovich, T. Fields, and G. B. Yodh. 
Phys. Rev. 124, 1987 (1961). 

9 G. E. Fisher and E. W. Jenkins, Phys. Rev. 116, 749 (1959). 
10 Proceedings of the 1958 Annual International Conference on 

High-Energy Physics, at CERN (CERN, Geneva, 1958), p. 43, 
Fig. 7. 

11 B. Aubert et al, CERN Report 61-11, 1961 (unpublished). 
12 E. H. Rogers, O. Chamberlain, J. H. Foote, H. M. Steiner, 

C. Wiegand, and T. Ypsilantis, Rev. Mod. Phys. 33, 356 (1961). 
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FIG. 4. r = f s-wave elastic phase shift «3 from analyses of ex
perimental data. Inelastic parameter 173= 1. Reference to source 
of analysis is given by number at the point. 

out the range of interest. The low-energy data are con
sistent with a scattering length as lying between 
— 0.090 and — 0.110.2-9 The absence of any appreciable 
absorption combined with the smoothness of a3 as a 
function of k suggests that any inelastic channel con
trolling the r = | behavior can have little, if any, effect 
in the T = f channel. The slowness of the change of the 
slope of az versus k from a constant negative value 
suggests the dominance of repulsive boundary condition 
type scattering which maximizes the negative rate of 
variation of the phase shift.3 

IV. INELASTIC CHANNELS 

The inelastic channel we shall consider in our attempt 
to explain the T=% data is 

W+N-+N+T+1T. 

In this way we recognize the possible importance of the 
a strip [see Figs. 2 and 1 (a)] when we are above thresh
old. The model as presently used is unable to handle 
3-particle channels, so that two of the three particles of 
the NTTTT system must be assumed to be strongly corre
lated for our purposes. 

Possible idealizations we may consider are 

T+N-

ir+N-

For 7r* one might be tempted to try the p meson 
( r = l , J=l~). However, this would then appear in 
both the T=±$ and T = f states; also the threshold for 
such a reaction is too high for our domain of interest. 
Similarly, the N* taken as the (3,3) isobar will appear 
in the 7"=f state. One could eliminate both of these 
particles from the T= f state, of course, by reducing the 
coupling to zero, but this seems too arbitrary a 
procedure. 

One state in which there is mounting evidence that 
the two pions are strongly correlated, if not resonant, 
at a low energy in their center-of-mass system is the 
state of r = 0 , / = 0 + . Such a two-pion system can be 
produced only in the T=% channel and, hence, will not 
affect the T = f elastic scattering. The justification for 

assuming a strong attraction or resonance at low energy 
for two pions in this state derives mainly from the ex
periments of Abashian, Booth, and Crowe,13 Samios 
et al.,u and Richter.15 In the first of these experiments 
the authors provided an explanation of their data in 
the ^ + d - > H e 3 + 2 7 r (neutral) p+d-*H.3+2ir 
(charged) reactions by postulating a narrow r = 0 , 
/ = 0 + resonance in the final state of the two pions. 
Truong16 and Jacob, Mahoux, and Omnes17 have sug
gested that the data could be explained by a nonreso-
nant but strongly attractive interaction between the 
two pions in this state with a scattering length of the 
order of 1.5/x"1. Results of Hamilton et al? seem to 
support this hypothesis. Both these interpretations will 
be tested. The results of the model bear out the existence 
of a strongly attractive (0,0+) state with a preference 
for the resonance interpretation. However, because of 
the crude approximation of the model used here and 
because of uncertainties in the data analysis, none of 
these possibilities is considered to be eliminated. Very 
recent data favors the scattering length fit, as men
tioned in Sec. VII below. 

V. THE BOUNDARY CONDITIONS 

Conservation of flux at a radius r0, when the particles 
may be described by configuration space wave functions 
outside r=r0, is satisfied by the boundary conditions 

ro[dv(r)/dr1r=rQ =Mr0) 

in the one-channel case, and by 

(i) 

»-o 
~du(r)/dr 

.dw(r)/drJ 0 lfc /JLw(fo)J 

in the two-channel case. Here v(r), u(r), and w(r) are 
the reduced radial wave functions in the various 
channels, whose values and derivatives are taken on the 
surface described by | r | 2 =r 0

2 in the relative coordinate 
r. The channel described by w(r) may have different 
kinetic energy and/or different orbital angular mo
mentum from the channel described by u(r). Similar 
equations, where u (r) and w (r) have had different orbital 
angular momenta but the same kinetic energy, have 
been previously used.18 As used here, u(r) and w(r) will 
also have different kinetic energies associated with 
them. 

The reality of / and the Hermiticity in general of the 
f matrix is required by the unitarity of the system, 
while the reality of the f matrix is a consequence of 
time-reversal invariance. (The matrix is related to F 

13 A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev. 
Letters 5, 258 (1960). 

14 N. P. Samios, A. N. Bachman, R. M. Lea, T. E. Kalogerop-
oulos, and W. D. Shepard, Phys. Rev. Letters 9, 139 (1962). 

*5B. Richter, Phys. Rev. Letters 9, 217 (1962). 
ifiT. N. Truong, Phys. Rev. Letters 6, 308 (1960). 
17 M. Jacob, G. Mahoux, and R. Omnes, Nuovo Cimento 23, 

838 (1962). 
18 H. Feshbach and E. L. Lomon, Phys. Rev. 102, 891 (1956). 
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of FL by the relation f=JF+7, where / is the unit 
matrix, due to our choosing to work with the reduced 
wave functions.) 

Feshbach and Lomon3 have shown that causality and 
considerations of the strength of the interactions in
volved will cause f to be more or less energy-independent 
for r0 at about the strong interaction distance char
acteristic of the /3 strip (in our case, at J/JT1). This energy 
independence is not, however, expected to hold for 
pole-type interactions such as the (3,3) ir—N channel, 
where there is no activity in the momentum transfer 
channel. (See Fig. 5.) A more general structure of f to 
include these pole effects is discussed in FL. 

0.4 0.8 1.2 1.6 2.0 2.4 2.8 
k(Pion momentum in Center of Mass, in units of JJC) 

FIG. 6. a3 obtained from single-channel B.C.M. Eq. (3). 
References to experimental points are given in Fig. 4. 

VI. DETAILS OF THE MODEL AND THE 
FITTING OF THE DATA 

Let us consider first the T=f case. As there will be 
no absorption in this channel if the particle produced 
has T—0 (according to the hypothesis made in Sec. IV), 
the wave function v(r) [see Eq. (1)] may be taken as 
e-ikr__e2iazeikr^ *ie ̂  a scattered s wave, for r>r0. a3 is 
real. Application of the B.C. (boundary condition) of 
Eq. (1) implies 

f+P tan/3 
P COtO!3 = , (3) 

l-/(tan/3//3) 
where /3=kr0. 

In the scattering-length approximation, kcotaz 
= (l/az) for k —> 0. From Eq. (3) we get 

/=ro/(r 0+a 3) . (4) 

To fix /, #3 was varied slightly between —0.090 and 
—0.100, while r0 was varied between 0.25 and 0.50. 
This left the one parameter, ro, to fit the higher energy 
data, and this parameter was expected to stay within 
the above narrow limits required by its physical inter
pretation. An excellent fit to all data up to about 500 
MeV (see Fig. 6) was obtained for a3=— 0.098 and 
ro=0.45 (units of ju-1). From Eq. (4), / = 1.28. Since no 
potential tail was used, and a good fit was obtained, it 
is likely that diagrams of the kind 1(b) (representing 
the /3-strip contributions) are largely responsible for the 
scattering. Note that ro is almost twice the estimate of 
Jju-1 obtained from consideration of Fig. 1(b). An ex
planation of this will be discussed in Sec. VII. 

K 
FIG. 5. Pole dia

grams for TT-N 
scattering. 

B. T = \ 

General Formulation 

Since there is inelasticity in this channel, the ir—N 
wave function u(r) may be taken as e~ikr—7jie2iaieikr 

outside r—r^ with rjhax real and 0^771^ 1. If a particle 
with definite mass m and T=0, 7 = 0+ is produced, 
w(r) must be an outgoing p wave (by conservation of 
angular momentum and parity): 

w(w,r)oc (l-\-i/Kr)eiKr. 

K is the outgoing relative momentum and is given by 

(K2+ni2yi2+(K2+M2)lf2=W, (5a) 

where W= (k2+n2)ll2+(k2+M2)lf2 is the total energy 
in the cm. and the nucleon mass M is taken as 6.72/*. 

For W<M+m (i.e., below threshold for production 
of the mass m particle) we set K—w, and we have a 
decaying p wave given by 

w(w,r)oc (1+1/Kr)e~kr. 
K is given by 

(M2-K2y!2+(M2-K2)l/2==W. (5b) 

This procedure is seen to be justified by asking that 
the B.C.M. S matrix have the proper analytic con
tinuation in the complex k plane.19 

Carrying through the calculations with the above 
wave functions, we get from Eq. (2) 

n 1 4/.+-
Jr=r0 L t[x—l/(x+l)2-

Ko) , (6) 

where 

(a) (b) 

x=Kro for W>M+m (above threshold) 
= hro for W<M-\-m (below threshold). 

With this formulation and the definitions (5a) and 
(5b) the inelastic cut appears explicitly, and 2nd-order 
cusps (see Appendix) are obtained in ai(&) at the mo
mentum corresponding to the threshold for production 
of a particle with mass m [see Eq. (14)]. Such curves 

19 P, T. Matthews and A. Salam, Nuovo Cimento 13,381 (1959). 
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are plotted in Figs. 8 and 10. As can be seen, the general 
nature of the curves is consistent with the data. 

To take into account the width of the resonance, 
Eq. (6) is changed to 

[ du{r)~ 

dr 
/ r 

p (m)dm 

2/x i[x-l/{x+i)~]~ f2 
k'o), o) 

where x is a function of k2 and my and is given for each 
m by the definitions following Eq. (6) and Eqs. (5a) 
and (5b). 

In this approximation, ji is independent not only of 
k2, but also of m. 

This integration procedure is equivalent to opening 
a continuous range of channels with varying w's, with 
a density fc

2{m)dm still independent of the external 
energy, viz., Eq. (2) becomes 

r0[du(r)/dr~lr=r0 = fiu(r0)+^m f0(tn)w(tn,ro), 

r0[dw (m9r)/dr2r^r0 = fc (m)u (r0)+f$x) (m,r0). 
(7a) 

Then let J2m fc2(m) —* f p(m)dm in the resulting 
reduction. 

Discussion of the p Function 

If a stable particle with mass ni* is produced, we wish 
to have Eq. (7) reduce to the form of Eq. (6) with 
ni = in*. This can be done, clearly, by taking 
p(m) = D8(m—m*) with D=fc

2. This suggests that, in 
general, we take p(m) to be proportional to the T=0, 
7 = 0+ 7T—7r cross section for elastic scattering at a 
total center-of-mass energy, m. The primary effects 
of the spread in the mass distribution will be accounted 
for by the equivalent spreading of the threshold effects 
in this choice of p. Thus, if we produce an unstable par
ticle of average mass w* and full width r at f full in
tensity, p(m) will be taken as a Breit-Wigner form of 
an s-wave resonance 

p(m) = NTI 

D 

where 

NTe8 = -

{m-m*)2+ ( r 2 / 4 ) [ ( w - 2 ^ ) / ( m * - 2 M ) ] 

( r 2 / 2 ) [ l - (P /16) (w*-2 M ) - 2 ] 1 / 2 

( T T / 2 ) - t a n - i { [ ( - 2 ( w * - 2/x) + (P /4 ) ( m * - 2 M ) ~ 1 ] r - 1 [ l - (r2/16) (m*-2M)-2]-1'2} 
(8) 

The integration over m in Eq. (7) will then extend from 
m=2jx to m— <*>. The normalization factor A r̂es in 
Eq. (8) assures Jl^ dmp(m) = D. Thus, D should be the 
full equivalent of fc

2 in the two-channel case. 
On the other hand, suppose we have a nonresonant 

7T7T system. In it the w's may still be correlated enough so 
that a boundary condition on the center-of-mass system 
is meaningful. In this case, we will let p{m) take a form 
which is still proportional to the (0,0+) 7r—IT cross 
section q~2 sin250(^). Here d0(q) is the T=0, J = 0+ ir—T 
phase shift at pion momentum q in the TT—TT center-of-
mass system. In the scattering-length approximation 

^cot5o(^) = a0~
1, (9) 

1.0 2.0 m* 2+J/02 4.0 5.0 

m(Totol Energy in the TT-TT Center of Moss) 

FIG. 7. The function p(m) for the resonant (solid curve) 
and nonresonant (dashed curve) TT-TT interactions. 

from which we get 

q~2 sin25o(^) = [a 0 - 2 +M(w-2 i u)] - 1 , (10) 

since m~2}ji-{-q2/n if the kinetic energy in the TT—TT 
center-of-mass system is reasonably low. The same ap
proximation was made in writing the resonant cross 
section. No major error is expected to result from this 
due to the integration to high ra's since all quantities 
in the integrand fall off rapidly. Appropriately rela-
tivistic formulations of both the Breit-Wigner and 
scattering-length forms can and will be used when 
necessary. The main thing is that the Breit-Wigner form 
used has the correct behavior at q —* 0 (m —> 2p) and 
around resonance (ni^ni*). 

Thus, as an approximation in the nonresonant case 
we use Eq. (7) with 

D 
p(m) = N8Ci-

where 
ao~2+/jL(m— 2p) 

^ s c l ={ln[a 0
2 (m-2 /x ) i u+l ]} - 1 . (11) 

The extension of this to the full effective range ap
proximation is easy. This was done, but was not found 
to add results of further interest. 

Curves of p(rn) versus m are shown in Fig. 7. The 
maximum in the Breit-Wigner curve is shown as oc
curring at m-

r«w*. 
= w*. This will be approximately so if 
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Derivation of the Elastic Phase Shift and 
Inelastic Parameter 

In general, the equation from which 771 and a i are 
derived is given by 

r0Zdu(r)/dr~lr=r0 = feii(k2)u(r0), (12) 

where fen(k2) is generally a complex function of the 
variable k2. fen(k2) is given by Eq. (6) in the stable 
particle production case, and by Eq. (7) (the expression 
in the square brackets) in the general case. We shall 
show that below threshold for the second channel 
fen(k2) is real, whereas above threshold it acquires a 
negative imaginary part which is directly related to the 
absorption. The threshold momentum for the produc
tion of a particle x* is given by 

[(ra0—JJL) ( W 0 + M ) (2M+m0— /x) ( 2 M + W 0 + M ) ] : 

2 (M+m0) 

1/2 

(13) 

where mo is the lowest mass of the 7r*. In the pure par
ticle case Wo=w*. In the resonant and nonresonant 
two-pion cases wo=2/x. 

Now we derive 771 and on. Let 

j f e f f= /e f f (& 2 ) , 

/ r=Re/eff(£2) , 

/<=Im/eff(#) . 

Writing u(r) = e-iJcr--rjie2ialeikr, and using Eq. (12), we 
obtain 

^ 2 * 1 = e~
2i\ (14) 

/eff — $ 

where /3—kro as before. From this we obtain the follow
ing formulas for the desired quantities: 

Vi= 

j8 cotai= 

fr2+f?+P2+2pfn^ 

\-fr2+f*+P2-2pfJ 

P t an /3+/ 

l - / ( tanj8/ /3) ' 

(15) 

(16) 

where 

/ = ( l / 2 / r ) { ( P + / , 2 - ^ 2 ) + [ ( / r
2 + / , 2 + ^ 2 ) 2 - 4 / ^ ] i / 2 } . 

Note that (16) is analogous to Eq. (3) in the one-
channel case, except that now / has complicated energy 
dependence. 

As stated, below threshold £k<k0: see Eq. (13)] 
fi=0. Thus, (15) reduces to 

/ = = / r = / e f f . 

Now we explicitly exhibit the function fen(k2) using 
the integral formulation [Eq. (7)], keeping in mind 

that the stable-particle case may be obtained by letting 
p{m) be a delta function at some mass m*. 

We define the following symbols: 

y=r0K(k2,m), 

z=roK(k2,m), 

where K and K are given by Eqs. (5b) and (5a), re
spectively. With these definitions and Eq. (7) we 
obtain for 

(i) k<ko (i.e., J ^ < M + 2 M ) 

fr=fi~[ dm p (m)-
( y + i ) 

y 2 + ( l + / 2 ) y + ( l + / 2 ) (17) 

/ < = 0 . 

(ii) k>h (i.e., W>M+2n) 

/ 2 0 2 + ( l + / 2 ) 

Z
4 - ( l - / 2

2 ) 2
2 + ( l + / 2 ) 2 

fr=fi- dmp{m) 
J 2 

( y + l ) 
aw p (m) 

,r_* y 2 + ( l + / 2 ) y + ( l + / 2 ) 

u 
pW—M 

J 2j» 

dmp(m)-
2 4 - ( l - / 2

2 ) z 2 + ( H - / 2 ) 2 
(18) 

Unitarity requires that 0^771^ 1. From (15) we see 
that for this to be so we must have fi ^ 0. This condition 
is seen to be satisfied in our model. From Eq. (18) we can 
see that fi is never positive if s4—(1 — / 2

2 ) s 2 + ( l + / 2 ) 2 

is never negative. Remembering that the f matrix is 
real a sufficient condition is | / 2 | ^ 1. Also sufficient is 
that the discriminant ( l - / 2

2 ) 2 - 4 ( l + / 2 ) 2 ^ 0 . This is 
equivalent to — 1 ^ / 2 ^ 3 . Thus, it is also sufficient for 
I/2I ^ 1. Thus, unitarity is fulfilled at all energies for 
any real f matrix. 

Note that in the pure particle case, w* is necessarily 
less than W—M for k>ko, by the definition of ko in this 
case. Thus, the second integral in the expression for fr 

in Eq. (18) vanishes due to p vanishing in the range of 
integration. 

Fitting the Data 

The slope of the phase shift at k = 0 is given by the 
T~ \ scattering length ai = 0.173pr12 The requirements 
that this slope be fitted by a pure B.C.M., i.e., 

foCrf«(r)/^r]r-ro,fc-*o=/oC«(fo)]fc-*o 

imposes the condition /o=fo/(fo+#i) on the value /o 
of fen(k2) at k2 = 0, where it is real. Thus, using Eq. (17) 
and the above condition, we obtain 

ro 

1 J 2. 

? o + l 
dm p (m) 

y o 2 + ( l + / 2 ) ? o + ( l + / 0 ro+ax 

where yo is y(k2,m) evaluated at k2 = 0. 

, (19) 



1296 H . G O L D B E R G A N D E . L . L O M O N 

50° 

40° 

0) 

tf 20° 

10° 

1.0 

0.8 

0.6 

0.4 

0.2 

o.o 

-

-

-

*-^^^ 

1 

i 
i 

\ \ i 

Vi 
\ \ B 
A\ \ 1 

\ V v 1 

1 
1.0 2.0 3.0 

k (Pion momentum in the tr-H Center of Mass, 
in units of pc) 

(a) 

60° 

40° 

"^30° 

* 20° 

10° 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-

-

-

1 
I 

\ U \ 
\ \ 

A\ \ 

\y:\ 
___ J 1 1 

1.0 2.0 3JO 
k(Pfon momentum in the T - N Center of Mass, 

in units of pc) 

(b) 

FIG. 8. (a),(b>) a i and 771 obtained from coupled-channel B.C.M. 
Eqs.(15) and (16). References to experimental points are given 
in Fig. 3. Parameters for various curves given in Table I. TT-TT 
interaction described by resonance at energy W* = 2.30JU (322 
MeV), with r = 0 ("ABC" resonance in stable-particle limit). 

Thus, in the expression for fr in Eqs. (17) and (18), 
we set fi=ro/(ro+ai) + A, where A is the integral in 
Eq. (19) without the minus sign in front. In this way we 
determine one of the parameters, fh by fixing the scat
tering length. 

Fixing ax at 0.173/x-1, fitting r0, U, and D (see "Dis
cussion of the p Function" above) to higher energy data 
was done by trial and error on the IBM 7090 and 709 
at MIT for the input TT—TT interaction parameters given 
below. r0 was varied in the range (0.25-0.50)JJT1, while 
extensive variation in / 2 and D was used. Cutoffs were 
used in all integrals having an infinite upper limit (for 
numerical purposes only, since everything is rapidly 
convergent), and the normalizations of the p functions 
were corrected to account for this. In the pure particle 
case, where p(m) = D8(tn—m*)y this integration pro
cedure was, of course, unnecessary. 

Several cases of the T=0, J=0+ T—T interaction 
were tried: 

(i) Resonance at energy tn*=2.30p, (322 MeV) and 
zero width ( r = 0). p(m) is here taken as the delta 
function at the above w*. 

This is consistent with the results of Abashian, 
Booth, and Crowe13 and Richter.15 The width in these 
cases may have been up to 10 MeV (0.07/J) if the reso
nance interpretation is accepted, but the effect of this 
finite width was tested and found entirely negligible. 

(ii) Resonance at average energy tn*=2.83p, (395 
MeV) and width T = 0.36M (50 MeV). p(m) in this case 
is given by Eq. (8). 

These are the isotopic spin, energy, and average 
width deduced from the data of Samios et al.u from the 
two-pion mass plots. We try them with the T=0y 

J=0+ assignment which seems most likely in a low-
energy 7T—7r resonance that has been experimentally 
excluded from T=2. 

(hi) Same as (ii), except zero width ( r = 0). 
(iv) Strong nonresonant interaction with TT—TT scat

tering length a 0 = 1.5/x-1. 
Formula (11) was used for p(m). 
This is an approximate value suggested by the con

clusions in Refs. 2, 16, and 17. 
(v) Same as (iv), except for #o=2.0/x~1. 

I t was found that in all five cases an f0=0.45^~1 just 
as for T= f was compatible with the best fits. This being 
so, /1 was determined from Eq. (19) given Z>, /2 , and 
the p function. Thus, the fitting to higher energies, after 
having decided on this r0, was done with the two re
maining parameters D and / 2 for each of the five TT—TT 
interactions assumed. 

The presentation of the results for cases (i) to (v), 
in Figs. 8-12, respectively, is according to the following 
plan: The (a) and (b) parts of each figure each contain 
two sets of curves, labeled A and B, respectively. (Each 
set of curves contains a curve of a i and the correspond
ing 7/i curve,) The A sets in all the figures have 



P I O N - N U C L E O N S C A T T E R I N G I N B O U N D A R Y C O N D I T I O N M O D E L 1297 

/2=— 0.30, the B sets / 2 = + 0 . 4 0 (chosen to illustrate 
the differences of behavior in these two areas of / 2 ) . 

In the (a) part of each figure, the parameter D was 
chosen for each of the A and B sets so that the ax curves 
have a behavior which is the same until about 180 MeV 
and which is in agreement with the experimental points 
plotted. After that the different characteristics of the 
A and B sets reflect the different ranges of parameters 
used. 

In the (b) part of each figure, D was again chosen to 
give uniform behavior in <*i until 180 MeV for the A and 
B sets, except that the curves lie somewhat higher than 
in the (a) part. This was done in order to attain greater 
proximity to the phase shifts at the higher energies. 

Finally, the values of the parameters for each set of 
curves are given in Table I. 

TABLE I. Parameters for curves in Figs. 8-12. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

^0^0.45/i-1 

Case 

Resonance 
m* = 2.3(V 

r=o 
Resonance 
m* = 2.83/z 

r = 0.36M 

Resonance 
m* = 2.83/x 

r=o 
Scattering 

length 
a0=1.50/T1 

Scattering 
length 

a0 = 2.00M-1 

a ^ O . 1 7 3 ^ 1 

Fig. 

8(a) 
8(a) 
8(b) 
8(b) 
9(a) 
9(a) 
9(b) 
9(b) 

10(a) 
10(a) 
10(b) 
10(b) 
H(a) 
11(a) 
11(b) 
11(b) 
12(a) 
12(a) 
12(b) 
12(b) 

Set 

A 
B 
A 
B 
A 
B 
A 
B 
A 
B 
A 
B 
A 
B 
A 
B 
A 
B 
A 
B 

fo = rQ 

h 
1.18 
1.55 
1.27 
1.72 
1.28 
1.69 
1.43 
1.94 
1.35 
1.73 
1.43 
1.94 
1.29 
1.76 
1.44 
1.94 
1.24 
1.63 
1.36 
1.84 

/(ro+ai) = 0.72 
D 

0.50 
1.50 
0.60 
1.80 
0.70 
1.90 
0.90 
2.40 
0.80 
2.00 
0.90 
2.40 
0.80 
2.20 
1.00 
2.60 
0.65 
1.80 
0.80 
2.20 

h 
-0.30 
+0.40 
-0 .30 
+0.40 
-0 .30 
+0.40 
-0 .30 
+0.40 
-0 .30 
+0.40 
-0 .30 
+0.40 
-0 .30 
+0.40 
-0.30 
+0.40 
-0.30 
+0.40 
-0 .30 
+0.40 

VII. DISCUSSION OF RESULTS AND 
CONCLUSIONS 

We have shown the applicability of the B.C.M. to 
one and two channel w—N scattering, and have given 
a possible approximation for a mass distribution in the 
final channel. All cases attempted showed the correct 
qualitative trend, both in the elastic phase shifts ax and 
az and in the inelasticity parameter 771. Particularly to be 
stressed is the almost perfect fit to the r = § data from 
0-500 MeV through the use of the model with two 
parameters, coupled with the correct behavior in the 
more complex T= J case. On the basis of the model, this 
strongly indicates that a T = 0 , J = 0+ low-energy IT—w 
resonance (or strong interaction) in the final state of a 
production channel is a controlling factor in TT—N 
s-wave scattering in the 200 to 400-MeV range. 

Quantitatively, the use of the Samios resonance 
energy has given the best fit, while a nonresonant 
"scattering-length" fit is least adequate. A better fit is 
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FIG. 9. (a),(b) Same as for Fig. 8 except here 7r-7r interaction 
described by resonance at energy m* — 2.83ji (395 MeV), width 
r = 0.36/z (50 MeV). ("Samios" resonance.) 
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FIG. 10. (a),(b) Same as for Fig. 8 except here TT-TT interaction 
described by resonance at energy m* = 2.S3jj, (395 MeV), width 
r = 0. ("Samios" resonance in stable-particle limit.) 

not necessarily to be expected due to the probable role 
of other inelastic processes at the highest energies 
considered. 

These conclusions, of course, also depend on the 
accuracy of the data used and the uniqueness of its 
partial-wave-amplitude analysis. This production 
mechanism could be ruled out if future analyses showed, 
for instance, a value of 77! very close to 1 in the range 
of interest, and a trend of a\ toward negative values 
instead of a rise near threshold. 

An amplitude analysis by Cence and Eandi,20 of 
recent ir^—p scattering experiments at energies in the 
range 500-1600 MeV by J. A. Helland et al.21 and polar
ization data, has just been received. The ai and 771 ob
tained in the analysis assuming a D3/2 ir—N resonance 
in the T—\ state show excellent qualitative agreement 
with the behavior of these quantities as predicted from 
our model. Absorption in the T=\ s wave continues to 
be negligible, lending further support to the importance 
of the attractive T=Qy J = 0+ 2ir state in the s-wave 
scattering. Our scattering-length curves (Figs. 11 and 
12, sets B) give the better agreement at these higher 
energies. The results of Walker et al.,7 which favored 
the Samios resonance, were arrived at with much less 
experimental input. The Wigner condition on a 1 in the 
form dai/dk> —ro, whose possible violation is pre
dicted by our model at energies above 400 MeV (notice 
the rapid drop of a\ in Figs. 8-12) is also seen to be vio
lated in this new experimental analysis near 600 MeV. 
As discussed below, this can be ascribed to the rapid 
onset of absorption which is not taken into account 
in Wigner's derivation. 

Let us now discuss in more detail our results and their 
theoretical implications. 

A. T = | 

In this case we have apparently very well approxi
mated the contributions of the p strip (Fig. 2) and have 
shown that even above threshold the effects of the a 
strip are negligible. However, the large value of 
r0(0.45^_1) compared to the value expected from the P 
strip (0.25/*-1) may be due to the long-range contribu
tions of the a strip. These neglected contributions, in 
the absence of inelasticity, should be accounted for by 
the utilization of the unphysical cuts allowed in the 
model through the use of Hermitian potential tails in 
the construction of the wave functions to be used in the 
model. However, for the present, the data seem to be 
fitted well enough by substituting a somewhat enlarged 
core for the potential tail. 

B. T = \ 

When a pure B.C.M. one-channel fit was attempted 
on low-energy data (0-120 MeV), we found that a 

20 R. Eandi, University of California thesis, UCRL Rept. 
No. 10629 (unpublished). 

21 J. A. Helland, T. J. Devlin, D. E. Hagge, M. J. Luongo, 
B. J. Moyer, and C. D. Wood, Phys. Rev. Letters 10, 27 (1963). 
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radius r0 of 0.35/i"1 gave an excellent fit. With the sub
sequent introduction of the inelastic channel, however, 
a larger value of 0.45M"1 was necessary to keep the good 
fit below threshold and give a reasonable fit above. The 
reason for this may be seen by examining Fig. 1(c): 
The peripheral production of the "ABC" (or any pair 
of pions) takes place via an interaction whose range is 
longer than that of the interaction of Fig. 1(b), which 
contributes to pure B.C.M. scattering. As pointed out 
in the preceding paragraph and in FL, this long-range 
effect would best be taken care of by the use of a po
tential tail (in this case, a potential coupling of the two 
channels) in the derivation of the wave functions to be 
used in the construction of the scattering matrix from 
the B.C.M. This could be done numerically, but is 
avoided here for simplicity. 

In the language of the Mandelstam relations, by 
introducing the inelastic channel we recognize the im
portance of the r = 0 s-wave projection of the spectral 
function p(s',t') in the a-strip approximation. To see 
this, we apply unitarity to Fig. 1(a) with the inter
mediate state of the two pions taken as T = 0 , J=0+, 
and show that the desired projection of p(s',t') is pro
portional to the cross section for the peripheral pro
duction of Fig. 1(c). This we then explicitly recognize 
as non-negligible. 

I t is also plausible that effects of the ff region 
(Fig. 2), which may have some importance for energies 
above threshold (due to the smallness of the energy 
denominator s'—s), can be approximated within the 
framework of the pure B.C.M. 

Mechanism for a Maximum in the Elastic 
Cross Section 

We now come to the most striking aspect of the 
results. According to the work of Ball and Frazer,22 an 
amplitude with only the physical cut may give a sharp 
maximum in the cross section without the elastic phase 
shift necessarily going through 90°, if the inelasticity 
parameter drops fast enough to its unitary limit. They 
have suggested this as the mechanism for the higher 
7T—N resonances, with the p meson dominating the 
intermediate state in the a-strip approximation. How
ever, there are very difficult problems with the im
position of unitarity both in their formulation and in 
subsequent more elaborate formulations.23 

We now claim to have demonstrated clearly the 
effect discussed in Ref. 22, in the case of s-wave ir—N 
scattering. In addition, however, we have here the 
added advantage within the model of automatic uni
tarity. As seen from Figs. 8 and 10, the maximum is 
sharper the faster 771 goes toward 0. The position of the 
maximum in the elastic phase shift is always above 
threshold. The rapid descent of ax with k after "reso
nance" does not violate the Wigner condition,3 since 

22 J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1962). 
23 L. F. Cook, Jr. and B. W. Lee, Phys. Rev. 127, 283 (1962). 
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FIG. 11. (a),(b) Same as for Fig. 8 except here TT-TT interaction 
described by scattering length of I.SJJT1. 
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FIG. 12. (a),(b) Same as for Fig. 8 except here ir—ir interaction 
described by scattering length of 2.0/JT1. 

more than one channel is involved. The Wigner condi
tion is taken care of by the constancy of the f matrix 
as a function of k2. 

These questions will be explored more fully in work 
now in progress on the higher resonances. The aim will 
be to ascertain the role of the p (and/or the N*) in an 
inelastic channel giving the size and shape of the cross 
section observed. The unitarity, desired analyticity, 
and reasonable underlying physical assumptions make 
the B.C.M. an attractive avenue of approach to these 
more complicated structures. 

APPENDIX 

Threshold Properties of Cross Sections 
and Phase Shifts 

The general properties of cusps due to the opening 
of new channels are well known.24-26 In this Appendix 
we obtain the detailed dependence for our interaction. 
The cusp behavior does not show up on our plots due 
to their small scale, but can be obtained from Eqs. (A15) 
and (A16) below. 

We write the reduced radial wave function in 
channel 1 as 

u(r) = <f>*(r)+S<t>(r), for r>r0, (Al) 

where </>(r) is an outgoing spherical wave of angular 
momentum lx (possibly in the range of a potential tail 
other than Coulomb), and normalized so that 
4>(r)—> (—f)*HV*r. Then S is the usual diagonal 

matrix element rje2ia. 
The wave function in channel 2 is w(r), an outgoing 

spherical wave of angular momentum h. 
Zero total flux at r=r0 is obtained by requiring 

To (du/df) r=r0 = flU Oo) + fcW ( f 0 ) , 

To (dw/df) r=r0 = fcU ( f0) + j&> (>o) . 
(A2) 

In the most general case, the f matrix may have the 
energy dependence described in FL. We will assume 
this generality. 

Since w(r) is an outgoing wave asymptotically satis
fying the free-particle equation, it can be written as 

w (r) = X {Kr)eiKr, lim % (Kr) = const, 
r—*oo 

where K is the outgoing momentum (pure imaginary 
below threshold). Therefore, 

ro(dw/dr)r==ro=Bw(ro), (A3) 

where 6 = JK>o[(xVx)+d a n d the prime denotes dif
ferentiation with respect to Kr0. Note that the form of 
9 depends only on l2. 

24 E. P. Wigner, Phys. Rev. 73, 1002 (1948). 
25 G. Breit, Phys. Rev. 107, 1612 (1957). 
26 R. G. Newton, Ann. Phys. (N. Y.) 4, 29 (1958). 
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Combining (A3), (A2), and using (Al) we get 

e [ / ^ * - ^ * ' ] + D 3 / 2 * * ' - ( / l / 2 - / c 2 ) 0 * ] 
s= , (A4) 

where, as before, fi—kr<s. Here the prime denotes dif
ferentiation with respect to /3. 

Remembering the Hermiticity of the f matrix, this 
mav be written as 

OA*+B* 
S= , (A5) 

QA+B 

where A and B are complex functions of 0 and certain 
constants determined by the structure of the f matrix. 
The important point is that, except for some accidental 
singularity at threshold in the structure of the f matrix, 
A and B are continuous and have continuous derivatives 
in all orders at threshold. Hence, the character of dis
continuity depends on 9 only and, hence, only on the 
angular momentum of the outgoing wave in the pro
duction channel.25,26 

The elastic cross section 

*el=(T/k*)\S-l\> 

/4TT\ (Re£) 2 + (Re^)2[(ReO)2+ (ImG)2]+ (2Re,4Re£)Re9 -0-B12+ \A\ 2 [ (Re9) 2 + ( I m e ) 2 ] + 2 R e ( ^ 5 * ) R e e - 2 I m ( ^ 5 * ) I m e 
(A6) 

Let us now choose r0 large enough so that w (r) satis
fies the free-particle equation (approximately) for 
r>ro. (We clearly cannot do this in the case of a 
Coulomb potential.) I f / 2 = 1 (i.e., a p wave is produced), 
then 

w(r) oc [ 1 + (i/Kr)2eiKr= [ 1 + {i/x)~]eix, at r=r0 

using the definitions following Eq. (6) in the main 
article. From this and Eq. (A3), 

0(x)=(-l + lX*)(l + X2)-1. (A7) 

Near threshold (on either side), x is small. Expanding 
and keeping terms to order #3, we obtain 

0(x)* -l-\-x2+ixz+-' (A8) 

Below threshold, we let x —» iy, y—K.r§ [see Eq. (5b)]. 
Then near threshold, 

e(y)~-l-y2+yz+- (A9) 

Above threshold, we follow the main body of the 
article and formally substitute z for x. Then near 
threshold, 

9 ( 2 ) « - l+z2+iz*+ • • •. (A10) 

Let E=W-M-n 

= incident kinetic energy; 

EthT=m—/x 

= threshold kinetic energy. 

(AH) 

From these definitions, and the assumption of small K, 
we obtain from Eqs. (5a) and (Al l ) , that near threshold 
and below it 

/ 2mM \1 /2 

K « ( ) (£ th r -£ ) 1 / 2 . (A12) 
\M-\-mJ 

Above threshold 
2mM \1 /2 

/ 2mM V 
K~( 

\M+m/ 

(E-Ethry 

Thus, below threshold, using (A9), 

9(E) - - l + X 2 ( E - E t h r ) + X 3 ( E t h r - E ) 3 / 2 + • 

where 
/ 2mM \1/2 

X = r0( . 
\M+m/ 

(A13) 

(A14) 

KM+mJ 

Above threshold, using (A 10), 

9 ( E ) « - l + X 2 ( E - E t h r ) + i X 3 ( E - E t h r ) 3 / 2 + • 

From (A 13) and (A 14) we see that 

(1) 9(E) is continuous and has a continuous first 
derivative (with respect to the energy, E)at threshold. 

(2) Approaching threshold from below, 

d2A£E2(Re9)-> + «>; 

d2/dE2(Ime) = 0. 

Approaching threshold from above, 

d2/dE2(ReO) = 0; 

d 2 / J E 2 ( I m 9 ) - > + * > . 

(3) At threshold, R e 9 = - 1 , I m 9 = 0 . Using these 
facts, and the fact that A and B are well behaved at 
threshold, we can say that, in this case 

(1') Cei(E) is continuous and has a continuous first 
derivative (with respect to E) at threshold. 

(20 Approaching threshold from below 

(Perei / daei \ /d2(ReB)\ 

dE2~*\d(Ree)/E=EthS dE2 ) E-i 

67rX3Im(,4£*) 

#-# th r=0 

\B-A\ 
(ReB - R e ^ )2 ( E t h r - E)~1/2 . (A15) 

file:///M-/-mJ
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Approaching threshold from above, 

dVei / daei \ /d2(ImQ)\ 

dE2 \d(lmQ) / E=EthA dE2 / E-EthT=o+ 

67rX3Im(^5*) 
= -(1mA-ImB) 

¥ \B-A\2 

X ( R e 5 - R e ^ ) (E-Ethr) - 1 / 2 . (A16) 

Thus, the second derivative of the elastic cross 
section has an infinity at threshold when a p wave is 
produced.25,26 The infinity may change sign if 
(RejB—Re^4) has a different sign from (ImA — ImB). 
By looking at the curves in Fig. 8 or Fig. 10 we can see 
that this is what happened in our case. Of course, since 
the phase shift is a continuous function of the cross 

INTRODUCTION 

IT is well known that the model of a K* exchange 
proposed by Tiomno et at.1 to explain the backward 

peaking of the A's produced in the reaction 

7 r - + £ - A + # ° (1) 

is incomplete, because it accounts neither for the ob
served large polarization of the A's nor for the peak in 
the total cross section at around an incident pion mo
mentum of 1.03 BeV/c. 

MacDowell et al2 have made fits to the angular dis
tribution at pion kinetic energies of 960 and 1300 MeV 
by adding to the scheme a complex s wave. They ob
tained a satisfactory value for the average polarization 
only at the higher energy and needed two different prod-
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section, the same type of discontinuity will occur in a 
plot of a versus k as in a versus E. 

With an s wave in the outgoing channel, the usual 
type of cusp is found (first derivative infinite).24 In 
general, if a channel with orbital angular momentum I is 
opened, the ( /+ l ) s t derivative will have a discontinuity 
at threshold, with no Coulomb forces present.25,26 

I t should be noticed that the above treatment is 
perfectly general, and can be applied to wave functions 
with any desired unphysical cut, insofar as an energy-
dependent f matrix, not singular at threshold, was 
permitted. 

In some of our cases the produced particle is unstable. 
In these instances, "wooly" cusps27 are obtained with 
properties which have been discussed in Ref. 27 The 
coupling scheme used in our formulation [Eq. (7a)] is 
consistent with that in the Nauenberg and Pais paper 
and, of course, is unitary. 

27 M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962). 

ucts of coupling constants differing by a factor of 5 to 
obtain good fits to the angular distribution. Also, their 
work is incomplete in the sense that they did not 
attempt to fit the polarization dependence with angle. 

In the present paper we propose a modification to the 
Tiomno scheme by adding a resonant partial wave. 
This model gives excellent fits to both the angular dis
tribution and the polarization over a wide range of 
energy if we assume that the resonance is pi/2. I t gives 
also a fairly good fit to the energy dependence of the 
total cross section. 

The idea of a pi/% resonance is not new. A pi/2 or pz/2 

resonance was suggested by Kanazawa3 in order to ex
plain the peak in the total cross section. He ignored 
though the K* exchange diagram, probably because at 
that time this particle was hypothetical, and considered 
instead the one-nucleon term and the 2 exchange term. 
In this paper we do exactly the opposite. We have a 
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A model is proposed to explain simultaneously the backward peaking of the A particles in the reaction 
Tr~-\rp—A-\-K°, the large polarization observed, and the peak of the total cross section. The K* exchange 
diagram and a resonant state in our channel are considered as the main contributions to the amplitudes. 
By assuming a resonant pi /2 state, excellent fits to the angular distribution and polarization are obtained at 
a pion kinetic energy of 871 MeV and at an incident pion momentum of 1.01-1.05 BeV/c. A fairly good fit 
is obtained at a pion kinetic energy of 791 MeV. A new estimate for the K*AN coupling constant is given. 


