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The width of the K* is given by 

r = r (#*+ -> K°+7r+)+T (#*+ -> K++ir°) 

= 2 ( - ) — , (18) 

where p is the center-of-mass momentum of the decay 
pion and M the mass of the K*. 

We obtain f/4n=0.80 which gives g2/4:w=0.144. 
This value is smaller than the estimate of Chan13 ob
tained under the assumption that the K* exchange term 
gives the total cross section at an incident pion kinetic 
energy of 960 MeV and with a width for the K* decay 
of 23 MeV. Our product of coupling constants falls close 
to the value obtained by MacDowell et al? from the 
experimental data at T T = 1300 MeV. 

After this work was completed we learned of a related 
work by Feld and Layson14 who analyzed the experi
mental data on the total ^p cross sections and the dif
ferential elastic ir~p scattering cross section for energies 
between 0.3 and 1.3 BeV. They found that the best 
fitting of the angular distribution requires a T~ l/2,/>i/2 
resonance near 950 MeV(W= 1716 MeV) in agreement 
with out results. Also Kuo15 has fitted the low energy 
y+p —» A+K+ data (excitation function, angular dis-

13 C. H. Chan, Phys. Rev. Letters 6, 383 (1961). 
14 B. T. Feld and W. M. Layson, in Proceedings of the 1962 

Annual International Conference on High-Energy Physics at CERN, 
edited by J. Prentki (CERN, Scientific Information Service, 
Geneva, 1962), p. 147. See also W. M. Layson, Nuovo Cimento 
27, 718 (1963). 

15 T. K. Kuo, Phys. Rev. 129, 2264 (1963). 

I. INTRODUCTION 

MANY authors have speculated that the strong-
interaction coupling constants and the relative 

masses of the strongly interacting particles may be 
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tribution,andone experimental point in the polarization) 
using a model similar to ours which included a Kanazawa 
resonance at 17=1700 MeV and obtained a slightly 
better fit in the pi/2 case. 

We should add a comment on a work by Gourdin and 
Rimpault16 in which a model somewhat similar to ours 
was proposed. These authors added to the K* exchange 
the contributions from the 2 and Fi* exchanges, the 
nucleon pole, and the resonances iVi/2* and N1/2**, but 
an agreement with experiment for total and differential 
cross sections was found only in the cases of odd 2A 
parity, spin of K* equal to 1, and even SA parity, spin of 
K* equal to 0. I t is well known at the present time that 
the spin of the K* is one17 and the SA parity even,18 

so this model is no longer valid. Their value for the 
K*AN coupling constant g2/4r=l.S should, therefore, 
not be considered reliable. 
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16 M. Gourdin and M. Rimpault, Nuovo Cimento 24, 414, 
(1962). 

17 See W. Chinowsky, G. Goldhaber, S. Goldhaber, W. Lee, 
and T. O'Halloran, Phys. Rev. Letters 9, 330 (1962). 

18 See Robert D. Tripp, Mason W. Watson, and Massimiliano 
Ferro-Luzzi, Phys. Rev. Letters 8, 175 (1962). More recently, 
see H. Courant, H. Filthouth, P. Franzini, R. G. Glasser, A. 
Minquzzi-Ranzi, A. Segar, W. Willis, R. A. Burnstein, T. B. 
Day, B. Kehoe, A. J. Herz, M. Sakitt, B. Sechi-Zorn, N. Seeman, 
and G. A. Snow, ibid. 10, 409 (1963). 

determinable from some form of dispersion relations.1 

Recently, several different attempts have been made 
to determine the p-meson mass and width from disper
sion relations for the pion-pion scattering amplitude.2-4 

1 See, for example, G. F. Chew and S. C. Frautschi, Phys. Rev. 
Letters 8, 41 (1962); R. H. Capps, Phys. Rev. 128, 2842 (1962). 

2 F. Zachariasen, Phys. Rev. Letters 7, 112, 268 (1961). 
3 Louis A. P. Balazs, Phys. Rev. 128, 1939 (1962). 
4 F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962), 
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The agreement of the predictions with experiment has 
not been spectacular; the chief difficulty is that the 
predicted reduced width is too large.2-3 At first glance 
it appears that a dispersion-theoretic prediction of the 
width of the i£* or co meson would disagree with 
experiment even more, since these mesons are of mass 
comparable with the p, but are much narrower. In 
fact, the existence of many high-energy resonances of 
rather small widths is a serious obstacle to the point 
of view that all resonances and particles are of dy
namical origin with all interaction constants calculable, 
since simple dynamical calculations generally lead to 
large widths. 

There exists within the dispersion-theory framework 
a rather simple mechanism which may lead naturally 
to narrow resonances, however. This mechanism is the 
strong coupling of the resonances to states of higher rest 
mass. In this paper we consider the example of the K* 
vector meson,5 and regard it as a resonance in the 
coupled, isotopic spin J, w-\-K, and 7}+K channels, using 
a modification of the "bootstrap" procedure of Zacha-
riasen and Zemach.4 In order to see how the coupling 
of the K* to the high rest mass rj-\-K channel may lead 
to a small K* width we consider the hypothetical 
situation in which the TT-\-K —> r)-\-K inelastic amplitude 
is zero, so that the TT+K and TJ+K states are eigenstates 
of the scattering. The K* would then be either a pure 
w+K resonance, with an appreciable width, or an 77-f K 
bound state, with zero width. I t is apparent that in a 
realistic calculation in which the T-J-K —» t]+K coupling 
is not zero, a predicted K* width anywhere between 
zero and an appreciably large value is possible. The 
small observed width may mean that the i£* is coupled 
more strongly to the rj-\-K state, or another state of 
high rest mass, than to the T+K state into which it is 
forced to decay for energetic reasons. We note that in 
a dispersion theory there is no difficulty in the concept 
of the coupling of a resonance to states of high rest 
mass, since amplitudes may be analytically continued 
into unphysical energy regions. 

Another reason for considering the coupling of the 
rj+K channel to the T+K channel is the recent suc
cesses of the octet model of unitary symmetry.6 This 
model has successfully predicted the existence of the 
pseudoscalar rj particle and the vector-meson octet,7 

has produced a mass formula that is satisfied very well 
by the pseudoscalar meson and baryon octets,8 and 
has predicted successfully the 7 = J cascade-pion reso-

5 For experimental evidence of the vector nature of the K*, 
see W. Chinowsky, G. Goldhaber, S. Goldhaber, W. Lee, and 
T. O'Halloran, Phys. Rev. Letters 9, 330 (1962). 

6 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne'eman, 
Nucl. Phys. 26, 222 (1961). 

7 For a summary of the evidence concerning the pseudoscalar 
nature of the 77 particle, see M. Chretien, F. Bulos, H. R. Crouch, 
Jr., R. E. Lanou, Jr., J. T. Massimo, et al., Phys. Rev. Letters 
9, 127 (1962). 

8 S . Okubo, Prog. Theoret. Physics (Kyoto) 27, 949 (1962); 
see also Ref. 6. 

nance at ^1532 MeV.9 The dynamical prediction of 
the E* from unitary symmetry depends crucially on 
the assumption that the rj and K interactions are of 
comparable importance with the ir interactions.10 

However, the relative strengths of the T, K> and rj 
interactions cannot be predicted from unitary sym
metry as long as the origin of the mass differences of 
these particles is not understood. We shall treat these 
relative strengths as undetermined parameters, but 
adopt the principle that all members of the 7r, K, rj 
octet must be considered whenever any one of them is. 

In a previous paper by the author,11 the values of the 
five PS-PS-V (pseudoscalar-pseudoscalar-vector) me
son-coupling constants were calculated from approxi
mate dispersion relations of the "bootstrap" type, with 
the mass differences among the PS mesons and among 
the V mesons neglected. The ratios of the calculated 
constants are in agreement with the predictions of the 
octet model of unitary symmetry, so that this symmetry 
is predicted by the dispersion relations. However, if 
future experiments do verify the validity of unitary 
symmetry, it is clear that this will not prove that the 
symmetry has anything to do with dispersion relations. 
In the author's opinion there are two types of methods 
that may provide tests for the hypothesis of a disper
sion-theoretic origin of unitary symmetry. The first 
has to do with the predictive power of dispersion 
theory. If it becomes possible to start with a few simple 
dispersion-theoretic principles and give many correct 
answers to such questions as : (1) What are the masses 
and coupling constants of particles? (2) What are the 
basic interaction symmetries? and, (3) Why do so 
many particles exist?, then the theory will certainly be 
attractive even though the necessity of a dispersion-
theoretic formulation will not have been "proved." 

The second method of testing our hypothesis has to 
do with the PS-meson mass differences and F-meson 
mass differences; it is to this question that the present 
paper relates. Because of the existence of the mass 
differences we know that the basic interaction sym
metry must be broken in some manner. I t is hoped 
that the dispersion relations will predict a particular, 
testable relation between mass differences and the 
breaking of the interaction symmetry. 

We cannot discover the reason for the mass differences 
by considering only the PS-PS meson scattering 
amplitudes and only the F-meson exchange forces in a 
bootstrap calculation. However, we can hope that these 
amplitudes and forces are the most important in 
determining the relations of the F-meson mass differ
ences and V-PS-PS coupling constants to the PS-meson 

9 The prediction of the E* is made by R. Behrends, J. Dreitlein, 
C. Fronsdal, and W. Lee, Rev. Mod. Phys. 34, 1 (1962); the 
discovery of the E* is reported by G. M. Pjerrou, D. J. Prowse, 
P. Schlein, W. E. Slater, D. H. Stork, and H. K. Ticho, Phys. 
Rev. Letters 9, 114 (1962), and by L. Bertanza, V. Brisson, 
P. L. Connolly, E. L. Hart, I. S. Mittra, et al, ibid. 9, 180 (1962). 

10 Richard H. Capps, Nuovo Cimento 27, 1208 (1963). 
11 R. H. Capps, Phys. Rev. Letters 10, 312 (1963). 
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mass differences. Such relations may be investigated 
by means of a program of calculations in which the 
physical masses of the PS mesons are assumed, and 
the bootstrap technique is used to calculate the V-
meson masses and interactions. This paper represents 
a part of such a program; we consider only the K*—TT 
+K—r)+K system. 

In our calculation the K* exchange force contributes 
to all three processes w+K —» ir+K, rj+K —> rj+K, 
and w+K —»rj+K. The only other force considered is 
p exchange, which contributes to 7r+iT elastic scatter
ing. These forces are characterized by five parameters, 
the masses MK* and mp, the coupling constants JK^K2 and 
7K*r]K2, and the product ypirTy PKK. We take the p mass 
from experiment, so there are four undetermined 
parameters. The N/D dispersion relations yield as 
output the three parameters MR*, yK*<KK2, and Y#*IJK2. 
Thus, the requirement of self-consistency does not 
determine all the parameters, but leaves one unfixed. 
I t is shown in Sec. I l l that the K* mass is extremely 
insensitive to this arbitrariness and may be calculated 
in our model. The relationship of the results regarding 
the coupling constants to unitary symmetry is discussed 
in Sec. IV. 

II. DERIVATION OF THE EQUATIONS 

The general procedure we use is similar to that of 
Refs. 4 and 11. We assume that the w, rj, and K are 
pseudoscalar particles and consider the P-wave ampli
tudes for the processes w+K —>ir+K (in the isotopic 
spin-! state), rj+K —>rj+K, and TT+K —>rj+K. The 
input forces are assumed to result entirely from the K* 
and p exchange graphs shown in Fig. 1. The first 
approximation to the matrix N/D method is used for 
the amplitudes; i.e., the Born-approximation ampli
tudes resulting from these forces are taken to be equal 
to the numerator matrix, and a once-subtracted dis
persion relation is used for the denominator matrix. 
For suitable choices of the input parameters, the i£* 
resonance is generated by the dispersion relations, as 
shown in Fig. 2. We then apply the self-consistency 

FIG. 1. Graphs of 
the input forces to 
the TT+K -> it+K, 
rj+K —> rj+K, and 
w+K —> ri+K proc
esses. 

(a) (b) 

requirement that the values of the K* mass and 
coupling constants resulting from the dispersion rela
tions are equal to those used to specify the forces, and 
study the resulting implied relations among these 
constants. 

A. The Input Forces 

We denote the ir+K and y+K states with the single 
indices w and 77, and the K*wK, K*rjK, pirir, and pKK 
coupling constants by yK*T, 7**17, 7 P T, and ypK. We 
define the P-wave amplitudes Tij for the three basic 
processes in terms of elements of the unitary scattering 
matrix U by the equation 

(Uij-SijW* 

2iqis/2qj .3/2 
(i) 

where s is the square of the total energy in the center-
of-mass system, and qi and q3- are the magnitudes of the 
initial and final particle momenta in the center-of-mass 
system. The constants h and c are taken as unity. The 
(<7*'<7/)~3/2 factor is included in the definition so that 7\y 
has no zeroes, poles, or branch points at the threshold 
energies. 

Because of the w—K and rj—K mass differences, 
the calculation of the Born-approximation amplitudes 
resulting from the input forces is not as straightforward 
as that in Refs. 4 and 11. We illustrate the calculation 
by considering the inelastic process T+K —»rj+K. The 
force for this process may be determined from the 
amplitude for the crossed -w+K—>r}+K process ob
tained by looking at Fig. 1(d) from the side. We 
consider only the contribution of the K* to this crossed 
process, and denote the K* mass by M. The invariant 
amplitude A for the crossed process is assumed to be of 
the form,12,13 

( yK*iryK*n\qir,cqv,c COS0C 

) 
4TT / M2-sc 

(2) 

where sc, and qVlC are the appropriate energy, 

<0 CO 

angle, and momentum variables for the crossed process. 

12 Our normalization of the invariant amplitude is the same as 
that of Geoffrey F. Chew, S-Matrix Theory of Strong Interactions 
(W. A. Benjamin and Co., New York, 1961), Chap. 2. The 
calculation of Born-approximation amplitudes by using the 
"crossing" or "substitution" law is discussed in detail in this 
reference. 

13 In the pole approximation one must make a choice concerning 
the exact definition of the amplitude to be replaced by a simple 
pole. Our choice is the amplitude Tij of Eq. (1). This choice is 
the customary one in the limit that the mass differences are 
neglected; it agrees with that of Ref. 4, for example. It is well 
known that for short-range forces the P-wave amplitude Tij of 
Eq. (1) has no singularities at the channel thresholds unless a 
"bound-state" pole occurs accidently at a threshold energy. 
Therefore, one would be treating the nearby, threshold singu
larities incorrectly if he were to assume that qiqjTij, rather than 
Tij, is represented by a simple pole. For this reason, the factors 
qTi c and qv, c must be included in Eq. (2); they cannot be replaced 
by their values at sc=M2. [The relation between TijiC and A 
is given in Eq. (3).] 
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(a) (b) 

FIG. 2. The output; appearance of the K* resonance in 
the w-{-K and 77+iC states. 

If the i£* resonance were to occur above the TT+K and 
rj+K thresholds, the denominator M2—sc should have 
an imaginary part, but we consistently neglect this 
imaginary part in computing the Born-approximation 
amplitudes. The momentum qv>c is actually imaginary 
at the mass of the K*, but this causes no difficulty. 

The P-wave amplitude in the crossed process is 
related to the invariant amplitude by the equation, 

TTV,e= (^TT.C^.C)"1 / A (sc, cosdc) cosM(cos0c). (3) 

From this equation and Eq. (2) it follows that our 
definition of the coupling constants is14 

7K*^W(4 i r ) = t C ( W - ^ ) r < i ] ^ J f . , (4) 

where i and j each refer to either of the w+K and 
rj+K states. 

In order to compute the Born approximation for the 
^-channel amplitude, we need the relations between sc, 
q7r,cqv,c cos0c, and ^-channel variables. These are 

$c Zjirr) ATlAv 

2qir,cqv,c cosdc=s+ , (5a) 
2 2 2sc 

s A^Ar, 
sc= § 2 ^ 1 \-2qTqv cos0, (5b) 

2 2s 
where 

Xij= 2mK
2+fni2+mj2

f (5c) 

Ai=mE?—m?, (5d) 

and the relation between qi and s is 

Qi= l\s-h{mK
2+m?)+\(A?/s)Ji2. (6) 

If the expression for A [Eq. (2)] is written in terms of 
^-channel variables, the Born approximation for Trv 

may be obtained from the analog of Eq. (3) [Eq. (3) 
with the subscripts c removed]. We denote the contri
bution resulting from the exchange of the V meson / to 
the Born approximation for the amplitude 7\ by the 
symbol Nijj. 

Unfortunately, the above procedure leads to an 
unwanted singularity in NVV,K* that arises because the 
masses of the PS mesons are not the same. The singu-

14 Our normalization of the coupling constants is the same as 
that of Refs. 4 and 11. 

larity in NXV,K* results from the singularity at sc=0 
of the expression for cos#c, Eq. (5a). There is a branch 
cut in NVV,K* at those values of s for which the inte
gration over cos0 involves integrating over the point 
sc=0. In order to get rid of this singularity we replace 
the factor %ATAr,/sc by ^AVAJM2 in Eq. (5a), when 
substituting this equation into the expression for the 
invariant amplitude. [No change is made in Eq. (5b), 
however.] A similar procedure is used in computing 
NTT,K* and Nvr},K*. The Born-approximation amplitudes 
Nijti resulting from this modified procedure may be 
written in the form 

^Tij,i=Cij>iyiiyijdlij>iy (7a) 

Vtij,i=Q(z)Xij,i/(^Yij,i2), (7b) 

*=Mj/YiJ,b ( 7 c ) 

4 (2 1 \ 
Q(Z) = _ _ _ + _ _ + _ )ln(i+4*). (7d) 

z2 \z2 W 

The constants Cu,i are isotopic-spin-dependent factors 
that may be determined from the crossing matrices, 
and Xnti and Yij,i are functions of s. For the amplitude 
Nnrj (we drop the unnecessary index K* on NVVIK* and 
NVV,K*), in the energy region above rj+K threshold, 
these factors are 

C\n,= l, (8a) 

Xv,=s+iM*--&T1l-%(ArAn/M*), (8b) 

Y^±s+M2-^v-UA„Av/s)-2qTqv. (8c) 

In the region between the w+K and rj+K thresholds, 
where qv is imaginary, these functions may be analyti
cally continued. The resulting formulas may be ex
pressed simply, if one makes the simultaneous substi
tutions, Q{z) -> Q'(z') and FT„ -> F' , where 

4 2 
Q' = arctan(2z'), 

z'2 z'* 

Y^is+M2~iX^-i(ATAv/s). 

The Born approximations for TT+K and r)+K elastic 
scattering resulting from the diagrams of Figs. 1(a), 
1(b), and 1(c) may be determined in a similar manner. 
The ir+K —» w-\-K amplitude has two contributions, 
NVV,K* and NTTIT^. The results for these three contri
butions may be expressed in the form of Eqs. (7), 
where the various C, X, and Y functions are 

C„,p=tf, (8d) 

XTV>p=s+itnp
2-&T7r, (8e) 

F„ l P=m p
2 , - (8f) 

C „ , x » = — I , (8g) 
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X^.K^S+^-^-H^/M*), (8h) 

Y„tK* = M*-(Ar*/s), (8i) 

C „ = l , (8j) 

X „ = 5 + i M 2 - S „ - i ( A , 2 / M 2 ) , (8k) 

Y„=lP-(A*/s). (81) 

The 3$ij are defined in Eq. (5c). These formulas are 
valid both above and below the rj+K threshold. 

The replacement procedure discussed above, that of 
substituting At-Ay/M2 for A{Aj/sc, is made for all the 
i£*-exchange contributions. This procedure is equiva
lent to assuming a nonresonating 5-wave amplitude, 
proportional to A{A j/(M2sc), in addition to the resonant 
P-wave contribution, in the crossed channel. I t is not 
clear whether this assumption is better or worse than 
the assumption of a zero 5-wave amplitude. In fact, 
it is actually inconsistent to neglect forces resulting 
from the exchange of S-wave PS-meson pairs, since 
the F-meson exchange mechanism leads to forces in 
the "crossed" channels in the S waves as well as the 
P waves. One should write equations for the S waves, 
P waves, and other angular momenta, simultaneously. 
This would complicate the problem greatly, however, 
so we use only that small S-wave amplitude in the 
crossed channel necessary to remove the \/sc singu
larity, as described above. The early work of Chew and 
Mandelstam on the 5- and P-wave W—TT scattering 
amplitudes partially justifies our approach (or any 
other approach in which the S-wave amplitudes are 
small), for in this work it was found that if the P wave 
is resonant, the forces on the P-wave amplitudes 
contributed by the exchange of 5-wave meson pairs is 
relatively small.15 

The Born-approximation amplitudes are of ten derived 
from perturbation theory involving the vertex function 
and propagator for the vector meson, so we shall 
discuss how Eqs. (7) and (8) may be derived in this 
manner. One can write the vertex factor for the K*TTK 
interaction occurring in Figs. 1 (b) and 1 (d) in the form 

(pK\JK*,li\pir)=a(pTr+pK)n+b(pTr — pK)fi, 

where pv and pK are the four momenta of the w and K. 
The ratio b/a may be determined from the "current 
conservation" condition JK*(PK—PTT) = 0- The result 
is 

ipK\JK*^\px)=al(pr+pK)+(Ax/Se)ipr — pK)'}fiy 

where sc= — (p%—pK)2* I t is easy to show by considering 
the "crossed vertex" ir-\-K—> i£* that the Av/sc term 
prevents the occurrence of coupling of S-wave TT+K 
pairs to the fourth component of the K* vector. Use 
of this vertex function would lead to the \/sG singularity 
discussed earlier. We may derive Eqs. (7) and (8) by 
neglecting this term of the vertex function and using 

16 G. F. Chew and S. Mandelstam, Nuovo Cimento 19, 752 
(1961). 

the following i£*-meson propagator, 

hy~ (ft-pidvipv-pidv/M2 

sc-M
2 

The second term of the propagator is necessary; leaving 
it out would be equivalent to neglecting the AvAr,/sc 

term in Eq. (5a) entirely, which would correspond to 
the assumption of a resonant S-wave amplitude in the 
crossed channel. 

B. The N/D Dispersion Relations 

In the matrix N/D method, one writes T=ND~1, 
where T, N, and D are square matrices.16 We follow 
the general procedure of Refs. 4 and 11 and choose N 
to be the Born-approximation matrix amplitude of 
Eqs. (7) and (8), i.e., Nirv=N7rv,p+Nirir,K*, N^N^K*, 

and N^^N^K** We write a once-subtracted dispersion 
relation for D, setting D equal to the unit matrix 1 at 
the subtraction energy st. The dispersion relation is 

s—str ds' ImD(sr) 
D(s) = 1 + / - . (9) 

w J (sf—St)(sf—s—ie) 

Only the physical ir-\-K and rj+K branch cuts are 
included in D. The unitarity relation is ImD 
= (ImT~l)N, where 

( I m P - % - -8iS(q*/sM)ei(s). (10) 

The function Oi(s) is defined to be one for qi2>0 and 
zero for <?;2<0. These equations, together with the 
expressions for N%j in Sec. I I A, are the equations for 
the amplitudes. The integral in Eq. (9) is convergent, 
so that no cutoff or further subtraction is necessary. 

This method is only approximate, as is discussed in 
Ref. 4. The amplitudes satisfy the unitarity condition 
exactly on the right-hand cut, but only approximately 
on the left-hand cut. Furthermore, further approxi
mations to the N/D method diverge when vector 
particles (or other states of angular momentum^ 1) 
are exchanged.17,3 I t is widely hoped that if the asymp
totic forms of the various crossed-channel amplitudes 
are taken to be that suggested by Regge; it will be 
possible to construct a consistent, convergent theory.17,3 

However, since our approximate equations are simple 
and convergent, we do not postulate the Regge behavior 
here. 

I t is pointed out in Ref. 4 that if the position of the 
derived resonance lies on the left-hand cut of one of 
the amplitudes, then this method is inconsistent. The 
inconsistency will manifest itself by the occurrence of 
a branch point in the logarithmic function of Eq. (7d) 
at some real value of s equal to or greater than M2. 

16 J. D. Barken, Phys. Rev. Letters 4, 473 (1960). 
17 The manner in which the use of the Regge representation 

may improve the convergence in the pion-pion resonance problem 
is discussed by David Y. Wong, Phys. Rev. 126, 1220 (1962). 
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^ FIG. 3. The four force functions 
3l»y, i. The energy variable s is in units 
of niK2, and the (87r9I) are in units of 
MK~2. The energies of the TT-\-K 
threshold, K* mass, and -q-\-K thresh
old are shown. For convenience the 
energy scale is changed at s = 6; the 
derivatives of the curves are actually 
continuous at this point. 

I t can be seen from Eqs. (6), (7), and (8) that no such 
inconsistency occurs in our case for values of M2 equal 
to or greater than the physical value. 

One well-known difficulty with the matrix N/D 
method is that approximate solutions are not in general 
symmetric, despite the fact that N is symmetric.18 We 
illustrate this point by using Eqs. (9) and (10) to write 
the equation for TX1]— (ND*1)^ in the following form: 

l^l"1^ 
S t 

~ V / V TTT-L TT -N T >} 
J- ij 

ptNuWds' 

(m K+mi)
2 (s'—St)(sf—s—ie)s' .'1/2 

) , (ID 

(12) 

where | D | is the determinant of D, and pi is a kinematic 
factor which we chose equal to qt

m in our definition of 
Tij in Eq. (1). The corresponding equation for TVT may 
be obtained by reversing the T and rj subscripts in Eq. 
(11). I t is seen that the coefficients of (s—-st) are not 
the same in the expressions for Tvn and TV7r so that, in 
general, T^T^. 

I t is commonly believed that nothing can be done 
about this asymmetry without complicating the pro
cedure greatly. Actually, however, the amount of 
asymmetry depends on the ratio of the kinematic 
factors p r and pv corresponding to the two channels. 
If NV7t is proportional to N^ for all energies greater 
than the ic-\-K rest mass, and Nvv is proportional to 
Nvn for all energies greater than the rj-\-K rest mass, 
the (s—St) terms of Eq. (11) and the corresponding 
equation for TV7r vanish, and T^—T^. Hence, one 
should choose the ratio pjp* so that the Nij are as 
nearly proportional as possible. [A common function 

18 The exact solutions are symmetric, however. See J. D. 
Barken and M. Nauenberg, Phys. Rev. 121, 1250 (1961). 

multiplying both pT and pv makes no difference in the 
results, since it leaves the products pi2Nij occurring in 
Eq. (12) unchanged.] Our choice of p*=g/ / 2 , which 
eliminates the singularities at the ir+K and TJ+K 
thresholds, leads to Nij that are nearly proportional. 
This is shown in Fig. 3, where the functions 9l*y, i 
corresponding to the four F-meson exchange graphs of 
Fig. 1 (computed by using physical values for mp

2 and 
M2) are compared. In view of this approximate propor
tionality, we simplify the equations by making the 
approximation in which the 3lij,i are all proportional 
to 31^ . We make the replacement 

Vlij,i(s)->Ki,ldl7ri](s), • (13) 

where the constants Ki,i are defined by 

^ • , z [ K + m * ) 2 ] 

^lxVZ(mv+mK)2'] 

The t)+K threshold is chosen for the definition of the 
K because it is an intermediate energy for this problem. 
If the physical values of mp

2 and M2 are used, none of 
the actual 9lu,j(s)/9l,rij(s) ratios varies by more than 
22% from its value at rj+K threshold. 

The matrix amplitude T is symmetric in the approxi
mation, and may be written in the form 

Tij^Vl„v(s)Rij(s)/\D(s)\, (14) 

Rin,—yK*xyK*7}, (15a) 

-#**-= —lKryK*w2+^KpyfirryPK+ar,(s)H, (15b) 

R7,r]=KvyK*v
2+aT(s)H, (15c) 

\D\= 1 — aT(s)[— \KvyK^v
2+^/2Kpy piTy pK~] 

— an(s)KvyK*r,2—a^a^s)!!, (15d) 

(s-st) r°° dsf
qi'^v{s

f) 
a,-= / J (15e) 

TT J (mK+mi)2 (s' ' — St) (s'— S~ie)sn/2 
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H = yK*r27K*v
2 ( 1 + JKT*, ) — ̂ KnKpy&fyprypK. (15f) 

The symbols /cTfP, **•,#*, and KV,K* have been abbreviated 
to KP, KT, and KV, respectively. 

This approximate form of the amplitude equations 
has several advantages. One is that some of the self-
consistency equations (derived in Sec. I I C) are simple 
algebraic equations. Another is that only the factors a 
and K of Eqs. (14) and (15) depend on the PS and 
F-meson mass differences, so that the effects of these 
mass differences on the symmetry of the interaction 
constants may be studied conveniently. 

C. The Self-Consistency Equations 

The application of the bootstrap mechanism requires 
tha t a resonance occurs in the derived amplitudes, 
which is identified with the K*. We assume the physical 
situation in which the resonance occurs at an energy 
above the n+K threshold but below the rj-\-K thresh
old. The function av(s) is real for such an energy, so 
that the complex nature of the amplitudes in Eqs. (14) 
and (15) arises entirely through their dependence on the 
complex function «„•($). I t is convenient to define a^.r 
to be the real part of aV9 and to add a subscript t on 
the Tij, Rij, and D to denote the real expressions that 
result if a is replaced by a r . We define the resonance 
energy SQ as the energy at which the T+K phase shift 
increases through 90°. Hence, ReTTir(so)==0, and since 
^iTrr,(so)Rrr(so) is real, this requires that Re|Z>($o)| 
= |jDr(^o)| = 0 . The coupling constants are defined by 
an equation analogous to (4), i.e., 

Yx*»7x*i/(4T) = t[(*o— s)Tijtr2«~80- (16) 

The yicn2 may also be interpreted as the reduced 
partial widths of the resonance. 

The above definition of the coupling constants 
requires a little clarification. The amplitudes TTT and 
TV, are purely imaginary at the resonance energy; for 
these amplitudes Eq. (16) is an obvious definition. 
However, Tvr} is complex at s—SQ because of the complex 
function ar in Rvv. Our definition of ynn specifies that 
ImuR,, be neglected, so that only the imaginary part of 
Tnii is considered. The validity of this procedure may 
be seen from the fact that the condition (so—s)23rV*?,r2 

= (so—•s)2T7rir>rTrir1,r, implied by Eq. (16), is automati
cally satisfied for the imaginary parts of the three 
amplitudes below q+K threshold because of the form 
of the unitarity condition, Im7\-y= (<^3/s1/2)7\v*r.,v. 

In order for a resonance to occur at s=M2, we must 
have 

| Dr (M2) | = 0 . (17) 

Applying the definition yK*i [Eq. (16)], to the ampli
tudes, we obtain three relations, which may be written 
in the form, 

yK*iyK*j 3r9lxn(s)Rij,r(s)'m\ 
= ;—— , (18) 

4TT 8L d\Dr\/ds JS=M> 

where the notation is that of Eq. (14). One of the four 

conditions given in Eqs. (17) and (18) may be derived 
from the other three; hence, these equations represent 
three self-consistency requirements on the four pa
rameters M2, 7JK*T

2, yK*v
2, and ypirypK. 

The simplest of the equations represented by Eq. 
(18) is the one corresponding to the inelastic amplitude 
TVy If we divide this equation by yK*iryK*v (which we 
assume is not zero) the result is 

l^MMi-sfr-^iM*), (19) 
where X is defined by the relation X= — (M2—st) 
X(d\Dr\/ds)s=;M2. The convenience of this parameter 
will become clear shortly. Equations (17) and (18) 
[with the parameters R^ given by Eq. (15)] may be 
combined to give the relations 

l = aT , r(M2)7x*.2+«,(M2)/c,7^,2 , (20a) 

1 = a,(M2)7X»,2+a, i r (M2)\W2Kpyp7rypK 

- K 7 K * . 2 ] . ( 2 0 b ) 
These two equations represent the self-consistency 
equations for the 72 in a convenient form. 

III. RESULTS 

Since we have one more input than output parameter, 
our solutions depend on one adjustable parameter, 
which we take to be yK**2- However, Eq. (19) is very 
insensitive to the choice of 7 K * / and may be thought 
of as the equation for the K* mass. The only quantity 
in Eq. (19) that depends on yK**2 is the parameter X, 
but X is very nearly one for all values of 7K**2. (If | Dr | 
were a linear function of s, X would be equal to one.) 
The actual dependence of X on yx**2 is shown in 
Table I. 

TABLE I. Calculated values of yx*v2, yPir7PK, and X 
corresponding to chosen values of JR**2-

T X S V 4 T 

0.5 
1.0 
1.5 
1.75 
2.0 
2.5 

Y W / 4 T T 

3.45 
2.78 
2.10 
1.76 
1.42 
0.74 

V 2 7 P 7 T 7 P K / 4 7 T 

0.88 
1.32 
1.77 
1.99 
2.21 
2.66 

X 

0.98 
0.98 
0.97 
0.96 
0.96 
0.95 

We now show that the experimental value of the i£* 
mass very nearly satisfies Eq. (19). We take for the 
masses of the various mesons M = 8 8 5 MeV, mp—7S0 
MeV, and #^=550 MeV. The constants K may be 
determined from Fig. 3 ; they are K P = 1 . 2 7 , /c r=0.93, 
and /c,= 1.22. We must next decide on an appropriate 
value for the subtraction energy st. In a one-channel 
problem an appropriate energy is that of the end of 
the left-hand cut, but we have several left-hand cuts. 
The ends of the cuts for the processes corresponding 
to Figs. 1(b) and 1(c) are, in units of MK2, s = —1.04 
and 5=1.26, respectively. The corresponding cuts for 
processes 1 (a) and 1 (d) include complex regions as well 
as regions on the real axis; the "ends" of these cuts 
[points where the argument of the logarithm in Eq. 
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(7d) vanishes] are s=— 0.1dz0.9i and <r=0.4±6.3i, 
respectively. Rather arbitrarily we take st to be the 
average of the cut ends for processes 1(b) and 1(c), 
i.e., St=z0.llniK2. If we substitute this value of st into 
Eq. (19) and evaluate 9flT1?(Af2), the right side of Eq. 
(19) is equal to 0.95X"1. Since X ~ l (0.95<X<1 for 
reasonable choices of yK**2), we see that this equation 
is very nearly satisfied at the physical value of M2. 
The error is less than the variation that would result 
from different reasonable choices of st. Hence, we shall 
continue to set M2 equal to the physical value. 

The computed values and derivatives of av,r and av 

at s=M2 are found to be 4 x 0 ^ = 0.328, 4 ™ , = 0.198, 
(M 2 -5«K,r7aT,r=0.94, and ( M 2 - ^ K V ^ = 1.21. The 
values of yx.*2 and ypirypK corresponding to different 
values of JK*V2 are determined from Eqs. (20) and are 
shown in Table I. The JK**2 is related to the experi
mental K* full-width T by the formula Y K * * - 2 / ^ ) 
= %M2T/qJ. The experimental value19 of T—50 MeV 
corresponds to yK*7r2/(47r)^0.65. 

As a further test of the self-consistency of our model, 
we must examine the forces in the / = f , TT-\-K state in 
order to verify that no resonance is expected in this 
state. Even though there is no rj+K channel of isotopic 
spin §, we write the equation for Tvir(I=%) in the 
form of Eq. (14), in order to facilitate the comparison 
between isotopic spins, i.e., 

r „ ( / = | ) = 9flir^„(/=i)/C(7=§). 
The expression for .#*•*(/= f) is similar to Eq. (15b) 
except that the coefficients are changed, i.e., 

Rrir ( 7 = | ) = f KryK**2—i^2KpypirypK. 

This function is negative for the entire range of Y K * / 
shown in Table I, indicating a repulsive force. Hence, 
our assumption of no input forces from the exchange of 
an isotopic spin-f resonance is self-consistent, as well 
as consistent with experiment. [We note that if tcp and 
KV are set equal to one, and the ratios of the yu are 
taken from unitary symmetry, the quantity Rvir(I=%) 
vanishes, as remarked in Ref. 11J 

IV. RELATIONSHIP TO UNITARY SYMMETRY 
AND CONCLUDING REMARKS 

One of the purposes of this paper was to investigate 
the effects of the PS and F-meson mass differences on 
the argument of Ref. 11, in which bootstrap relations 
were used to predict the PS-PS-V meson interaction 
symmetry of the octet model of unitary symmetry. 
We have succeeded in isolating the main effects of the 
mass differences in the equations for the K*; only the 
parameters K and a of Eqs. (19) and (20) depend on 
these differences. The ratios K^/K^ and a^^ja^ measure 
the main effects of the TT—TJ mass difference on the 
dynamics of the i£* problem. Since the experimental 

19 M. H. Alston et al., in Proceedings of the 1962 Annual Inter
national Conference on High-Energy Physics at CERN (CERN, 
Geneva, 1962), pp. 291-294; R. Armenteros et al., ibid., pp. 
295-297. 

masses are much more nearly degenerate for the V 
mesons than for the PS mesons, it is very encouraging 
that the KV/KV and a-„.tr/av are much closer to one than 
the mass ratio niK/nix. Furthermore, it seems likely 
that if the present technique were extended to the p 
and o) mesons, the unitary symmetry would not be 
broken by the PS-meson mass differences to such an 
extent as to be unrecognizable. For example, if we set 
YK*TT2 equal to yK*2 (in accordance with unitary 
symmetry), it is seen from Table I that V2yp7rypj&:/ 
(TK*7T 2)^1.13, whereas the ratio f is predicted by 
unitary symmetry. 

I t would be interesting to extend the calculations to 
the p and o> systems, in the hope of eliminating the 
arbitrary parameter that is present here. However, 
it seems highly unlikely that such a program would be 
as fortunate in predicting the p and co masses as we 
were in predicting the K* mass. The work of Zacha-
riasen and Zemach shows that the p mass may be quite 
sensitive to other states beside states of two PS 
mesons4; it is likely that many states and many contri
butions to the force play a significant role in actually 
determining the F-meson masses and widths. 

As discussed in Sec. I l l , the K* width is not pre
dicted by our model. However, if one sets 7x*7r

2=7K*^2, 
in accordance with unitary symmetry, then 7x*7r

2/(47r) 
= 1.75, which is high compared to the experimental 
value of ^0 .65 . Thus, if unitary symmetry is approxi
mately valid, the reduction of the K* width caused by 
the coupling to the t]+K state is insufficient to bring 
about agreement with experiment. (See the discussion 
of Sec. I.) The_situation is similar for the p meson. In 
the p—inr—KK calculation of Ref. 11 (with the ir—K 
mass difference neglected) the presence of the K+K 
state reduces the p width to f the value occurring in 
the one-channel p—inr model, but the result is still 
about three times too large. I t may be that the F-meson 
widths are further reduced by coupling to states other 
than those of the PS mesons. The prospect of including 
many states in the calculations seems discouraging at 
first, since multiple-channel dispersion relations would 
have to be used. However, if the various strong inter
actions are related by a symmetry principle, and if this 
symmetry principle is itself derivable from dispersion 
relations, one can hope that a method of simplification 
based on this symmetry will be found, and that it will 
be possible to reduce the equations to tractable form. 

In conclusion, we remark that the agreement be
tween the K* mass predicted by this model and experi
ment is encouraging, but many factors not included 
here may play a significant role in determining the K* 
mass and width. 
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