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Electroproduction of Neutral Pions from Deuterium*f 
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Making use of the impulse approximation and the one-nucleon dispersion theoretical amplitudes, a 
theoretical expression for the differential cross section of the process e-\-d —> e+d-f-7r° has been calculated. 
An experiment which would be useful in the investigation of the nucleon form factors is proposed. At energies 
near the (3,3) resonance, the cross sections reach values up to 10~35 cm2/MeV sr2, depending on the electronic 
four-momentum transfer X2. 

I. INTRODUCTION 

RECENT experiments in high-energy electron 
scattering,1 coupled with the dispersion relation 

approach to the theory of 7r-meson production2-3 and 
with the use of the impulse approximation for treating 
systems of two or more nucleons,4 have now made it 
possible to conduct a theoretical study of electro-
production of pions from deuterium. This theory, in 
conjunction with a suitably designed experiment, is 
capable of yielding new information on the structure of 
nucleons. 

Even the relatively simple case treated here of 
coherent electroproduction of pions from deuterium, in 
which the deuteron remains bound in the final state, is 
interesting by reason of the relatively simple way in 
which the nucleon form factors appear. Moreover, it 
can provide information on the deuteron form factors 
and, hence, on the internucleon potential. Especially in 
this latter respect, it is helpful in the following to make 
use of the analogous situation of photoproduction from 
deuterium.5 Following the example of Ref. 5, we make 
no attempt to analyze the possibility of breaking up 
the deuteron into two nucleons, with the production of 
charged mesons as well as neutral ones, even though 
experimental information about the sum of the four 
possible one-pion processes is available.6 Such an 
analysis, of course, provides a natural extension of this 
work, but offers additional difficulties in making phase-
space calculations and in describing the final state. 

Although the principal concern of the calculation is 
the evaluation of the matrix element, a word is in order 
here about the experimental arrangement we are 
proposing; this will explain the phase-space calculations 
and the kinematics which are involved in the final 

* Supported in part by the U. S. Air Force Office of Scientific Re­
search and in part by the National Science Foundation. 

f Based on a thesis submitted to Purdue University in partial 
fulfillment of the requirements for the degree of Doctor of 
Philosophy. 

t Present Address: Stanford Research Institute, Menlo Park, 
California. 

1 Robert Hofstadter, Rev. Mod. Phys. 28, 214 (1956). 
2 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, 

Phys. Rev. 106, 1345 (1957). 
3 S. Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. I l l , 329 

(1958). 
4 G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952). 
5 Fokion T. Hadjioannou, Phys. Rev. 125, 1414 (1962). 
6 Gerald G. Ohlsen, Phys. Rev. 120, 584 (1960). 

laboratory cross sections that are our numerical results. 
We postulate a situation in which the incident electron 
energy is known, and the final electron and deuteron in 
coincidence are measured both in energy and in solid 
angle of scattering. This information would seem to 
overdetermine the kinematics by one parameter, say, 
the final deuteron energy, but one rinds it necessary to 
distinguish between the two solutions of the quadratic 
momentum-energy conservation equations which are 
well known to exist for this type of inelastic process. 
Moreover, the overdetermination serves as a unique 
signature of single pion electroproduction and, there­
fore, helps to separate that process from the background 
which has caused many difficulties in other experiments. 
Figure 1 is a diagram showing the kinematical param­
eters determining the cross section. 

II. ANALYSIS 

The phase-space calculations for electroproduction 
of pions from nucleons have been performed by Dalitz 
and Yennie,7 who have also discussed the kinematical 
procedures for treating systems with two initial and 
three final particles. With minor variations due to the 
deuteron as target particle and the different experi­
mental arrangement, their arguments hold also for the 
present discussion. Hence, the laboratory differential 
cross section for electroproduction from deuterium may 
be written8 
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The masses m, /JL, M, and Md are those of the electron, 
meson, nucleon, and deuteron, respectively. In general, 
lower case letters represent energies or momenta in 
either an unspecified coordinate system or in the pion-
deuteron center of mass (cm.) system, while capitals 
refer to the laboratory system. Subscripts 1 and 2 
designate initial and final quantities for the electron, 

7 R. H. Dalitz and D. R. Yennie, Phys. Rev. 105, 1598 (1957). 
8 We use the rationalized natural units: fo— 1 = c, e2/4:Tr~ 1/137, 

^/4i r«14, /=0*/2M)g. 
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FIG. 1. Kinematical quantities in the laboratory for electropro-
duction from deuterium. The meson momentum Q is not meas­
ured, but is included in the figure for completeness. The dot rep­
resents the initial deuteron at rest. Notice that the three final 
momenta are not necessarily coplanar. 

deuteron, and interacting nucleon, which have four-
momenta r^, p/, and pn, respectively. The pion is 
denoted by q^, and the electronic four-momentum 
transfer is h^—r^—r^^ with k^k^X2. Finally, the 
quantity <£ is the average over initial states and sum 
over final states of the square modulus of the matrix 
element T. We, therefore, write 

* = £ £ | 2 T , (2) 
where the sum extends over all spins. 

The ratio of deuteron to nucleon energies appears as 
a factor in Eq. (1) because in using the impulse approxi­
mation we will be dealing with matrix elements normal­
ized by nucleon spinors. Therefore, a volume of normali­
zation consistent with nucleon energies must be used 
rather than one which would be appropriate for 
deuterons. We shall see later that the denominator of 
this ratio must be averaged over the internal momen­
tum of the deuteron along with several other quantities. 

It is convenient to follow the methods of Dalitz and 
Yennie7 in separating the matrix element into the four 
product of a deuteron four-current matrix element j»d 

with the M oiler potential Ap describing the interaction 
of the electron and the virtual photon of momentum &M. 
In this form it is a straightforward task to apply ordi­
nary Dirac theory with positive energy projection 
operators to carry out the electron spin sum. On the 
other hand, the sum over deuteron spins can be per­
formed if we use the fact that the deuteron current 
matrix element is to be taken, in the impulse approxi­
mation, as the sum of single nucleon amplitudes. Since 
the single nucleon current operators are expressed in 
terms of the nonrelativistic Pauli matrices, it is only 
necessary to insert the triplet spin-one projection 
operator Tab appropriately in order to invoke closure 
and express the sum as a trace (Tr) over these matrices. 
The result of these manipulations is that we can write 

3m2\2 L X2 J 

where we use the definitions 

jVJ,d-}dUid-\jod\2 (4) 

and 
fll=rlli+r2^. (5) 

The symbol j ^ now stands for the deuteron current 
operator as expressed in terms of the nucleon current 
operators. 

At this point, one further simplification is possible. 
As discussed by Fubini, Nambu, and Wataghin,3 the 
one-nucleon amplitude may be decomposed into three 
isotopic spin components corresponding roughly to the 
three charge states in which the pion can be produced. 
Because we are only interested in the production of 
neutral pions, we find that the minus component as 
defined in Ref. 3 does not contribute; moreover, the 
deuteron is an isotopic singlet combination of the two 
isospin | nucleons, and the zero component vanishes 
under the application of singlet isospinors in both 
initial and final states. The latter fact represents an 
important advantage over electroproduction from 
nucleons in that we now have only to deal with the plus 
amplitude. Therefore, we can use for j / in Eq. (13) 
only that part of the deuteron current operator deduced 
from the plus components of the one-nucleon ampli­
tudes. 

In order to be able to write down an expression for 
the deuteron current operator, we must now apply the 
critical assumption of the impulse approximation.4 In 
this approximation, each nucleon contributes inde­
pendently to the total amplitude as if it alone were 
interacting with the incident virtual photon to produce 
the pion. The only effect of one nucleon on the contribu­
tion of the other is due to the sharing of absorbed 
momentum. This effect will be shown to lead simply to 
the appearance of the deuteron form factors in the 
amplitude. Hence, the final amplitude can be obtained 
by summing the amplitudes due to each of the nucleons 
in the deuteron. We ignore the possibility of multiple 
scattering, which is expected to alter the over-all magni­
tude of the cross sections without having a large effect 
on their shapes.6 

That these assumptions are reasonably well justified 
may be argued from the following observations. First, 
the binding energy of the deuteron is small compared 
with the energies of interaction and should not lead to 
significant correlations between the nucleons during the 
interaction. Second, the typical range for electro-
production seems to be less than the average separation 
of the nucleons, so that the production is in some sense 
localized. Finally, the nucleons usually have low 
momentum relative to the deuteron cm. system and do 
not move appreciably during the characteristic time for 
the interaction. 

The single nucleon amplitudes which are to be added 
to give the deuteron amplitude depend, of course, on 
the momenta of the individual nucleons before and 
after the collision. Since these are experimentally 
indeterminable quantities, it is necessary to average 
over the internal momenta of the deuteron before and 
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after the collision—Si and s2, respectively—using the 
deuteron momentum wave function <f>a as a weight. For 
instance, for nucleon a with amplitude Ta we would 
write 

(Ta)av= / dhX 0 / ( s 2 ) r o ( S i , S 2 ) 0 r f ( S l ) , (6 ) 

where the initial and final momenta are related by the 
fact that the spectator nucleon must conserve its 
momentum, so that we have 

s2=Si+p*/2, p*=p2
d-pid . (7) 

Expression (6) is difficult to evaluate in that it would 
be necessary to carry out the integration numerically 
for each set of kinematic inputs. We observe, however, 
that the amplitudes are rather insensitive to variations 
in Si, whereas the deuteron wave functions are sharply 
peaked about relative momentum of zero. Therefore, 
we make the simplifying assumption that we can replace 
the matrix element by its average between Si=0 and 
s2=0. It is then possible to convert Eq. (6) to relatively 
simple integrals in configuration space over the spatial 
wave functions, $&. 

Furthermore, since the Miller potential part of the 
amplitude depends only on electron coordinates, it does 
not enter into this averaging process as performed in the 
pion-deuteron cm. system. Hence, the foregoing argu­
ments can be applied equally well to just the current 
part of the problem, so that we can write 

jS= J ^ ^ t ( x y P « . x / 2 ( j a M + J 6 M ) ^ ( X ) } (8) 

where 
iaM=ICia,(Sl=0) + io , (S l= -p* /2) ] . (9) 

III. RESULTS 

We are now in a position to complete the evaluation 
of the differential cross section for electroproduction 
from deuterium. Although the calculations are in 
practice algebraically complicated, they are in principle 
straightforward. In this section we, therefore, limit 
ourselves to the explicit description of the input data 
and to the presentation of the numerical results. 

The one-nucleon matrix element has been calculated 
by several authors.3,9,10 We use a relatively simple result 
derived from dispersion relations in a static approxima­
tion by Fubini, Nambu, and Wataghin.11 It is relatively 
easy to extract from their plus amplitude the nucleon 
current in the pion-nucleon cm. system. This must then 
be converted to the pion-deuteron cm. system before 
it can be summed and averaged. Whenever possible, 
the transformation is expressed as an expansion in 

9 R. Blankenbecler, S. Gartenhaus, R. Huff, and Y. Nambu, 
Nuovo Cimento 17, 775 (1960). 

10 Phillipe Dennery, Phys. Rev. 124, 2000 (1961). 
11 See Eq. (15) of Ref. 3, which contains a typographical error. 

On the right-hand side, f2 should read f2/4ir. 

powers of the Galilean relative velocity, and only the 
lowest order corrections are retained. This allows the 
average to be carried out in a trivial manner, except in 
the case of the argument of the phase shift fe and of 
the product piop2o, which are simply averaged between 
Si=0 and Si= —p*/2. 

For the j— f, J = f pion-nucleon scattering phase 
shift 8 33 we use an empirical relation derived from one 
given by Ball.12 In terms of q', the averaged pion 
momentum in the pion-nucleon cm. system, and W'9 

the associated total cm. energy, the phase shift is 
given by 

sin2533= l+r(W'2-WR
2)2(W'2-M2)2(q')-\ (10) 

If units of inverse fermis are used,13 then the constants 
are WV=38.5 F~2 and r = 6.97XlO~4 F2. 

The effective vector magnetic moment \xv depends on 
the structure of the nucleons through the charge and 
magnetic moment form factors as functions of X2. If it 
is written as 

^=(e/2m)F\ (11) 

then Fv is related to the vector form factors by 

FV=F1
V+3.7QF2\ (12) 

These latter functions have been fitted empirically by 
de Vries, Hofstadter, and Herman to the form14 

F1(2,(X2)==l-,1)2+,1>2/(l+0.113X2), (13) 

where X2 must be given in F - 2 and z>i=0.92, ZJ2= 1.10. 
In evaluating the integrals in Eq. (8), in which the 

currents remain interior to the integral only because 
they contain operators acting on the deuteron spinors, 
we utilize the definitions of Hadjioannou for his func­
tions Fuu- - -Gww.5 The deuteron wave function used 
contains a 6.8% D state portion due to tensor forces. 
The correspondence of these integrals with the deuteron 
form factors is also as given by Hadjioannou. The 
numerical values of the latter were calculated using an 
empirical fit to the curves of Fig. 6 of Mclntyre and 
Dhar.15 The final evaluation of the traces is then 
accomplished by repeated use of identities among the 
Pauli matrices.16 

The final expression for the cross section is much too 
lengthy to be reproduced here. The calculations were 
programmed for a RPC-4000 computer using the PINT 
(Purdue Interpretive) system for a limited set of 
kinematical inputs. The three angles shown in Fig. 1 
were all kept constant, and the dependencies on X2 and 

12 James Stutsman Ball, Phys. Rev. 124, 2014 (1961). 
13 One fermi= 1 F = 10~13 cm. 
14 C. de Vries, R. Hofstadter, and Robert Herman, Phys. Rev. 

Letters 8, 381 (1962). 
15 John A. Mclntyre and Sobhana Dhar, Phys. Rev. 106, 1074 

(1957). 
16 This procedure also follows that of Hadjioannou. However, 

there exist some errors in the smaller terms of his expression. These 
errors have been acknowledged by the author, who is now in 
agreement with our results. 
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FIG. 2. Laboratory-
differential cross sec­
tions for electropro-
duction from deuter­
ium. W is the total 
energy in the cm. 
system of the pion 
and deuteron and X2 

is the four-momen­
tum transfer from 
the electron. See 
Fig. 1 for the defini­
tion of the angles. 

"S 

9 
""2105 2200 

W in MeV 
-5*5?—sm 

W, the total pion-deuteron cm. energy, were generated 
by varying the final and initial electron energies. The 
values used are consistent with the physical limitations 
of the linear accelerator at Stanford.17 The results are 
shown in Fig. 2 in terms of X2 and W. 

IV. CONCLUSIONS 

The calculated values of the cross section, above 10~36 

cm2/MeV sr2 for sufficiently low X, W, and ph indicate 
that the proposed experiment is probably feasible, 
although it is clear that some care would have to be 
exercised in choosing the solid angles of acceptance and 
the size of the energy bins in order to assure a reasonable 
counting rate. 

Even though one might expect fairly good agreement 
of our calculations with the results of such an experi­
ment, say of order 20 or 30%, it is more interesting to 
consider what sort of analysis might be made by com­
paring the experimental results with the theory. There 

17 Edwin Erickson (private communication). 

are two such analyses which seem most promising with 
respect to gaining new physical information. 

The first of these is to follow the analysis of 
Hadjioannou.5 One assumes that he knows the nucleon 
form factors sufficiently well and extracts an effective 
deuteron form factor as a function of pt. This function 
can then be compared with ones calculated from various 
deuteron models and conclusions can be reached 
concerning the internucleon potential. 

On the other hand, it is perhaps more useful to assume 
these deuteron form factors known, say as given by 
Hadjioannou's treatment, and instead try to obtain in­
formation on the nucleon form factors. From an exami­
nation of the expression given for the one-nucleon ampli­
tudes11 and the definitions (11) and (12), it is evident 
that the cross section is directly proportional to (Fw)2. 
Therefore, one would need only divide the experimental 
cross sections by the proportionality factor—a function 
of the kinematics, phase shifts, and deuteron form 
factors—to obtain (Fv)2 as a function of X2. Although 
this would give only the sum of the vector form factors, 
and moreover would leave Fv ambiguous by a sign, it 
should provide one more combination of the form fac­
tors to add to those obtained from other electroproduc-
tion and electron-scattering experiments. Once a suffi­
cient number of combinations have been collected, it 
will be possible to assign unambiguous values to all of 
the form factors, and to determine from them the 
nucleon charge distributions. 
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