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The range of high-energy nucleon-nucleon interactions is examined in a simple single inelastic channel 
model which consists of the production of two spinless isobars. An almost transparent, purely absorbing 
optical approximation is made, in which case both the inelastic and elastic angular distributions are sensitive 
to the variation of the absorption coefficient rji with angular momentum I. Unlike the case of the strong 
absorber, the inelastic and elastic interactions are described by different effective ranges. Two examples are 
given, one in which the inelastic channel has an angular distribution characteristic of a one-pion exchange 
process and the second in which it is characteristic of a "vacuum Regge pole" exchange. 

I. INTRODUCTION 

ON the basis of the total and elastic-differential 
nucleon-nucleon cross-section data from the large 

accelerators in the range 3-30 BeV/c incident laboratory 
nucleon momentum,1 it seems reasonable to assume 
that the slowly varying total cross sections are ap
proaching constant values and that the total elastic 
cross section is mainly due to diffraction effects. The 
observed variation with energy of the differential and 
total elastic cross section suggests that, as the energy 
increases, both the range and transparency of the 
nucleon-nucleon interaction are slowly increasing.1'2 

The rates of increase are such that the total cross section 
remains constant. There is considerable speculation3 

that the same behavior continues to very high energies, 
in which case the total elastic scattering becomes a 
small part of the total cross section and the nucleon-
nucleon interaction becomes purely absorbing, almost 
transparent, and of very long range. 

The basic inelastic nucleon-nucleon interactions are 
still not well understood. There is evidence from ~ 1 
BeV/c laboratory momentum to the highest cosmic-ray 
energies that many events occur at large impact parame
ters, and correspondingly small momentum transfers. 
At the lower energies, it appears that the one-pion ex
change interaction can reasonably explain the small 
momentum transfer or "peripheral" part of the inter
action.4 At the higher machine energies, there has been 
some suggestion that the one-pion exchange model may 
have to be modified and that other mechanisms are 
important in the small momentum transfer region.5 
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Since the elastic-differential cross sections are well 
known at the machine energies and since their be
havior at higher energies has been conjectured, it would 
be helpful to have a better understanding of the type of 
diffraction pattern that even some of the simplest in
elastic processes would give if they were dominant. An 
elementary "peripheral" model for the inelastic pro
duction is examined here and the elastic diffraction 
amplitude is obtained by the use of the unitarity rela
tion in the almost transparent, purely absorbing optical 
approximation. 

We assume that there is only one inelastic channel, 
which consists of the "peripheral" production of two 
"isobars" with known amplitudes. One of the "isobars" 
may be an unexcited nucleon. The spins of the isobars 
and incident nucleons are assumed to be negligible 
compared to the large angular momentum arising from 
the large relative velocity and the large impact parame
ter of the particles in the barycentric system. 

In an optical model calculation it is usual (although 
not necessary) to assume that the medium is purely and 
uniformly absorbing up to some radius R, that is, the 
absorption coefficient rji is real and constant for Z<Z,max. 
This approximation is very good for the case of a black 
or almost black absorber for which IJI<<^1. The inelastic 
and elastic cross sections are then almost equal and in
sensitive to the variation of rji with / for /<Zm a x . In 
the case of the single two-body inelastic channel con
sidered here, the uniform or black absorbing interaction 
would give rise to the same angular distribution for the 
final-state particles in the elastic and inelastic channels. 

What we are specifically interested in investigating 
here is an almost transparent, purely absorbing inter
action with a long tail, which is the case in certain 
peripheral models. This approximation is most likely of 
interest in absorbing media for which the total elastic 
cross section is of the order of, or less than, one-tenth of 
the total cross section, <TelS"T6crtot' Both the inelastic 
cross section and the elastic cross section are sensitive 
to the variation of the absorption coefficient TJ I with /. 
For the simple two-body inelastic case, if rji goes 
smoothly to 1 (no absorption) then the angular distri-
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H. Wong, Phys. Rev. 129, 974 (1963). 
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FIG. 1. Diagrammatic represen
tations of reactions I and II. 
(a) Reaction I, in which particles 
Ni and N2 are incident with four-
momenta ku and hi% and particles 
N% and N4 are produced with four-
momenta kz and ki. (b) Reaction 
I I in which the two incident par
ticles Ni and N2 scatter elastically 
and emerge with four-momenta 
kif and &2/-

differential cross sections are given by 

da1 kf 

—;=TI/W)I2, 
<Kl/ k 

dtof 
-=\fn(0fi)\>. 

(2.3) 

(2.4) 

(b) 

bution of the inelastic channel is narrower than that 
of the elastic channel. Thus, the effective range of the 
inelastic interaction is greater than that for the elastic 
one. 

In Sec. II , we give the well-known equations obtained 
for this process from the unitarity condition and we 
amplify the above remarks. 

Two explicit final-state angular distributions for the 
inelastic amplitudes are considered in Sec. I l l , one cor
responding to a "one-pion exchange" interaction and 
the other to a "vacuum Regge pole" exchange. The 
elastic amplitudes are obtained for each case and the 
ranges of the two interactions are compared. 

II. THE MODEL AND THE UNITARITY CONDITION 

We assume (for generality) that two particles iVi and 
•ZV2 are incident with four-momenta ku and &2* and that 
their total interaction proceeds through two channels I 
and II , 

Ni+N2->Nz+N4 I 

N1+N2->N1+N2. I I 

Channel I represents a single inelastic interaction in 
which particles Nz and N* are produced with four-
momenta kz and £4, as shown in Fig. 1(a). Channel I I 
represents the associated elastic diffraction scattering 
required by unitarity, in which the two incident par
ticles Ni and N2 come off with four-momenta kif and 
#2/, as shown in Fig. 1(b). The masses of the particles 
are given by ki2=nti2, and units of h=c=l are used 
throughout. 

The production and scattering angles in the bary-
centric system for channels I and I I are 0/ / and 0/*, 
respectively, and are defined by 

where 

kfkli=k'k COSdf/y 

kifku=k2 cosd/i, 

(2.1) 

(2.2) 

•2*1 k i / | = | k 2 / | = * and Ik3 | = | k 4 | = £ ' . 

The amplitudes for channels I and I I are / T (0//) and 
fu(dfi), respectively, and are normalized so that the 

The particles are assumed to be spinless and the 
ampl i tude / I (0 / / ) is assumed to be known. The uni
tarity condition in terms of these amplitudes reduces to 

- [ / " ( e f i ) - r ( * „ ) ] = - /"dfiy/n* ( % ) /11 {djt) 

2% AwJ 

kf r 
+— dton'f»(fifn')fi(enJ). (2.5) 

4TTJ 

The phase of fu has been defined in the usual manner 
so that its expansion into partial waves is given by 

where 

/ n ( % ) = - E(2^+l)/z r iPZ(cos0 / , ) , (2.6) 
2k 1 

r)i=e2i81, and 81 is the phase shift. 
Substitution of Eq. (2.6) into Eq. (2.5) gives 

- E ( 2 / + l ) ( l - h d 2 ) ^ ( c o s 0 / , ) 
k2 1 

V 
=-fdQn'f»(efnVn(Oni'), (2.7) 

where use has been made of the relation 

21+i 

r 4?r 
/ *2yPi'(cOS0/y)P,(cOS0yi) = «K' P,(cOS0/i). (2.8) 

J 21+1 

Because / n ( 0 » / ) is a two-particle state amplitude it can 
be expanded simply into partial waves, 

where 

fi 

1 
/ W ) = L ( 2 / + l ) / ^ ( c o s 0 n / ) , (2.9) 

2(kk')m 1 

l=(kk')1/2[ /n(0n/)Pz(cos0n /)J(cos0n /) , (2.10) 

and the phase of / I ( 0 » / ) , which is not important, is 
taken equal to one. 

Substitution of Eq. (2.9) into Eq. (2.7) and use of 
Eq. (2.8) gives 

E i ( 2 / + l ) ( l - | ^ | a ) P i ( c o s 0 A ) . 
= Zi(2l+l)\fi1\2Pi(cosefi\ (2.11) 

which implies 

l-\m\'=\tf\*. (2-12) 
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The last equation gives the well-known unitarity limits 

o<M2<i, 
o<|/?M

2<i-

If we now assume that rji is pure real, we have 

fi^ll-vij12, 

(2.13) 

(2.14) 

From these equations the statements made in the 
Introduction follow very simply. For a black or almost 
black absorber 7?*<$Cl for / < L m a x and fil~fin. If fil 

and fiu drop rapidly to zero for / > L m a x , we can ignore 
the contribution of these partial waves, at least for the 
small angle scattering where all the waves are in phase, 
and we have 

1 Anax 

/ W ) = — — E (2/+l)P*(cos0//), 
2(kk')* i-o 

Z11 (*/<) = — £ (2l+l)Pl(cos6fi). 
2k i=o 

(2.15) 

Thus, the angular distribution of the elastic diffraction 
pattern is the same as that of the two-body inelastic 
channel. The uniform sharp-edge absorber gives the 
well-known diffraction pattern with varying intensity 
beyond the first diffraction minimum. This effect is 
very model-dependent and not present if there is some 
"real scattering'' or if the edge of the absorber goes to 
zero sufficiently slowly. The small angle scattering 
remain essentially the same.6 

lirfi^l, we take?7z=l — ei where eK<l and Eq. (2.14) 
gives 

ff-V*"- (2..6) 
/ z n =ez . 

The approximation used in obtaining the expression for 
fi1 in Eq. (2.16) is what we mean by the almost trans
parent approximation, and is used in the next section 
to obtain the amplitude fiu from fi1. I t is reasonable 
for values of ei<0.2 or, in terms of the cross sections 
(which are proportional to the squares of the ampli
tudes), for (TFSTQCTI1. 

The amplitudes fi1 and fi11 are dependent upon the 
variation of e*. If ei goes smoothly to zero, then for 

6 An illustration of these remarks is contained in the paper of 
T. Fujii, G. B. Chadwick, G. B. Collins, P. J. Duke, N. C. Hien, 
M. A. R. Kemp, and F. Turkot, Phys. Rev. 128, 1836 (1962), in 
which they analyze p-p elastic scattering data in the 1-3 BeV 
range. They find, in particular, at 1.35-BeV incident nucleon labo
ratory kinetic energy, that o-^^o-^^io-*0*, where <rel is the total 
elastic cross section, <r'm the total inelastic, and atot the combined 
total cross section. On the assumption of a purely absorbing 
medium, this implies almost complete absorption. They also find 
at small angles essentially the same angular distribution as given 
by Eq. (2.15) for the elastic scattering and a dominant "two-body" 
peripheral inelastic channel. It is necessary to include a small 
amount of "real scattering" to make the large angle diffraction 
pattern agree with the smooth tail of the experimental data. 

sufficiently large /, fil^>fiu. The angular distribution 
in channel I is narrower than that of the diffraction 
scattering in I I , and the corresponding effective ranges 
Rl and Ru are different, R^R11. 

Another relation which is useful is the optical theorem 
for the forward elastic amplitude fu(0). From Eqs. 
(2.3), (2.4), and (2.5) we obtain 

-Uu(0)-fi*m = -(ai+aV). (2.17) 
2i 4TT 

III. TWO EXAMPLES 

A. One-Pion Exchange 

For the exchange of a spinless particle of mass m, 
the angular distribution in channel I is given by 

f1 (0K) = : AiAr-
2*** m2—t 

(3.1) 

where s112 is the total center of mass energy, s2= (&1+&2)2, 
Ai and A2 are vertex functions, and t is given by 

= - C ( A 2 ) r a i n + 2 M , ( l - c o s ^ / / ) ] , (3.2) 

where (A2)min is a function of mi, mi, mi, mi, and s, 
For each of (A2)min, W12, mi, mi, mi<£s, and mi and 
mi sufficiently greater than mi and mi, respectively, 
(A2)min is well approximated by 

(A2)min= (mi-mi)(mi-m2
2)/s. 

I t is assumed that Ai and A2 have only weak depend
ence on Of/. In terms of the angle 0//, fl{0fi) is 

/WW^o) 
h2 

i+h2-cosdfi' 
(3.3) 

where f1(0)=(mim2mzm4)1}2AiA2/2irs1,2(kk')ri2, and 
v
2=tn2+(A2)min/kk'. From Eq. (2.10) we then obtain 

for f} 
/^(kkJ'Vf^Qtil+h2), 

where Qi(a) is the Legendre function of the second kind 
defined by 

r+1Pi(x) 
QM — hl dx9 for a>l. 

7__i a—x 

From the approximation given in Eq. (2.16) we have 

For ??<<Cl 
= i ^ Y [ / I ( 0 ) ] W ( i + ^ 2 ) . (3.4) 

and for Irf^l 
Qi(l+W) = K0(lv), (3.5) 

KoQv) -0 
1/2 p-in 

(h) 1/2 
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FIG. 2. Barycen-
tric differential cross 
sections for example 
A. Curve I is the 
barycentric differ
ential cross section 
for reaction I given 
by Eq. (3.3) and II 
is that for reaction 

2.5 3.0 n g i v e n b y E q 

(3.13). The cross 
sections are normal
ized to one in the 
forward direction. 
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and with the use of Eq. (3.5) for small rj, 7?<<Cl, we obtain 

/ I I ( ^ ) = -*'i74C/I(0)]ME(2/+l)W(fc7)/o(»/<)}. (3.9) 
4 i 

For small rj many / values contribute and the sum in 
the bracket can be replaced by an integral over I given 
by7 

i 
Jo 

2 lK0*(hi)JoQ6fi)dl=2-
1 

The amplitudes fi1 and fi11 become 

/Zicce-*V(W1/2, 

f^cce-^/lrj for 7?«1 and hp^>l. 
and 

The exponential factor contains the main I depend
ence. The important / values for channels I and I I are 
given by /<£* , L11, respectively, where 

jW+efi
2yi2+0fii 

.(V+%2)1/2-0/J' 
Equation (3.9) can be written as 

lr? 1 

Xln -
L( 

/ I I ( ^ ) - / I I ( 0 ) 

and 

1 r kV I1 '2 

£ ! = - = _ , 

i} Lw2+(A2)m i„J 

1 l r W n1'2 

2» 2L™ 2 +(A 2 ) m i J 

(V+%2)1 '2 en 

(3.6) 
where 

XlnP ' — — I, (3.10) 
L(W+W)m-»tJ 

/ " ( 0 ) = ^ ' ^ 2 C/ I (0 ) ] 2 . 
4 

(3.11) 

The actual definition of range in terms of impact 
parameter appears ambiguous for channel I because 
there are two momenta present, k and k'. For the elastic 
case, channel I I , it is usual to let Ru = Lu/k and if we 
define R1 likewise, R1 = LI/ky we have 

Substitution of Eq. (3.10) into Eq. (2.4) and of Eq. (3.3) 
into Eq. (2.3) then gives for the differential cross 
sections 

da1 V r- 4*,2 

l r k'/k ~|1/2 

2Lm2+(A2)miJ 
(3.7) 

and 

da 

dtt 

We see that (A2)min is important in determining the 
effective range. I t reduces the range and acts to increase 
the effective mass of the exchanged particle. For 
(A2)min<^Cm2 and kf^k, we obtain the longest range pos
sible for the process in this approximation 

If the absorption were strong in channel I, then one 
expects the maximum ranges to be 

The elastic scattering amplitude obtained directly 
from Eqs. (2.6) and (3.4) is 

x1 V r W l 2 

~ = - [ / I ( 0 ) ] 2 (3.12) 
:/ * L l + ^ - c o s f l y / J 

1 1 / 4T74 \ 1 

-=C/n(0)]2 J— 

(W+efi
2)ll2+dfi-? 

{ X In- 3 
For 0 2 « 4 T ; 2 « 1 , Eqs. (3.12) and (3.13) reduce to 

—=-C/ J (o ) ] 2 , 
da/ k (0//2+»?2)2 

(3.13) 

and 
da11 V 

= [/" (0)]2 , 
dQf (efi*+(2vyy 

(3.14) 

f"(0fi) =^V[/Z(0)]2 £ (2/+DQ, °K) 
For 0 / t « l , 

Pi(cos6fi) = Jo(ldfi), 

Pi(cosOfi). 

(3.8) 

and the difference in the angular distributions is ap
parent. The differential cross sections given by 
Eqs. (3.12) and (3.13) are shown plotted in Fig. 2 as 
curves I and I I , respectively. The elastic diffraction 
cross section falls off very slowly in the range dfi>t) 
due to the logarithmic dependence. 

7 Tables of Integral Transforms, Bateman Manuscript Project, 
edited by A. Erdelyi (McGraw-Hill Book Company, Inc., New 
York, 1954), Vol. 2, p. 16. 
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We now determine the extent to which the optical 
theorem as given by Eq. (2.17) is satisfied. From 
Eqs. (3.10) and (3.11) we have 

-C/II(0)-/II*(0)]=pvC/I(0)]2. 

upper limit can be taken as oo.. We then have8,2 

/zi=(£&')i/2 e-m^ 

li 

Using Eq. (3.12), we find 

k 

From Eq. (2.14) we obtain 

uT_m 
2/32 

,-Wfi 

(3.18) 

(3.19) 

•^C=1*V[/ I(0)?, 
47T 

where we have assumed that for T;2<C02<<C1 the cross 
section goes to zero. The optical theorem is saturated 
by a1 with the approximations made, so that it is 
satisfied in the limit au<^ial. 

B. Vacuum Regge-Pole Exchange 

The amplitude of reaction I, if due to the exchange 
of a "vacuum Regge pole," is given by 

We define the maximum value for the two channels 
as previously by the exponential fall off, 

r s - l 1 ' 2 

LII = LI/v2=i31/2= 2kkW\n , (3. 
L 2wiW2J 

20) 

and correspondingly (the ranges) 

t lk! s 
—a! In 
k 

1/2 

/W)= 
{mim^mzm^) 1/2 / S \ a W 

— fiftf- , (3.15) 
ITS1'2 \2m\miJ 

where gi and g2 are vertex functions which are assumed 
not to have important / dependence. In the linear 
approximation2 

a(t)=a(0)+a'L (3.16) 

Using this expression and that for / given in Eq. (3.2) 
we obtain 

?$,{) = P(Q)e-™-™W\ (3.17) 
where 

yi (0) = ^ 

2m\miA 

R1 and R11 are closer in value for this example than the 
previous one because the amplitudes for the Regge-pole 
exchange interaction decrease more rapidly with / than 
those for the one pion exchange interaction. 

Substituting Eq. (3.19) into Eq. (2.6), and noting 
that fiu and fil have the same functional dependence 
on /, we obtain 

/ n ( % ) = / n (0 ) exp[-(/3/2)(l-cos%)], (3.21) 

where 

fu(0) = 2k>-
4/3 

and 

= ( ln-^Ya(0) -a ' (A 2 ) m i n ] , 
V 2m\mJ 

\ 2m\mJ 

Making the small angle approximation PI(COS6) = JQ(16) 
in Eq. (2.9), we have 

/ I ( 0 ) ^ 

£ Jo 

where x2/2=i8(l-cos6>//) and Jo(ldf/) = Jo(lx/(31'2). 
The major contribution to the integral comes from 
values of 0/ /=#/0 1 / 2«l . Thus, for large enough 0 the 

The momentum transfer variable in channel II is 
given by 

*=-2ife2(l-cos0/»), 

and / n (dfi) can be written as 

/n (^ . ) = yii(0) exp{(^72^VCln(V2wiw2)]/}. (3.22) 

If one starts with an angular distribution characteristic 
of the exchange of the vacuum Regge trajectory with a 
slope a' in channel I, then in this approximation the 
elastic diffraction amplitude can be described as the 
exchange of a trajectory with slope {kf/2k)a!. It is clear 
that even for &'«&, with the approximations used here, 
channels I and II cannot be described in terms of the 
exchange of Regge trajectories of the same slope, not to 
mention the possibility of the same trajectory. Com
parison of Eqs. (3.21) and (3.17) show that for small 
angles, the amplitudes are characterized by widths 
^/ / 2<2//3and^ 2<4//3. 

Finally, we again check the consistency of our results 
with the optical theorem as given by Eq. (2.17). We 

8 Tables of Integral Transforms, Bateman Manuscript Project, 
edited by A. Erdelyi (McGraw-Hill Book Company, Inc., New 
York, 1954), Vol. 2, p. 9. 
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have from Eqs. (2.3) and (3.17) 

( 7 i = = [ / i (0)]2- for large 0. 

Thus, 

- ^ = *'C/I(0)]A 
4TT 4/3 

and from Eq. (3.22) we have 

/ u ( 0 ) - / n * ( 0 ) 1 
: =^C/I(0)]2-. 

The optical theorem is satisfied in the limit cr11^^1. 

IV. DISCUSSION 

The production of two isobars is not expected to be 
an important reaction in very high energy nucleon-
nucleon collisions. I t is given here only as an example 
in which the effective range in the inelastic channel is 
larger than that in the elastic channel for the case of a 
"peripheral" interaction in the almost transparent, 
purely absorbing approximation. For more complicated 
final states, the effective range is related to the total 
angular momentum, which is compounded from that of 
each of the "particles" and the problem requires a more 
general treatment.9 

However, in chain- or "linked"-peripheral processes, 

9 Note added in proof. In a recent paper, L. Van Hove [CERN-
5445/TH320 (unpublished)] discusses phenomenologically in
elastic collisions at high energies. He considers simple forms of the 
wave function of the inelastic final state and determines under 
which conditions they are compatible through unitarity with the 
known or conjectured properties of diffraction scattering. 

which are of interest at very high energy,10 a consider
able simplification can be made.11 If the internal 
"isobars" or "fireballs" that are produced are assumed 
to have suitably defined small energy, then, in first ap
proximation, they serve to increase the range of the 
interaction of the end isobars but carry off only a small 
part of the total angular momentum themselves. The 
amplitude can be assumed to depend only on the angu
lar variables of the two end isobars through a modified 
propagator or exchange mechanism. The process then 
simulates the "two isobar" case considered here, and the 
angular dependence of the approximate amplitude is the 
same as that given by Eq. (3.17).11 Thus, as suggested 
by the "Regge-pole" exchange interaction example, the 
elastic diffraction scattering has the characteristic expo
nentially decreasing dependence on momentum transfer, 
if there is present a dominant long-range interaction of 
the same type (but of greater range) in an inelastic 
channel. 
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