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nuclear size seen. The absolute diamagnetic shielding 
has been seen, perhaps for the first time, and verified 
to about 20%. Solid-state and chemical effects have 
apparently been seen, but their meaning in this experi
ment is not clear. Until these latter effects have been 
elucidated, either theoretically or by further measure
ments, they will serve to obscure a closer study of 
nuclear effects. It may be that the solid state and 
chemical shifts will become a subject for investigation 
in their own right, the muon serving as a tool for 
probing them. 

1. INTRODUCTION 

THE classification of the Riemann tensor for an 
Einstein space constructed by Petrov1 was given 

its preliminary physical interpretation by Pirani2 who 
identified certain of the special Petrov classes with the 
existence of gravitational radiation. In the following 
years, a distinction was drawn between the pure gravita
tional radiation field, corresponding to plane waves in 
the electromagnetic field, and an asymptotic gravita
tional field which may result from a matter distribu
tion.3-5 Thus, the existence of a pure gravitational 
radiation field leads to one of the algebraically special 
Petrov classes, in accord with Pirani, whereas a field 
with explicit sources belongs to the most general Petrov 
class and may become algebraically special at large dis-

* The major portion of this research was performed while the 
author was on leave at Kings College, University of London, as a 
National Science Foundation Senior Post-Doctoral Fellow. 

1 A. Z. Petrov, Uch. Zap. Kazanskii Gos. Univ. 114, 55 (1954). 
2 F. A. E. Pirani, Phys. Rev. 105, 1089 (1957). 
3 C. W. Misner, Proceedings Chapel Hill Conference on the 

Role of Gravitation in Physics, 1957 (unpublished). 
4 A. Trautman, "Lectures on General Relativity," King's 

College, London, 1958 (unpublished). 
«R. K. Sachs, Proc. Roy. Soc. (London) 264, 309 (1961). 
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tances. The purpose of this paper is to describe an 
t additional tool, namely, asymptotically invariant inte-
{ grals, for investigating the physical significance of 
) vacuum gravitational fields, Gab=0, particularly those 

containing radiation. 
\ There have been two different approaches to the 
' study of the asymptotic gravitational field, one looking 
t at the properties of the Riemann tensor and the other 

examining the asymptotic behavior of the metric tensor. 
The Petrov classification has been shown to be related 

I to the existence of preferred null directions at each 
^ point of space-time.5"-7 In fact, when the Riemann tensor 
1̂  is algebraically special, there always exists a congruence 
7 of shear-free null geodesies.8-10 Sachs5 used the prop

erties of null geodesic congruences to discuss the propa
gation of the Riemann tensor along the null rays. From 

e the explicit distance dependence in the algebraically 
i 

6 R. Debever, Bull. Soc. Beige Math. 10, 112 (1958). 
7 R. Penrose, Ann. Phys. 10, 171 (1960). 
8 P. Jordan, J. Ehlers, and R. K. Sachs, Akad. Wiss. Lit. Mainz, 

e Abhandl. Math. Nat. Kl. No. 1 (1961). Referred to in the text as 
(JES 1961). 

s 9 J. N. Goldberg and R. K. Sachs, Acta Phys. Polon. 22, SuppL, 
13 (1962). 

10 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
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Asymptotic integral invariants are constructed for the electromagnetic and gravitational fields. The 
integrals are taken over closed two-dimensional surfaces embedded in a null hypersurface. In the absence 
of incoming radiation, the asymptotic behavior of the electromagnetic field Fah and the Riemann tensor 
gabed i s such t h ^ the integrals formed with these quantities are independent of the particular space-like 
surface of integration, as long as it lies in the same null hypersurface. Therefore, the integrals are related to 
the multipole structure of the charge distribution and the matter distribution, respectively. This relationship 
is shown explicitly for the electromagnetic field and for the linearized gravitational field. It follows that 
energy radiation as determined by the Einstein pseudotensor depends on the existence of a type I I I asymp
totic behavior of the Riemann tensor. Finally, the asymptotic conditions are formulated under which the 
superpotential Um

ns will also lead to asymptotically invariant integrals. It is pointed out that the linearized 
gravitational field with retarded potentials satisfies these conditions as do the asymptotic solutions for the 
Einstein field equations Rab—0, which have been constructed by Bondi and Newman. The significance of 
this result for the interpretation of the Bondi metric is discussed. 
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special cases, he was able to formulate an asymptotic 
condition on the Riemann tensor which implies the 
absence of incoming (or outgoing) radiation. This con
dition has been made more explicit by Newman and 
Penrose10 who have proven that the Riemann tensor 
will fall off as 1/V if there exists a congruence of geodesic 
null rays whose tangent vectors are asymptotically one 
of the preferred null directions mentioned above. 
Bondi,11 on the other hand, has studied the asymptotic 
behavior of solutions of the gravitational field equations. 
His method is based on the assumption that in the 
absence of incoming radiation, and for an appropriately 
chosen radial coordinate r, the metric tensor has an 
expansion in powers of (1/r). In the axially symmetric 
case, to which he restricts his attention, Bondi is able 
to show that a loss of mass (or energy) necessarily 
results when a system which is initially at rest carries 
out a time-dependent motion and then returns to rest. 
Similar results have also been obtained by Newman and 
Unti.12 

Since both the Sachs condition and the Bondi metric 
make statements only about the asymptotic field, 
neither can describe the matter distribution directly. 
Therefore, it is of some interest to see whether one can 
make invariant statements about the matter distribu
tion, particularly in the presence of gravitational radia
tion. The method used here to construct asymptotically 
invariant quantities was suggested by the use of surface 
integrals in studying the equations of motion for the 
sources of the gravitational field.13,14 

Consider a two-dimensional closed surface S which 
lies outside the localized matter distribution and form15 

SO 
def C n(~g)mGm«nadS, (1.1) 

where wm is an arbitrary vector function and dS is the 
intrinsic element of surface area with the three-vector na 

as the outward normal. When the field equations Gm
n=0 

are satisfied on S, clearly 9—0- However, in conjunction 
with an approximation method these integrals may be 
evaluated before all the field equations have been solved. 
When the wm are the generators for an infinitesimal 
Lorentz transformation, one obtains the equations of 
motion.16 In the following, on the other hand, it is 
always understood that the field equations are satisfied 
and, hence, g=0. 

11 H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc. 
Roy. Soc. (London) A269, 21 (1962). 

12 E. T. Newman and T. W. J. Unti, J. Math. Phys. 3, 891 
(1962). 

13 A. Einstein, L. Infeld, and B. Hoffman, Ann. Math. 39, 66 
(1938). 

14 J. N. Goldberg, in Gravitation, edited by J. Witten (John 
Wiley & Sons, Inc., New York, 1962). 

15 Latin indices have the range 0, 1, 2, 3, whereas Greek indices 
have the range 1, 2, 3. The signature of the metric is —2. 

16 J. N. Goldberg, in Recent Developments in General Relativity 
(Panstwowe Wydawnictwo Naukowe, PWN—Polish Scientific 
Publishers, Warsaw and Pergamon Press Inc., London, 1962). 

Thus, in the above form Eq. (1.1) is trivial and can 
give no information. However, the field equations can 
be written in terms of a superpotential and the Einstein 
pseudotensor as follows17'18: 

with 
-2 ( -g ) 1 / 2 G m »=t f m ^ . - / m »=0 , (1.2) 

uj^=ti/^gy^gmkL(-g)(gknr-gkrn)lr, (i.3a) 

L \ I ab J [ ms J I as J I mb J / 

\ar) \ms) / 

bu\b 

mb) [sb 

b 

ab 

n 

mr 

b 

\ra\\bs\). 
(1.3b) 

The existence of the skew superpotential is equivalent 
to the contracted Bianchi identities which are satisfied 
by the field equations. With the substitution of Eq. (1.2) 
for the field equations, (1.1) becomes19,20 

d 

dx° f wmUJ0a]nadS 

• / 

\wm,sUJsa]+wmtm
n~]nadS. (1.4) 

This equation is to be understood as a continuity equa
tion: The rate of change of a certain quantity within the 
surface is determined by a corresponding flux through the 
surface. In general, the quantities 

def f 
wmUJa^nadS (1.5) 

will depend on the gravitational field as well as on the 
matter within 5. In order to describe properties of the 
matter distribution alone, it is necessary to choose wm so 
that U' is independent of the particular surface of 
integration, as long as the matter is wholly contained 
within S. The condition for this surface independence is 

(wmUJa0])t*=0. (1.6) 

This condition may be satisfied if a Killing vector 
exists.16 However, in general, Killing vectors do not 
exist and in the absence of additional assumptions it is 
not clear what restrictions are implied by Eq.(1.6).From 
the work of Sachs and Bondi mentioned above, one has 
information about the behavior of the asymptotic gravi-

" J. N. Goldberg, Phys. Rev. 89, 263 (1953). 
18 J. N. Goldberg, Phys. Rev. I l l , 315 (1958). 
19 P. G. Bergmann, Phys. Rev. 112, 287 (1958). 
20 J. N. Goldberg, in Les Theories Relatkiste de la Gravitation, 

Royaumont 21-27 Juin, 1959 (Centre National de la Recherche 
Scientifique, Paris, 1962). 
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tational field. In the following sections this information 
will be used to construct asymptotically invariant sur
face integrals which may be related to the multipole 
structure of an isolated distribution of matter. 

Before discussing the gravitational field, the electro
magnetic field will be considered. This case is simpler 
and permits an explicit analysis of the field equations 
and the corresponding surface integrals. I t will appear 
that those properties of the electromagnetic field which 
permit construction of asymptotically invariant surface 
integrals are analogous to the properties of the Riemann 
tensor which were used by Newman and Penrose as 
suitable conditions on outgoing gravitational radiation 
fields.10 Accordingly, in Sec. 3, the corresponding inte
grals are constructed from the Riemann tensor. Finally, 
in Sec. 4, it will be shown that if Um

ns and /m
nhave cer

tain algebraic properties, then reasonable conditions 
exist for wm such that the surface integrals (1.6) are 
satisfied asymptotically. For the Bondi metric11 the 
superpotential and pseudotensor have the necessary 
algebraic properties. 

Integrals of the form (1.5) are usually identified with 
the generators of the invariant transformations of the 
theory.19,21 In general relativity these are the coordinate 
transformations. The integrals to be constructed here, 
however, are embedded in null hypersurfaces and, in 
general, they are not constants of the motion. As a 
result, their role as generators of canonical transforma
tions is not clear. Therefore, in this paper only the 
construction of the integrals is undertaken, as their rela
tion to the transformations requires further study.22 

2. ELECTROMAGNETISM 

Maxwell's equations for the electromagnetic field may 
be written in Minkowski space as 

F*b
tb+4*rja, Fa*b,b=0<=±F^ab^ = 0J (2.1) 

Fa*b=ieabcdFcd, 

where j a is the charge-current density, and eabcd is the 
totally skew tensor with €1234= — e1 2 3 4=l. The gauge 
identity, jFa6,&fl=0, leads to the conservation of charge 
j a , a = 0. If the field equations are multiplied by an 
arbitrary scalar function w, they may be rewritten as 

(wFt-)ab)>h—w)bF
(-~)ab=4irwja, 

def 

F(-)"i>=zFab+iFa*b. 

Integration over a closed two-dimensional surface wholly 
enclosing the charge-current distribution yields surface 
integrals corresponding to (1.4): 

— * wF^0anadS= - (bw nF^annadS. (2.2) 
dx° J J 

FIG. 1. The projection 
into the x-y plane of two 
concentric spheres, showing 
that they lie in different 
null cones. 

The quantity 

CM = (1/4TT) <bi wF^0anadS 

is a functional depending on the arbitrary function w. 
The question is whether w can be so chosen that Q' 
measures intrinsic properties of the charge distribution. 
Clearly, Q'[X] is just the total charge. In order to de
scribe other properties of the charge distribution and 
not of the electromagnetic field, one requires that Qf be 
independent of the particular closed surface; hence, 

(wF<->°«),«==(L (2.3) 

From Eqs. (2.2) and (2.3) it is clear that the surfaces 
of integration being considered all lie in the space-like 
surface x°=const. This problem has already been ex
amined both in electromagnetic theory and in linearized 
gravitational theory.16 One finds that a modification of 
Qf can be constructed which describes the essentially 
static part of the electric multipole moments. That only 
such information should be available from one hyper-
surface x°=const is reasonable. Two different concentric 
spherical surfaces embedded in the same hypersurface 
of constant x° lie in different null cones (Fig. 1). There
fore, if integrals taken over these surfaces are to describe 
the same physical property, all influence of the radiation 
field must be removed and only that part of the field 
which is determined on the hypersurface itself can be 
used to construct such properties. 

To obtain information about the radiation field, 
hence, about the dynamical part of the multipole struc
ture, it is necessary to consider surfaces of integration 
which lie in the same null cone. Then one can ask for 
properties which are unchanged as the surface of inte
gration is slid along the null cone or distorted while it 
still lies in the same null cone (Fig. 2). However, in this 
case one must be able to distinguish the radiation field 
from the near field. Therefore, one can expect to obtain 
significant results only from the far, or asymptotic, field. 

FIG. 2. The projection of 
different closed two-dimen
sional surfaces which lie in 
the same null cone. 

21 P. G. Bergmann and R. Schiller, Phys. Rev. 89, 4 (1953). 
22 A. Komar, Phys. Rev. 127, 955 (1962). 
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The retarded; electromagnetic field from a localized 
charge distribution has the asymptotic form23,24 

07V(-)a& 0IIIC->a* 
jp(-)«6= (. hO(r~3) , (2.4) 

where 0 ^ ( ~ ) a 6 and 0III (~ ) o 6 are skew tensors independent 
of r and with the important property that there exists 
a null vector ka such that 

0;\r(-)a^6=:0, o i n H « % 6 = a i « , JMka=0. (2.5) 

The subscript "0" to the left means that the quantities 
are constant along the null rays with tangent vecor ka. 
This null vector is the propagation vector for the electro
magnetic field in the wave zone. Furthermore, it is 
hypersurface orthogonal and, therefore, defines a family 
of null surfaces u— const, ka=uja. As suitable surfaces 
of integration in Eq. (2.2), closed two-dimensional sur
faces, wholly contained in these null hypersurfaces, will 
be considered. Therefore, Eq. (2.2) may be rewritten 
in a covariant manner: 

d 

du 
<bwF^abk[anb]dS=- Q>w)bF^abnadS, (2.2A ') 

The condition that the asymptotic integral 

(?M=Uml — J 6wF^abk[anb]dS (2.6) 

shall be independent of the two-surface embedded in 
u— const becomes, in place of (2.3), 

(wF<-)*b) >bka=wibF^ahka=0(r-*). (2.7) 

The current-free field equations have been used. From 
Eqs. (2.4) and (2.5), this condition becomes 

-(-) \w)bk
b+w,bO(r~*) = 0(r~4). 

r2/ 

The requirements on w implied by the above relation are 
clearly 

w,a^O(r~l), (2.8a) 

wiak
a=0(r~2). (2.8b) 

These requirements may be satisfied by choosing w to 
be a function only of suitably defined angular coordi
nates on the null surfaces. 

In order to identify the quantities Q[V], an explicit 
representation of the electromagnetic field is needed. 
This calculation is carried out in Appendix 1; the nota
tion used in the following discussion is taken from there. 

The surface of integration is defined by u— const and 

23 R. K. Sachs, in Recent Developments in General Relativity 
(Pafistwowe Wydawnictwo Naukowe, PWN—Polish Scientific 
Publishers, Warsaw, and Pergamon Press, Inc., London, 1962). 

24 J. N. Goldberg and R. P. Kerr (unpublished). 

r— const. Therefore, the normals to the surface are 
ka and na=r,a——la> From Eq. (A8) in the Appendix 
one finds 

1 r - dN+l 

F^°bkanb=-\ q+ E (N+2) Qab^»hah(lrN) 
r2L N=O duN+l 

dN+l I 
- * £ (N+2) Qa*b^vJb(lrN) \+0(r-*). 

N=O duN+1 J 

The collective indices are defined in Eq. (A4). Sub
stituting the above expression into Eq. (2.6) one has 
for w '= 1, 

Define 
def 

w = wN = co^(l8N), (2.9) 

where o)(sN) is a set of constants with the properties 

and 

The round brackets imply complete symmetrization in 
the indices enclosed. Thus, one has 

(N+l)l dN 

QZWNX-1)N Va 

Vl(N) duN 

X [QarN: ^-^ - iQa*rN:
 ^-^(TN) • 

Thus, for appropriately chosen weighting functions, 
as defined by Eq. (2.9), Q[w~] measures certain time 
derivatives of the electric and magnetic multiple mo
ments. From Eq. (2.2') one sees that the rate of change 
of Q[w~] is determined by the null part of the asymptotic 
field oN^"*. This result is interesting because it is the 
null part which contributes to the energy-momentum 
tensor in the wave zone and, thus, determines the energy 
radiated by the system. In the absence of electromag
netic radiation, all the quantities Q[w~\ are constants of 
the motion. However, in all cases Q [ l ] is a constant of 
the motion, as follows from (2.20. This, of course, is 
merely a restatement of the law of conservation of 
charge. 

3. THE RIEMANN TENSOR 

In a remarkable paper,5 Sachs has carried out a 
penetrating analysis of the propagation of the Riemann 
tensor along geodesic rays. According to Sachs, a vacuum 
metric, Rab~0, has geodesic rays if there exists a vector 
field kfa which is tangent to a congruence of null geodesies 
and satisfies the algebraic condition**1 

k'[aRb]ij[ckfd]k/zk/j = 0. (3.1) 

When geodesic rays exist, Sachs shows that (except in 
certain degenerate cases which are not of interest here) 
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the Riemann tensor has the following expansion: 

fJabcd nIIIa^cc^ h$JLabcd r)Xabcd 

Rabed = + + + + . . . ? (3J) 

where r is an affine parameter along the null rays. Each 
of the numerators possesses all of the symmetries of a 
vacuum Riemann tensor. Therefore, each belongs to a 
particular Petrov class (with respect to the same null 
vector k,a) which is indicated by QN, oIII, oil, and ol; 
the subscripts "0" indicate that the numerators are 
constant along the ray direction, as before. 

In general, a metric cannot be expected to have 
geodesic rays. A somewhat weaker requirement is that 
one of the null directions satisfying Eq. (3.1) be asymp
totically geodesic; that is, 

k'a;bk'b=0(r-"), n>2. 

Sachs conjectured that under these conditions the ex
pansion (3.2) still holds, but kfa is no longer a ray vector 
for the numerators. [A ray vector is a null vector 
satisfying Eq. (3.1)]. However, in keeping with the 
notion of a space with asymptotically geodesic rays 
there must exist a congruence of null geodesies with 
tangent vector ka which represent the asymptotes for 
the rays k'a. Furthermore, if the behavior of a space-
time with geodesic rays is to be realized asymptotically, 
one may expect that ka is the ray vector for the first four 
numerators, but not for the fifth; that is, 

kiJRamMkW^Oir"*). (3.3) 

Newman and Penrose10 have shown that if there 
exists a hypersurface-orthogonal ray congruence satisfy
ing Eq. (S3), then the expansion (3.2) follows. Only 
such fields will be considered here. Therefore, in the 
following, the null vector satisfying (3.3) is a gradient 

(3.4) 

and u= const defines a family of null hypersurfaces. 
From the properties26 

oN<">°dkd=0, am.ah°dkd=k<'Lai, (3.5) 

one sees that the Riemann tensor has similar asymptotic 
properties to those required for the definition of asymp
totic invariants for the electromagnetic field. How about 
the field equations? From the Bianchi identities one has 

Rab [cd; el = Q <=> Rabc*d;d== Q ? 

Rabc*d=lecdijRabij) e i 2 3 4 = s v / - g . 

When Rab—0, the first of the above equations reduces to 

Rabcd
;d=0. 

26 R. K. Sachs, Z. Physik 157, 1462 (1960). 

These relations may be written succinctly as26 

R (—) a bed _ Ra bed_J_ jRa be* d (3.6) 

Thus, wabR{~)abcd, wab, an arbitrary bivector, plays 
the same role as wF(~)ab in electromagnetism. From the 
field equations (3.6) one can construct the integral rela
tions corresponding to Eq. (2.20, 

d 
f wah(-g)l^R^abcduiCnddS 

= <fwab;c(-~g)v*R^abcdnddS. (3.7) 

The requirement that 

M[wa&]=lim <j> Wa h
(-gyi2R(-)abedUcnddS ( 3 > 8 ) 

be independent of the surface of integration, as long as 
it is a space-like section of u= const, leads to the 
condition 

wab;dR
(-)abcdkc==0(r-*), 

where Eqs. (3.4) and (3.6) have been used. From the 
asymptotic behavior given in Eq. (3,2) and the prop-
perties (3.5), this condition becomes 

Wab'.dl i 

Lab -, 

kd—+Q(r-3) =0(r- 4) . 

Thus, the requirements imposed on wab} corresponding 
to those of Eq. (2.8), are 

Wahd=0(r-1) , 

w^dk^O^-2). 

(3.9a) 

(3.9b) 

These conditions may easily be satisfied by choosing 
Wab to be a function of suitably defined angular coordi
nates, as was done in the previous section for the weight 
function, w. 

In Appendix 2 the linear weak field approximation 
to the Einstein field equations is considered. From Eq. 
(A 16) one sees that all the asymptotic information may 
be obtained with the weighting tensor wab chosen to be 

Wab = WMab=:haO)b]:(8M)(lsM) ) (3.10) 

with co6:(8Jtf) a set of constants with the same properties 
on the indices Si as in Eq. (2.9) for co(sM) (the colon is 
used to emphasize this relationship). 

26 J. Geheniau and R. Debever, Bull. Classe Sci., Acad. Roy. 
Belg. 42, 252 (1956). 
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With this choice one obtains from Eq. (3.8) 

/

dN+z 

E (N+4)Pa—— 
N=O duN+z 

Xvnkikj(lrN)(lSM) smdddd<p. (3.11) 

A study of the integrand of the above equation, together 
with the integral relations given in Appendix 1, shows 
that for a given M, one gets contributions from Maib3': {m) 

with N=M-1, M—2, and M—3. Therefore, these 
integrals do not produce a clear separation of the 
multipole moments as was true in the electromagnetic 
case. However, the third time derivatives of the quad-
rupole moment is singled out by M~\. To show the 
complexity of these integrals, Eq. (3.11) will be evalu
ated for the case where only a quadrupole moment 
exists; that is, the sum under the integral sign contains 
only the term N~0. 

8 d* 
M[_wlai\=-o)b:S—[Mhijm~iMhi^m~\vivj, (3.12a) 

5 duz 

16 d* 
M\wiab]= o>b:rs—[M^i-iMWilpju*, (3.12b) 

15 du* 

16 d* 
M[wzab~l=—co6:

&.rs—[Mris3'-iMris*j1viVj., (3.12c) 
35 dus 

Clearly, (3.12c) can always be made to vanish by 
choosing co&:

6.rs = 0. Since the contraction of any pair 
of indices on the multipole moments vanishes, without 
loss of information, one can impose the additional 
condition 

WblHsM-i) = o9 (3.13) 

Eq. (3.12b), on the other hand, is related to the dual of 
(3.12a). Therefore, by algebraic means one can eliminate 
this contribution. I t is easy to see that all integrals 
involving higher multipoles will have a similar structure. 

Therefore, in those space-times in which the Riemann 
tensor has the expansion (3.2) and the metric tensor 
approaches the Minkowski metric as r_1, a physical 
interpretation for the integrals (3.8) exists. Certainly, 
the existence of the expansion (3.2) for the Riemann 
tensor does not guarantee that the space-time admits a 
metric which is asymptotically Minkowskian. For ex
ample, the Robinson-Trautman metrics do not have 
this asymptotic behavior except for the type D metrics.27 

I t is not yet clear, however, whether an interpretation 
can be given for these cases as well. 

I t is interesting to note that the time derivatives which 
appear above are of the same order as those which con
tribute to the energy transport as calculated by the 

2 7 1 . Robinson and A. Trautman, Proc. Roy. Soc. (London) 
A265, 463 (1962). 

Einstein pseudotensor,28 whereas the time derivatives 
which appeared in the electromagnetic example are of 
one order lower than those which appear in the energy 
transport as calculated by the Maxwell stress-energy 
tensor. This results, of course, from the fact that the 
analogy between the Riemann tensor and the electro
magnetic field is not complete. Rahcd involves second 
derivatives of the gravitational potentials (the metric 
tensor) whereas Fab involves only first derivatives of the 
vector potential. In both cases, however, energy is 
calculated by an expression which is quadratic in first 
derivatives of the corresponding potentials. The Max
well stress-energy tensor is homogeneous-quadratic in 
the Fab; thus, its coefficient of r~2 arises from the 
asymptotic null field. The Einstein pseudotensor, on the 
other hand, is an expression which is linear in the 
Riemann tensor and from which the second derivatives 
have been removed by means of the superpotential.18'20 

Thus, the coefficient of r~~2 in the pseudotensor, which 
describes the radiation of energy, necessarily depends on 
the asymptotic type I I I field and not the null field. 

However, the asymptotic null field is important for if 
it vanishes the quantities M[wa{] will be constants of 
the motion. This result follows easily from Eqs. (3.8a) 
and the conditions in (3.10). A vanishing null field, 
therefore, implies that energy is being radiated at a 
constant rate. If the constant rate is zero, that is, no 
energy is radiated, the quantities M[_wab] = 0. 

The null field is also important for the existence of the 
superenergy tensor defined by Bel and Robinson.6'29'30 

This tensor is quadratic in the Riemann tensor and, 
therefore, is closer to the electromagnetic analogy than is 
the pseudotensor. The structure of the Bel-Robinson 
tensor has been discussed in some detail by Trautman31 

who concludes that it is not suitable as an energy tensor. 
However, from the discussion in the previous paragraph, 
it is clear that the Bel-Robinson tensor is related to the 
rate of change of the radiation field, though not to the 
radiation field itself. 

4. THE SUPERPOTENTIAL 

The success in the construction of asymptotically 
invariant integrals with the Riemann tensor prompts 
one to inquire about the conditions under which the 
integrals of Eq. (1.5) may also be asymptotically in
variant. Therefore, define 

,_ def l r 
U[_wm^\\m <bwmUJns]k[nns]dS, (4.1) 

rH"° 16TT J 

where r is a suitable parameter defined along a family of 
28 J. Boardman and P. G. Bergmann, Phys. Rev. 115, 1318 

(1959). 
29 L. Bel, Compt. Rend. 248, 1297 (1959); 3 0 1 . Robinson, in Les Theories Relativiste de la Gravitation, 

Royaumont 21-27 Juin, 1959 (Centre National de la Recherche 
Scientifique, Paris, 1962). 

31 A. Trautman, in Gravitation, edited by L. Witten (John Wiley 
& Sons, Inc., New York, 1962). 
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null geodesies which generate a null surface asymptoti
cally, in the sense of Eq. (3.5). Asymptotic invariance 
then requires that 

(wmUm
ina]),skn=0(r-*). 

Using the field equations Ga
b=0 and Eq. (1.2), the 

above condition becomes 

wm
tSUm

[ns]kn+wmtm
nkn = 0(r~A). (4.2) 

From the previous integrals constructed, one sees that 

wm=0(r°), (4.3a) 

w^Oir-1), (4.3b) 

wm
tSk

s=0(r~2) (4.3c) 

are reasonable conditions to impose on the weighting 
vector wm. Assuming (4.3), one finds that (4.2) requires 

UJ^kn = r-\Amk«+0(r-*) , (4.4a) 

* A = 0 ( r - 4 ) . (4.4b) 

From Eq. (A18) in the Appendix one sees that condition 
(4.4a) is satisfied in the linearized theory. Condition 
(4.4b) is automatically satisfied there since tm

n contains 
no linear terms. 

Trautman4 '23 has shown that when wm is constant the 
integral (4.1) exists with the assumption of certain out
going boundary conditions; namely, 

gab=y]ab+0{r~l) , 

gab,c=iabkc+0(r-2) , iab=0{r~l) , kaka=0, 

(iab-habi)kb=0(r-2), i=yabiab. 

These conditions, however, are not strong enough to 
establish (4.4). 

Bondi and his co-workers11 have constructed an 
asymptotic metric with the following assumptions: 

(1) There exists a family of null surfaces, u= const, 
which is generated by a congruence of expanding null 
geodesies. 

(2) Each null ray lying in a given surface u= const is 
uniquely defined by spherical angular coordinates 6 
a n d <j>. 

(3) One chooses a coordinate r along the null geo
desies such that the area element of the two-dimensional 
surfaces u= const, r= const is simply 

dS=r2sindd6d<p. 

(4) All relevant physical or geometrical quantities 
possess an expansion in r~l\ this statement contains 
essentially the restriction to outgoing radiation.32 

With the further simplification of cylindrical sym

metry, Bondi writes the metric as 

dS2 = (e2* e2vr2U2Jdu2+2l2Hudr+2e^r2Udude 

where 
-r2(e2ydd2+e-2v s i n W ^ 2 ) , (4.5) 

y=c(u,d)/r+--- , 

U=r-2(c,2+2ccotd)+-- , 

V=r-2M(u,6), 

Bondi refers to ct$(ufi) as the news function. I t is com
pletely arbitrary except for its behavior in the neighbor
hood of 0=0,7r: 

c(u,d)\ 0=0,*=O(sin20) . 

The function M(u,d) is closely related to the mass; 
indeed, for the Schwarzschild metric, M is the mass. 

There is one difficulty with the metric in the form 
(4.5). The pseudotensor tm

n and, hence, the super-
potential, has been shown to be meaningful only when 
the coordinates are asymptotically rectangular.33 How
ever, one can avoid transforming the metric by the 
following ruse. From Eq. (1.3a) it is clear that Um

ns is 
homogeneous linear in the first derivatives of the metric. 
These first derivatives may be expressed in terms of the 
Christoffel symbols as34 

gab,c=[cayb~]-\-[cb,a] = gbi\ 

A brief calculation then gives 
lacJ [bc\ 

+ ( |g < n * r +l \gnskr\, (4.6) 
pStkr— ffskgtr „srgtk 

The pseudotensor is already expressed in terms of the 
Christoffel symbols in Eq. (1.3b). 

The transformation properties of Um
[ns] and tm

n are 
determined by those of the Christoffel symbols, which 
are not tensorial. However, the difference between two 
different sets of Christoffel symbols will transform as a 
tensor.34 Assume that xm are asymptotically rectangular 
coordinates; that is, the metric tensor is asymptotically 
Minkowskian in a Cartesian frame. Consider the trans
formation to any other system of coordinate %m' 

xm' = xm'(xm), (4.7) 

which need no longer be asymptotically rectangular. 

32 R. K. Sachs, Proc. Roy. Soc. (London) (to be published). 

33 A. Einstein, Berlin Ber. 448 (1918). 
34 P. G. Bergmann, Introduction to the Theory of 

(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1947). 
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The Chris toff el symbols transform as follows: 

\ m! \ f m] 

Am' — 

nj) 

dxm' dxm 

Am ,— 
) si nv 

dxm dxm' 

(4.8) 

Apply this transformation to Minkowski space. In the 
Cartesian frame, 

f m] 

[nj)o 

However, in the transformed frame (4.7), 

n'j'h 
— Am' Am,, 
— si mSi j ' ,n' • 

(4.9) 

Taking the difference between (4.8) and (4.9) one has 
that the difference 

W | * d e f f M) 

nj) [nj nj\o 
(4.10) 

transforms as a tensor and in the asymptotically 
rectangular coordinate frame xm, one has simply 

nj 

m 

nj 

Therefore, maintaining the distinction between 
primed and unprimed coordinates introduced above Eq. 
(4.7), the superpotential and pseudotensor in the asymp
totically rectangular coordinate system may be written 

UJ«* = A"'nAnn'A'a>Um.w*'r, (4.11a) 

tm
n=A™'mA"n4my*, (4.11b) 

where the superscript asterisk means that the substitu
tion defined by Eq. (4.10) is made in (1.3b) and (4.6). 

The transformation involved for the Bondi coordi
nates requires removing the null coordinate u=x°—r 
and transforming from polar coordinates to rectangular 
coordinates. If #w '=(w,r,0,0), then 

x°=u-\rr, 

x1==rsmd cos<p, 

x2=rsmd$m<p, 

xs = rcosd. 

Thus, 

A m' 

(4.12) 

1 —-sin0 cos<p — sin# sin^> — cos0 
0 sin0cos<p sin0sin<p cos# 
0 cos# coscp/r cosdsm<p/r — sind/r\ 

L0 — sin<p/Vsin0 cos p/r sirid 0 
(4.13a) 

Am , — Si mt — 

1 
sin# cos<p 
sin# sirup 

cos# 

0 
r cos0 cos<p 
r cos0 sirup 

—rsind 

0 
—r sind siricp 
r cosd cos <p 

0 
(4.13b) 

With the help of these relations it is an easy, though 
somewhat laborious, matter to prove that (i) the Bondi 
metric satisfies the Trautman boundary conditions35 

and (ii) the requirements listed in Eq. (4.4) are satisfied. 
Therefore, with the weighting vector limited by(4.3), 
the integrals defined by (4.1) are asymptotically 
invariant. 

Although one knows from Trautman's work31 that 
when wm is constant the integrals (4.1) define the total 
energy and momentum of the system, it is instructive to 
examine the linear approximation to see how the multi-
poles come out. Using Eq. (A18) from the Appendix, 
one has that 

(lsM)\ mvt+ Z 
N-O duN+2 

XMt
inJ':(rN)k iVnlj\lrN) sindddd<p, (4.14) 

where 
wM

m=^m^SMKhM)') 

the constants com:(5ilf) have all the symmetries in the 
indices (sM) as listed in Eq. (2.9). Carrying out the 
integration explicitly with the help of (A4), one finds 

{-l)M+lM\ 
U[wM

a~] = — — T T Z COa: hc( *M-2) 
9l(M) 

dM 

X (M+l) Mabnc:^SM-2hn 

L duM 

dM+l -j 
+ ( i f + 2 ) Mai^c^^hiVj . (4.15) 

duM+1 J 

U[Wia~] = |c0a : 6 MaijhViVj. 
du2 

In particular, one has *7[>oa], as expected, contains the 
total energy and momentum of the system; U[_w1

a~] con
tains only the vibrational quadrupole moment; but in 
general, U[wM

a'] contains both the vibrational and rota
tional multipole moments of order 2M and the vibrational 
moment of order 2 M + 1 : These vibrational moments may 
be separated out by considering U[wM+ia2 with wa: (SM+1) 

~vaU(8M+i). I t is fortunate that this separation can be 
carried out at all, for certainly the significance of the 
dual of the superpotential is unclear, even though it 
does satisfy a conservation law. 

36 F. A. E. Pirani (private communication). 
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For the Bondi metric one finds that 

77 [ns] J, r 

= - r - 2 ^- ' m {5V[~4M+(l / s in^) 
X(c,2smd+2ccosd),2] 
-52m>r(c,2+2c cotS)}+0(r-*). (4.16) 

Therefore, for the invariant integrals (4.1), one has 

U[wtf] = — <[> [co°if-co3lf cosfl] sindddd<p , 

Z7[>ia]= — 0 {o>Q
:Z2M cos^-co1

: i(2M'-c)sin2^cosV 

~co2
:2(2ikr-c)sin2(9sinV 

-o)\z(2M cos26-c sin20)} sinddddcp. 

The higher multipole moments are obtained by weight
ing (4.16) with the appropriate spherical harmonics. 
Actually, it is not the multipole moments themselves, 
but various time derivatives of the moments, which are 
defined by these integrals. As in the case of the electro
magnetic field, these time derivatives are each one lower 
than those which determine the energy transport by 
means of the pseudotensor. The additional time deriva
tive results from the time dependence of M and c.The 
rate of change of the quantities defined by U is given 
by the right-hand side of Eq. (1.4) in the limit of r —> co. 
In particular, when wm=com= const, one has the energy-
momentum transport given by 

1 d f 
~ (b [co°M-co3M cos0] sindddd<p 
4T duJ 

1 r/dc\2 

= * ( — ) kao>a sinddddcp. (4.17) 

I t is clear that the quantity which is identified with the 
total energy, the coefficient of w°, is necessarily a 
decreasing function of time as long as the news function 
cto(u,d) does not vanish. Since c is independent of <£, 
the momentum components can change only along the 
axis of symmetry. However, it is clear that there need 
not be a change in the total momentum; for example, 
c=f(u) sin20. One can show, furthermore, that all of the 
quantities defined by Eq. (4.1) are constants of the 
motion unless the news function does not vanish. 

The most important of the above conclusions that 
concerning the energy, was already obtained by Bondi. 
He used the Bianchi identities to arrive at the "supple
mentary condition'' 

2M, 0= -2(c,o)2+(l/sin0)[>,2 sind+2c cos0],2. (4.18) 

By multiplying this equation by sin0 and integrating, 
he was able to conclude that if C.OT^O during a finite 
interval, the mass, or energy of the system is less at the 

end of the interval. Clearly, this result is the same as 
that given in Eq. (4.17) for coa=5oa except that the 
interpretation here does not depend on the possible 
existence of initial and final rest states. 

One cannot make such a general statement about the 
momentum. The momentum may increase, decrease, or 
remain constant, depending on the angular dependence 
of cto—hence, depending on the angular dependence of 
the energy transport. However, if c,o=0, the linear 
momentum is a constant of the motion. Clearly, in this 
case the momentum may be reduced to zero by a 
Lorentz transformation. 

Similarly, the iVth time derivative of the 2^-pole com
ponents may increase, decrease, or be constants of the 
motion. If c,o=0, they are necessarily constants of the 
motion. However, the time derivatives of lower order 
need not vanish. Indeed, these are just the nonradiative 
motions described by Bondi.11 Unfortunately, this 
analysis sheds no light on their origin. However, it is 
clear from the results of Sec. 2 on electromagnetism that 
similar nonradiative motions occur there. In the electro
magnetic case, moreover, one would not identify such 
nonradiative motions with a system of charges which 
interacts only through its own field. Bondi does suggest 
an interpretation for gravitational interactions as it is 
consistent with Infeld's conclusions about gravitational 
radiation.36 The results of this paper do not rule out 
such a possibility. 

A little thought shows that Eq. (4.1) considered for 
all possible vector functions wa is merely an integral 
statement of (4.18). This integral form has the advan
tage of permitting a physical interpretation, as given 
above. Furthermore, the physical picture implied by 
the asymptotic integrals allows one to conceive of 
measurements made at large distances which give in
formation about the source distribution. Only a sensitive 
meter for the gravitational field is lacking. 

5. DISCUSSION 

Thus, asymptotic integral invariants may be con
structed either from the Riemann tensor or from the 
superpotential. In both cases physically important 
quantities result. They are different, yet closely related. 
From the Riemann tensor one is not led to the total 
energy or mass of the material system generating the 
gravitational field. One is led, however, to time deriva
tives of the multipole moments of the matter distribu
tion. Specifically, one gets the ( iV+l) th time derivative 
of the 2N pole. By examining the energy transport with 
Einstein pseudotensor, one sees that these time deriva
tives are precisely those which determine the energy 
flow. The result is curious, for these time derivatives do 
not come from the far wave zone of the Riemann tensor, 
that is, from the null field which falls off as r - 1 , but from 
the near wave zone, the asymptotically type I I I part of 

36 L. Infeld and J. Plebanski, Motion and Relativity (Panstwowe 
Wydawnictwo Naukowe, PWN—Polish Scientific Publishers, 
Warsaw and Pergamon Press, Inc., London, 1960). 
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the Riemann tensor, which falls off as r~2. As was dis
cussed in Sec. 3, the linear relationship between the 
Riemann tensor and the pseudotensor leads to this re
sult. An examination of the Riemann tensor for Bondi's 
metric shows that one can construct a gravitational 
field in which the Riemann tensor falls off as r~2 and 
not as f-1, that is, the null part of the field vanishes, yet 
there is an energy loss; in fact the rate at which energy 
is lost will be constant, in agreement with the previous 
discussion. However, such a solution seems to be ruled 
out because the asymptotically flat boundary condition 
is inconsistent with a constant rate of radiation.37-39 

However, it is the superpotential which is closer to 
the physical ideas concerning energy and energy trans
port.31 This quantity expresses the strong conservation 
laws which are a restatement of the Bianchi identities, 
from which Bondi's supplementary conditions are de
rived. As a result, from these conditions one gets pre
cisely the same information that is obtained asymptot
ically with the superpotential, and only that information. 

Actually, here only one of Bondi's two supplementary 
conditions has been considered. The other discusses a 
quantity which is identified with the dipole moment. 
This quantity is not examined by the integrals con
structed here for it appears in the r~3 part of the Rie
mann tensor and the superpotential. Thus, one might 
expect it to appear in the study of angular momentum. 
A number of possible candidates for an angular mo
mentum complex have been proposed.18'40,41 These 
should be studied from the point of view presented in 
this paper. Undoubtedly, Bondi's second supplementary 
condition contains all this information; only the inter
pretation may be added. 

The invariance of the asymptotic integrals remains to 
be discussed. Certainly they are invariant under all 
transformations which are asymptotically a homogene
ous Lorentz transformation. Such transformations only 
vary the surface of integration in a given null surface 
and the integrals were constructed to be independent of 
such changes. However, they are clearly altered if the 
null surfaces are changed, for the integrals evaluate 
information which is transmitted along the null rays. 
Therefore, changing the null rays being examined 
changes the information being evaluated, and changes 
the surface integrals. Thus, the quantities defined are 
not invariant under the full Bondi-Metzner group.11 

Finally, the possible relationship of these integrals to 
the generators of invariant transformations should be 
emphasized again. The fact that the superpotential and 

37 A. Papapetrou, Ann. Physik 2, 87 (1958). 
38 A. Peres and N. Rosen, in Recent Developments in General 

Relativity (Panstwowe Wydawnictwo Naukowe, PWN—Polish 
Scientific Publishers, Warsaw and Pergamon Press, Inc., London, 
1962). 

39 R. Arnowitt, S. Deser, and C. Misner, Phys. Rev. 121, 1556 
(1961). 

40 L. Landau and E. Lifshitz, The Classical Theory of Fields 
(Addison-Wesley Publishing Company, Inc., Reading, Massa
chusetts 1951). 

41 P. G. Bergmann and R. Thomson, Phys. Rev. 89, 400 (1953). 

the pseudotensor generate canonical transformations 
has long been known.7'21 Recently, Komar22 has shown 
that integrals constructed by the Riemann tensor and a 
bivector as in Sec. 3 may generate infinitesimal coordi
nate transformations with the Jacobian equal to 1; that 
is, volume preserving transformations. As mentioned 
earlier, however, whether integrals formed on null hyper-
surfaces may be identified with generating functional 
is still an open question. 
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APPENDIX 

1. The Electromagnetic Field 

Assume that the charge distribution is confined within 
a sufficiently large world tube. Within the world tube 
take a straight world line xa=za(s), ds2=rjabdzadzb, 
where yab is the Minkowski metric (1, — 1, —1, —1). 
The four-velocity, or tangent vector to the world line, 
is va=dza/ds=za. 

Let u(x) be the retarded solution for s of the equation 

Vab[xa--Za{s)'Jj)Ch-Zh{s)~} = 0. 

Clearly, «(#) = const is a family of null surfaces. The 
following relations are easily established: 

va=0, kaka=0, kava=-kala=l, 
with 

ka=Uta=r}ab[xb — Zh(u)~]/r , 

r=va[_xa—za(u)'] , 

la = ka — Va=—ria. (Al) 

Furthermore, it is useful to introduce 

ka,b~la,b=Iab/r , 

Iab=Vab — VaVb+lJb, (A2) 

Iab,c~ 2l(aIb)c/r. 

The quantities introduced are most easily identified in 
the rest frame va=80

a. One has then u=x°—r, and 
consequently 

With the introduction of the usual spherical angles 
one has 

la=~r,a= (0, sin0 cos<p, sin0 sin<p, cos#). 

Defining the projection operator into the hypersurface 
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vadxa=0, eab= Vab—VaVb, one can show that the following obtains the electromagnetic field from (A5): 
surface integral relations hold (dQ~$mdddd4>)\ 

6 oNab oIHa6 

1 r Fab= + + 0 ( / - 3 ) , (A8) 
— <blalbdn=-(l/3)eab, . . r r* 
AnrJ With 

dN+2 

1 r 1 ,N"^2Y,k{b Qa]s:(rN)ks(lrN), 
— <f) lJblclddQ=—teab6cd+eacebd+eadebc'], (A3a) *-° du"+2 

*CKJ 15 

1 /• * ( - 1 ) " 0 I I P & = 2 < ^ + 2 XUr^dl (N+l)l +ls)lrNkV 

4TT*/ 91 (AT) 

The sum is taken over all symmetric combinations of +kslrNtn +lrNIs +NksIrN r~~Qa s: 

the indices and Clearly 
W.{N) = (2N+\)(2N-iy • -3X1. oIIP%6 

Finally, (A9) 
i /• r d i 

- 4> l*i • ^ W ^ O . (A3b) - ~ M q+ £ (^+2)—-$b''-™V!t.(lrN) • 
47T*/ L iV=0 rf«JV+1 J 

The following shorthand notation will be used hereafter: Similar relations hold for the dual; one obtains 

(lrN) = lnW ' 'W> oNa*bkb=0, 
A(rN)=Arir2---r*. (A4) oo dN+l (A10) 

dUa*bkb=ka Jl(N+2) Qb*s:<rN)vbUlrN). 
Introducing the vector potential Aa such that j\r=*o duN+l 

pa = ^a, _ ^ ,«) (A5) I n o r d e r t 0 0 ] 3 t a m (^8) easily, the following relation 

the field equations, (2.1) become i s u s e d- L e t PM:(rN)(u) be a set of functions which is 
totally symmetric in the indices (rN) and such that 

{jAa=4c7rja, Aa
>a=0. PM:<^-i>^=0, then 

Take the retarded solution in the following form42: N dN~K 

^ + £ ) e ^ ) ^M-zw.y*^*.**. (AII) 
r i\r=o l ^ W = ( # + X ) l/K\(N-K) \2K. 

The coefficients (>s:<r^> may be chosen to have the 

following properties: 2- L i n e a r General Relativity 

QaS:(rN)= — Qsa:(rN) Introducing the deviation from flat space as 

Qas:(w) = Qas:(nw • -TN) ^/ — ggab= rjab—yab 

Qa*'.(rN-i)tVt==Q^ faQ i i n e a r terms in Einstein's field equations take the 
form 

*?rV6,r,=0, yar,r=0 (A12) 

outside the matter distribution. In the same manner 
as was done for the electromagnetic field, a solution for 

One can show that the yab with outgoing waves only may be given in terms 

£)[«*:*] 0W-1) = (). (A7) 

of a multipole expansion43 

Sab:r 
Qas:(rN)Vs a n d Q«**:(rN)Vs 

I
fMyayb /Sab:r\ 

J \ 
r \ r J ,r 

as defined in Eq. (2.1). 
By means of a somewhat tedious calculation, one *rMa%b*:(>rN)-

(A13) 
42 L. Lyuboshitz, and Ya. A. Smorodinskii, Zh. Eksperim. i Teor. iV-oL r J ,ij(rN) J 

Fiz. 42, 846 (1962) [translation: Soviet Phys—JETP 15, 589 
(1962)]. 43 R. K. Sachs and P. G. Bergmann, Phys. Rev. 112, 674 (1958). 

oo rMa%b*:{>rN)~\ 1 

+ E l 
x-vL r J.o(,w)J 



1378 J . N . G O L D B E R G 

The quantities Maihj'{rN) have all the properties of a Hence, one has 
vacuum Riemann tensor in the first four indices (aibj); 
in addition, they have all the properties listed in Eq. oNmanhkb=0N

m*anbkb=0, 
(A7) for the electromagnetic multipole moments. The ,N+S 

remaining quantities in Eq. (A13) have the following 0Hlm a n &£ n= — 4=kb Y\ (N+4)(lr )k[a 

properties: iv=o r duN+z 

m = 0 , (A16) 
]ifm]ijn:(rN)Jp.h.n) 

S"™r=SmrVn+SnrVm, ( A 1 4 ) **$>* > 

Smn=—Snm, Smn=0. 

One can show that 

if aibj: <XN)W. a n c l M aUbj: (rN)v.Vj 

dN+Z 

0IIIm*anbkn = 4kb £ ( tf+4)(/ ,„)* &» 
iV=0 d ^ + 3 

MmWn*rtfkikjVn. 

represent the vibrational and rotational multipole 
moment, respectively, of order 2N+2. 

Since 
A. The Riemann Tensor 

Rmanb=2(y^[n-^
m

[ny),ah], 
with 

ymn=r}nc7mc, 7 = ^ * 7 " 

one finds with the help of (All) 

Rn 

+ +0(r~*) , 

B. The Super potential 

From Eq. (1.3) one finds that the linear super-
potential is 

UJn^ = 2vma(va[ny8]r+yainv8]r). (A17) 

Substituting (A13) into (A17) one has 

[ 1 oo dN+* 

{r N=O duN+3 

dN+4 

N=OduN+A 

0IIP™*=8 f; \(lrN{kM^b[a+kH[b+k[bl^) 
NmO[ L 

+2kiJi)iikla+2k(iI»Wlh 

/(N+3) \ -i 
+ (N+2)l *&-2*(<iv>J*l,*[» 

+-T»wV"/«i+ £ ((/rw)[2*(i«. 
r2L iv-o\ 

• f l " 

(A15) dN+2 -\ 

<f^+2 J ' 

Therefore, one obtains 

4 
+N(lrKJ)kik£lrKiikl'+Wkn'2 UJ»°ik„=-k°\mvm+ £, (I, 

I r2 L n=o 
*>. 

dN+2 

dN+3 

duN+* 

duN+2 

XMm
iSn*rN)k& nVj (A18) 


