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For a Bose system interacting through a two-body potential there is a large occupation number in the 
zero-momentum state with small fluctuations. Thus, we can express the chemical potential and low-lying 
excitation energy in terms of the density fluctuation only. The formulas derived are shown to coincide with 
well-established results in the low-density Bose gas. The use of experimental neutron scattering data is 
suggested to improve the numerical answer. A particular application is made to the He4 case. If we utilize 
the Feynman variational excited state as the (approximate) true state vector, which is correct experimentally 
for low-momentum excitations, we get an explicit phonon excitation for actual He4. 

1. FORMULATION OF THE PROBLEM 

THE many-body system of Bose particles inter
acting through a two-body potential has been 

analyzed rather exactly in the low-density limit1 and 
approximately in the intermediate density range.2 In 
all these theories the essential assumptions are that a 
considerable fraction of the particles is in the zero-
momentum state and that the fluctuation in this 
fraction is small. Consequently, the annihilation and 
creation operators for zero-momentum state particles 
can be replaced by a number, as expressed in the 
equation 

#o*, ao —> \/No (some c number); (1) 

this is the Bogoliubov approximation. In the direct 
calculation of energies and the state vector the ' 'num
ber' ' No appears explicitly, but the theoretical estimate 
of No is difficult except in the low-density limit. Some 
conjectures3 about No have been made using experi
mental data, but since these estimates range from 50 
to 8 % of N (the total number of particles) it remains 
unspecified. 

The aim of this paper is to use the facts that the 
zero-momentum occupation is considerable and that 
the fluctuation is small, while avoiding the explicit 
appearance of No in the theoretical quantities as far as 
possible. 

We express the fact the zero-momentum occupation 
number is large while the fluctuation is small by the 
approximate equality 

where \Q)N represents the true Schrodinger wave 

1 T . D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 
(1957); N. M. Hugenholtz and D. Pines, ibid. 116, 489 (1959); K. 
Sawada, ibid. 116, 1344 (1959); S. T. Beliaev, Zh. Eksperim. i. 
Teor. Fiz. 34, 417 (1958) [translation: Soviet Phys.—JETP 7, 
289 (1958)]; K. A. Brueckner and K. Sawada, Phys. Rev. 106, 
1117 (1957). 

2 K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1128 
(1957) [referred to as B.S. (II)]. 

3 A. Miller, D. Pines, and P. Nozieres, Phys. Rev. 127, 1452 
(1962); O. Penrose and L. Onsager, ibid. 104, 576 (1956); W. E. 
Parry and D. ter Haar, Ann. Phys. (N. Y.) 19, 496 (1962). 

function with total momentum Q and total particle 
number N, This equality is to be applied in the calcu
lation of energy expectation values only and will be 
justified in more detail below. We start by assuming 
that we can write the state vector in the form 

le>^=C g (ao*+5o) | e>^- i , (3) 

with Bo to be a small correction of order of magnitude 
(Wo). 

From 
H\Q)N=EQ.tN\Q)Ny 

we have 

EQ;NCQ(ao*+Bo)\Q)N-i 
= CQ(lH,ao*J-+ofH+HBo) | Q)N- i 
= CQ(EQ vqaq*pq+ao*EQ]N-1+HB0) \ Q)N- I , (4) 

where 
q2 1 

# = Z — a q * a q + - £ vqak+q*ai*ai+qak, 
q 2m 2 q,k,l 

Pq^Yliafai+q, (5) 

1 f 
vq=- I v(t)el(LrdT. 

SlJ 

Multiplying (4) from the left with N(Q\ yields an 
energy equation 

N(Q\ — (EQ;N—£g;i\r-i)a0*+E« V«*P<z| Q)N- I = 0 , (6) 

and N(j | (j?* Q) gives N(j \ BQ \ Q)N-I> 

— (EQ;N—EQ;N-I)CI>Q* I Q)N-I , 
Hence, 

/ 1-PQ
N 

\Q)N = CQ[ a0*H [ E g Vq^Pq 

— ( £ Q ; AT—£Q;Ar-l)a<)*] J | Q)N~1 , 

with 

l = CQ-N(Q\of>*\Q)N-i and PQ
N= \Q)N'N(Q\ . (7) 

I G > ^ 
VN< 

•ao*\Q)N- (2) N(J\B0\Q)N-I=: 
EQ;N-~EJ;N 

N(j\lLqVq(lq*Pq 
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I t should be noted that (6) is just an identity because 

- [£>o*] -+Z a W7>«=0 (8) 
is an operator equation. Equation (6) can be generalized 
in the following way : 

N{Qf\ — {EQ>]N—EQ;N-i)a^ 
+£*w ip«ie>tf-i=o l (60 

where N{Q'\ represents the system with total momen
tum Q' but in a more general state than (7). First, 
notice 

i^e/iwo*poie>^-i=iV<e,|t'o(ivr-i)flo*ig>^i. (9) 
Then 
N(Q' I D W ] - = N{Q' I aq*(EQ,;N-H) 

/q2 

= N(Q'\(— aq 

\2m 
1 

- ) • (10) 

N(Q' I aq*=N(Qf | L« ' V-fl<V*p«'-tf— 
EQf,N-H-q2/2m 

Equation (10) holds only when the denominator has 
no singularity, for which 

EQ';N—EO)N-\-IJ> < 0 , 
2m (ID 

(chemical potent ial) /*=E 0 ;N—E 0 ; N^I , 

because the energy denominator is 

EQf;N-HN-1-q2/2m= (EQ,;N-Eo;N) 
+ (Eo;N-Eo;N-i)-(HN~1-Eo;N-i)-q2/2m 

= (EQr;N-E0;N)+»-q2/2ni- (HN-i-EQ;N-i), (12) 

where HN~l denotes the number of particles is N—l. 
In the actual He4 system, \x is negative; hence, for 
low-lying excited states the denominator shows no 
singularity. 

Assuming condition (11) is satisfied for state Q', 
we get for (60 

(60 = *{Q'| - {EQ>.tN-EQ,N-doo*+vo(N- l)fl0* 

1 
+ E IV-««« 'V-« ;—vqpq\Q)N_lt 

9(^0) q' EQ^;N—H—q2/2m 
Separating out #0* and repeating the application of 
(10), we finally get 

(60 = 0=N(Q'\ao*\-(EQ,;N-EQ;N__1)+vo(N-l) 

+ 2 > - « P -
1 

-vqpq 
EQ,;N-H-q2/2m 

1 
+ Z ) ' 2 3 ' V-q'P_q>— r— — Vqf^qpq>_q 

Q a' EQ';N—H—qf2/2<m 

1 
X-

EQf,N-H-q2/2m 
VQPQ-I \\Q)N-I, 

( E / - E ^ o ) ) . (13) 

Now for the state N(Q'\ let us take the state N(Q\ 
given by (7), where 

N(Q\ao*~VNoN-i(Q\ 

holds. Omitting upper primes, we get 

N-I(Q\ - (EQ.,N-EQ]N^)+Vo(N-l) 

1 
+ L ' v-Qp-t 

EQ.N-H-q2/2m 

1 

VqPq 

+ L , E , ^ P - « , 
9 «' EQ,N-H-qf2/2m 

Vq'—qPq'—q 

X- VqPq+" ' 1 0 ^ - 1 = 0 . (14) 
EQ;N-H-q2/2m 

The remaining terms from (7) give rise to corrections 
to (EQ-N—EQ-N-I) which vanish in the thermodynamic 
limit (N, Q—> oo, N/tt= const). Equation (14) is the 
fundamental equation for the discussion which follows. 

Before going into the detailed applications of (14) 
we can give a rather convincing argument that the 
series in (14) should converge. Expression (14) written 
in the form 

EQ^^EQ.^-t+voiN-V+N-xiQlZ:' v-qp_q 

q 

1 

x-EQ;N-H-q2/2i 
-VqPq+'-\Q)N-i (15) 

is the energy of a system with N—l particles in state 
Q with one distinguishable particle with momentum 
zero, written as a Brillouin-Wigner series. In fact, 
writing particle 1 as the distinguishable one, we have 

/ N pf\ 
EQ;NyQ=(HN-i+j: v(rj-r1)+—pQ, 

\ j=2 2m/ 

1 

E Q ; N = E Q ; N - I - ] [same as (15)] , 

(150 

where the perturbing potential represents the change 
caused by the presence of one "impurity." Since we 
know that the He3—He4 and He4—He4 potentials are 
nearly the same, and that the He3 impurities do not 
cause any phase change in actual He4 systems (as long 
as the impurity density is an order of magnitude 
smaller than the density of He4), the interaction 
^L,j=*2Nv(rj—ti) may be considered as a completely 
local small perturbation. This strongly supports the 
assertion that the series in (14) [or (13)] converges. 

Another way of looking at (15) may be that for the 
A^-particle system, a Born-Oppenheimer type of calcu
lation starting from the state given in (150 can yield 
accurate energy values. 
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2. CHEMICAL POTENTIAL OF He4 

The first application is to calculation of the chemical 
potential n=Eo.N—Eo;N-i of He4. We take Q = 0 in 
(15) [or (14)]: 

E0IN=EO;N-I+VO(N-1) 

1 
+ A T - I < 0 | E ' V-qP-vZ ~ T77~v^<i 

Eo;N—H—q2/2m 

1 
+ L ' £ ' V-PP-P ; Vp-qPp-q 

q v E0;N-H-p2/2m 

1 

x- VqPq-\ I 0)jV-l , 
E0;N-H-q2/2m 

where 10);v_i now represents the ground state; condition 
(11) is obviously satisfied. If we expand E0;N in the 
denominator, we get the Rayleigh-Schrodinger pertur
bation series: 

H=Eo.tN-Eo;N-i=v0(N-l) 

+*-i<0|E'* '-sP-
q 

+Z'Z'V-PP-P-

1 

E0;N-.i-H-qi/2m 

1 

VqPq 

X (vp-qpp-q—VQ(N— 1)) 

E0;N-i--H-p2/2m 

1 
-VqPq 

E0;N-i-H-q2/2m 

H |0>2v-x. (16) 

As we stated at the end of the last paragraph, the 
energy (16) EO;N can be obtained as a change in the 
energy of the ground state of an N— 1 particle system 
with one "impurity" atom added. The interaction due 
to the "impurity" can be assumed to be local. Hence, 
(16) represents the forward scattering amplitude of the 
"impurity" atom in the He4 medium and can be as
sumed to be represented by the diagonal element of 
some scattering matrix. 

We shall not attempt the general treatment here but 
shall be satisfied by a second-order estimate based on a 
requirement of self-consistency. Equation (16) can be 
rewritten using Van Hove's4 correlation function S(q,o)): 

S(q,o>) = j:0\(P\pq\O)\2Ho>0o-o>), 

o)po=Ep—EQ, 

M = i > o ( # - l ) + E ' V - « 

(17) 

Jo —co— 

S(q,o)) 

q2/2m 
4 L. Van Hove, Phys. Rev. 95, 249 (1954). 

•da>+0(v*). (18) 

We show in the Appendix that, using Bogoliubov states 
for the states (# | and |0), we can reproduce the well-
known formula for the energy in the low-density limit 
by integrating (18) over N. 

Since we assume that ju can be represented by some 
scattering matrix, the form directly suggested by (18) is 

tq=Vq+Y, Vq-p 
-w» 

1 r™ 1 

-Wp"Jo (N-
SM 

(19) 

-do). 
(N-l) -a>-p2/2m 

Hence, expanding v's in terms of t's by using (19),5 

H=to(N-l)+0(f). (20) 

We can check whether or not this simple approximation 
which discards all higher orders in / is valid by com
paring fx with the experimental value for Nto. We can 
obtain to by using the experimental neutron scattering 
data for S(q,a>) and solving (19). 

We may also remark at this point that since experi
mentally6 we know that the small q behavior of S(q,o>) is 

we have 

q2/2m 

q2/2m 1 

(21) 

-Wq^o o)q(—o)q—q2/2m) 2mc2 

(22) 

( - — — ) 

\ - W ^ -2(q2/2m)J 

(where o)q is the phonon energy: 

a)q->Q=cq, c: sound velocity). 
This indicates that the energy denominator of t (19) 
behaves just as given in B.S.(II)2 (where c2==Na/m; 
l/-Wr«=l/-2Na). 

3. LOW-LYING EXCITED STATES OF He4 

Exact treatment of the excited states is, of course, 
not possible, but we shall exhibit how the excitation 
spectrum can be derived by using one assumption: 
the Feynman state7 p- g |0 ) is approximately the true 
excited state for a system obeying Bose statistics. 

The energy of an excited state of momentum Q is 
given by (15), so that writing 

6 Similar expansions have been used by K. Sawada, Phys. Rev. 
116, 1344 (1959) in the Bose case; and by Yih Pwu, thesis, Uni
versity of California, Berkeley, 1961 (unpublished) in the Fermi 
case. 

s D. G. Henshaw and A. D. B. Woods, Phys. Rev. 121, 1266 
(1961). 

7 R. P. Feynman, Phys. Rev. 94, 262 (1954); also see Ref. 6. 
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and expanding the EQ-N in the denominator, we get the 
Rayleigh-Schrodinger series 

Hence (COQ real positive), 

da)QtN 

dN 
+fi=v0(N-l) 

_ , MP-«\Q)\> 

+ Z VqV-Q E T 
Q p EQ.N-.i—E$.N-i—q2/2m 

(23) 

[Condition (11) is satisfied as long as COQ<—/z.] 
To reduce this we write our assumption explicitly. 

The assumption that the Feynman state is approxi
mately the true state is written 

P-t\0) = N9\q), 

has an, as yet ui 

^ | ^ | p - 9 | 0 ) | 2 a , , o = ( « 2 / 2 m ) ( ] V - l ) : 

(24) 

where the state | q) has an, as yet unknown, energy a)q. 
From the sum rule 

we get 
q2 1 

(25) 

Next, we note that the excitation obeys Bose statistics: 

• ̂ , T . ~ \ P: two-quantum state: 
= v 2 A ^ : Q + Q , q=Qr H 

= ]VQ5^;O, q.= —Q P: ground state. (26) 

[S(q,ui) behaves as given in (21).] Putting (26) into 
(23) and expanding v in terms of t (19), we have 

Awo-O1/ 

doiQ 

dN ~~ ^\wQ-Q2/2m ' -wQ-Q2/2mJ 

NQ2/2m -Q2/m 

i>Q -uQ>+(Q*/2m)> 

which reduces to 

<WL \ 2 w / J \2m) 

Integrating with the condition WQ|JV->-I=Q2/2>W gives 

JQW /e2y 
\ 2 w / \2m) 

- / 27VV (iV')<W • ( — ) = ° > 

(27) 

COQ' 

/ 0 2 \ 2 O2 / r ^ \1 / 2 

f — ) ± — ( / 2N'tQ2(N')dN'\ . (29) 

The assumption (24) (26) is experimentally well verified 
for small q. In view of this and O>Q2>0, we take the plus 
sign in (29), assuming Q is small. 

««={(—}+• 
2ml m 

( f 2N'tQ
i(N')dN'\ • (30) 

Neglecting the N' dependence of tQ(N') we get 

COQ? 

/ 0 2 \ 2 p 2 11/2 

(f-)+-|/Q|iV 
\ 2 w / w 

(31) 

The absolute value | / Q | in (31) which appears in this 
treatment results from the assumption that p~q\0) is 
the excited state; this approach may be used even for 
/o<0. Obviously, if we use Bogoliubov states for the 
state vectors 10), | Q), and (P | , this equation follows in 
exactly the same way and reproduces the well-known 
excitation formula. 

Finally, we note that since the chemical potential fx 
is known from (20), the compressibility can be obtained 
by using 

dp/dn—ndfi/dn (n=N/Q; p: pressure). 

The classical relation 

(phonon velocity)2 = i\/m)nd\xldn 

does not agree formally with that derived from (30), 

I f f * 11/2 

c2 =—\ / 2Nfto2(N')dN'\ . 
mi Jo J 

Of course, the classical relation only holds if there is an 
undamped phonon excitation which exhausts the sum 
rule. Since in deriving (30) we assumed that the 
Feynman state has this property, these two velocity 
expressions should have nearly the same (numerical) 
value, at least with respect to expansions in the t 
matrix. (We can check for low orders in t that both 
expressions coincide, at least where /o>0.) 

4. CONCLUSION 

The assumption of large occupation and small 
fluctuation in the zero-momentum state enables us to 
reduce the calculation of the chemical potential to the 
calculation of the forward scattering amplitude of a 
zero-momentum "impurity" atom. This physical picture 
also applies to part of the energy difference between 
the excited states of N and N—l particle systems. We 
can now incorporate experimental scattering data into 
the theoretical framework. These data exist at present 
for neutron scattering only. Use of the neutron scatter
ing data (which might serve to check the consistency 
of our approximation) has been suggested in connection 
with the calculation of the chemical potential. In the 
same approximation, the t matrix has been shown to 
have the characteristics given in B.S.(II).2 The diffi
culty which arises in the usual Bogoliubov calculation 
in the case of a negative scattering length at zero 
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momentum is avoided by assuming that the Feynman representing a Bogoliubov transformation. We have 
variational state is approximately the true state for 
small g. This assumption seems to be well borne out 5(^,co) = ^/3|(^|pfc|0)|25(co/30—<o) 
by experimental results. 

k2/2m 
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APPENDIX o)k -o)k-k
2/2m 

Let us take as the state vector 10) or (0 j the Bogo- , 
liubov state, which is the state obtained by applying _ ^ , i y^ / ' m <\ 
Bogoliubov transformation. Then ° 2 * \ WAj J ' 

< ^ l A . » | 0 > - ^ | Z : , a w * a , | 0 > « V ^ | a ^ + a . i | 0 > Integration over tf gives 
=VN((3\Ukdl*-Vkd-h+U-kd-k-V-kdk*\0), 

where a*'s are creation operators of boson and d*'s are fN fN f 
Bogoliubov operators related by the following: («=» E= / v(.N')dN'= I dN'\N% 
= k*/2m) J* Ja [ 

ak*=Ukdk*-Vkd-k, . k2/f2m v •> 

2\ wk I 

vk>=-(ek+NVk-i), = i ^ o + l E*(«*-— -»*#) • 
2 \ ojk / 

K k2 \ 2 k2 } l / 2 

\ ,^2Nvk I Comparison with B.S.(I) (26) shows that this is 
2m) 2m\ ' identical (where the v's were replaced by a). 


