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The leading singularity in the complex angular momentum plane is studied for certain sets of Feynman 
graphs. Two models are considered: (a) the ladder graphs in the \<p* theory in which bubbles are exchanged, 
and (b) the ladder graphs for the scattering of two scalar mesons by vector meson exchange. The method 
used is the summation of the most singular term in every order of perturbation theory. In both models the 
leading singularity is a branch point on the real / axis to the right of 1 = 0. As the coupling constant is de­
creased, this branch point approaches / = 0 . The nature of the branch point is very similar to that of the 
branch point (near / = — J for weak coupling) in the case of scattering from a potential with a r~2 singularity. 

I. INTRODUCTION 

RECENTLY, there has been considerable interest 
in the general subject of complex angular mo­

mentum in field theory.1-6 By field theory we mean 
field-theoretic approximations, e.g., sets of Feynman 
graphs. In particular, it has been shown that sum­
mation of ladder graphs in a theory of the scattering 
of scalar bosons by the multiple exchanges of scalar 
bosons leads to a leading Regge trajectory.1 This Regge 
trajectory shows a strong similarity to the leading trajec­
tory in the case of scattering from a Yukawa potential. 

In potential scattering not all potentials give a Regge 
pole as the leading singularity (i.e., farthest to the 
right) in the / plane. A potential with a r~2 singularity 
at the origin gives rise to a branch cut in the / plane, 
between the points Z= — |=b\/g> where g is the strength 
of the r~2 term. Under some circumstances the right-
hand branch point, /=— §+\ /& wiM be- the leading 
singularity. 

We may ask whether similar branch points will be 
encountered in field theory. Evidently scalar boson 
exchange gives rise to a force which is not sufficiently 
singular at r=0 to create such difficulties. However, 
in other field-theoretic models the force might be 
expected to be more singular at r=0 and branch points, 
therefore, would be anticipated. 

It has been shown for one such such case that no 
branch point in fact arises near l——\ (for weak 
coupling). This is the case of the exchange of a scalar 
boson with a continuous mass distribution, in which 
the mass spectral function is designed to simulate a r~2 

potential at the origin, if used in a superposition of 
Yukawa potentials, 

V(r)= dv 
J a r 

where 
pOu)—» const as /x—> <*>. 

* Work supported in part by the U. S. National Science 
Foundation. 
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It was shown in Ref. 1 that this spectral function 
(used as a weight function for the masses in the 
propagator for an exchanged particle) gives rise to a 
leading pole (near Z= —-J for weak coupling) in the field 
theoretic case.7 

In the present work some ladder graphs are examined 
in two cases which are somewhat more singular than 
the above example. The first model is the sum of the 
bubble exchange graphs in the \<p4 theory. The second 
model is the sum of vector meson exchange graphs in 
the scattering of scalar bosons. In both cases we find 
a leading branch point in the angular momentum plane, 
now near /=0 for small coupling, but in other ways 
very similar to the branch points for the r~2 potential. 
The method used is the summation of the most singular 
term in every order of perturbation theory (for the 
ladder graphs). 

In Sec. 2 we discuss in more detail the two models. 
In Sec. 3 the treatment of theories with leading poles 
is discussed, as an example of the technique of sum­
mation of most singular terms. In Sec. 4 the essential 
difference between pole producing mechanisms and 
branch point producing mechanisms is stated. In Sec. 
5 the summation technique for the leading cut theories 
is explained and the results are stated for the two 
relativistic models and for the r~2 potential (which 
serves as a check on the method). Section 6 is devoted 
to the cos0—-» oo limits implied by the leading branch 
points. The evaluation of integrals is outlined in the 
appendices. 

II. THE DIAGRAMS TO BE CONSIDERED 

The first model is the sum of the ladder graphs in 
Fig. 1 for the \<p* theory, in which bubbles are ex­
changed. The problem is to be formulated in terms of 
the partial-wave Bethe-Salpeter equation. 

The second model is that of the ladder graphs for 
the exchange of vector bosons by scalar bosons, Fig. 2. 
We take the two scalar bosons, a and b, to be oppositely 
charged to make the force attractive. For the vector 
boson propagator, we shall take merely 

(2M)4 k2-ix2 

7 In this paper we deal only with leading singularities for weak 
coupling. 
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that is, we consider the interaction to be with a con­
served current. In a boson theory this implies the 
existence of interaction terms of the form, <p*<pApAp, 
as in scalar boson electrodynamics. Graphs of the form 
shown in Fig. 3 result from this term. These graphs 
have been omitted from our summation.8 

In both cases the diagrams under consideration are 
finite for / > 0 . Our procedure will involve finding an 
analytic interpolating function for 1=1, 2, 3 - - - . The 
Sommerfeld-Watson representation will now be of the 
form 

1 r {2l+l)dlf{sJl)Pl{-x) 
f(s,x=cosd) = f0(s) / , (1) 

2i. sin7rZ 

where T encloses the points 1=1, 2, 3- • • as shown in 
Fig. 4. When we finally look at the high-# limit of (1), 

FIG. 3. Some omitted 
diagrams. 

— • * • ' -

f \ . 

i\ 

1 • 

V 

the first singularity of Vi is a simple pole at l=U. In 
the Regge pole models, the residue of Vi at this pole 
is of a particularly simple form: 

Vi(££) = ha regular term. (3) 
/—lo 

The most singular term in Ti in each order of per­
turbation theory is given by inserting the first term of 
(3) into the iteration solution of (2): 

Tf™s(s)=Y, Vl
sZh(s)-1Vi*']n, 

n=0 
(4) 

FIG. 1. Diagrams 
from the \<p4 theory. •x*n * n 
we will find, of course, a constant background term, 
M*). 

III. MODELS WITH A LEADING POLE 

It is instructive to review how, in the case of models 
with a leading Regge pole, the perturbation trajectory 
may be found by summing the most singular terms of 
each order. We have in mind the cases of superpositions 
of Yukawa potentials (with well-behaved weight 
functions) and the case of the ladder graphs in the X<p3 

theory. 
In these cases, the scattering amplitude is given by 

the solution of an integral equation which has been 
extended to complex l,1*9 

r i ( « V ) = ^ i ( « V ) + / ^ 
/ ' 

Vi(^",s)Ti(e'^',s) 
(2) 

Here s is the total energy (energy2 in the relativistic 
problems). The £'s stand for a set of variables (relative 
momentum in potential scattering; relative momentum 
and relative energy for the Bethe-Salpeter case) which 
are to be finally fixed at values determined from s, 
when the amplitude is taken on the energy shell. 

Now, in general, there is a region, Rel>l0, in which 
the kernel of Eq. (2) is analytic. In the cases cited above, 

FIG. 2. Vector boson 
exchange graphs. Solid 
lines are scalar bosons; S-
dashed lines are vector 
bosons. 

•\-*+* 

8 These graphs are apparently as singular in each order as the 
ones which have been summed. This example, therefore, is of 
interest mainly in its relevance to Bethe-Salpeter equations; the 
behavior of the ladder is very likely not characteristic of the field 
theory. The following has been checked: the diagrams of Fig. 3 
do not remove the singularities at / = 0, order by order. 

9 L. Brown, D. I. Fivel, B. W. Lee, and R. F. Sawyer (to be 
published). 

where Vis is the first term on the right-hand side of (3). 
We have 

zWctVHE 
00 g •n+1 

n=0 Q-l0)
n+1 *me) 

r(nt(n v x / <*r) 

=M€M«(/-fc-g/———d?') . (5) 

Thus, we see how the sum of the most singular term in 
each order gives a Regge pole form, 0(s)p—afc)]"1 , 

FIG. 4. Sommerfeld-
Watson contour. 

Imj? 

€ a { ^ 1 Re 

where both /3 and a are determined to first order, 

fi(.s) = gr(s)t(s), 

r{?'W) 
a(s) = l0+g —-

J Mi" hti",s) 
-d?'. 

(6) 

Models in which the singular part of the kernel is 
not separable as in (3), but still is expressible as the 
sum of a finite number of separable terms, are essentially 
no different. The single perturbation trajectory is 
replaced by the sum of several trajectories, all ap­
proaching lo for zero coupling strength. 

IV. BRANCH POINTS 

In all such models there is some real number, Zi, such 
that for Re/</ i the individual integrals no longer 
converge in the Born series solution to (2). In all 
theories with known leading Regge poles, the leading 
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singularity of Vi at U is to the right of the line Re/=/ i . 
If, ion the other hand, h>lo we may anticipate that the 
leading singularities in each term come from the con­
tinuation of the integrals, rather than from the singu­
larity of Vi. We shall argue on the basis of our examples 
that when h>lo the leading singularity will be a branch 
point (at least for weak coupling). 

We list U and l\ for several cases: 

(a) Yukawa potential 

(b) Ladders for X<p3 theory 

(c) Scalar bosons exchanging 

vector bosons 

(d) Bubble exchange in X<p4 

theory 

(e) r~2 potential 

Zo— — 1, l\—~2 

l0= — 1, li= —2" 

Z o = - l , J i=0 

Zo=0, / i = 0 

7 — 1 7 — 1 
*-0— 2) ^ l - 2 

V. SUMMATION TECHNIQUE 

Now concentrating on those theories [(c), (d), (e) 
above] in which li>h we examine the nature of the 
term by term singularities at the point l\. We find in 
the (w+l ) th Born term in the various cases (keeping 
only the highest order pole term in each order of 
perturbation theory): 

(c) 

(d) 

(e) 

Cn+l(s} 
,2n+2 

ln 

dn+1(s)-
pn+\ 

en±i(s)-
(H-!)2 

We note the similarity to the expansion (5). If the 
coefficients, c, were of the form cn+i(s)—f3(s)an(s) we 
could again sum the most singular terms into a Regge 
pole form; they are not, however. In the Appendix the 
coefficients c, d, and e are worked out to all orders and 
it is shown that these terms are generated by the series 
expansions of10 

7r/.y-4w2 \1 / 2r / g2 \~l1/2 

(c) ,,,.„>=__(_) [,(,__)] 
(vector meson exchange) 

L l /2 
(7) 

(d) / , * * . ( , ) = — ( ) (p ) 
4 \ 5 / \ 8(2x)V 

(^ theory) 

(e) fi'^is) = -KQ+hY-gJ12 (r~2 potential). 
10 Here fi(s) stands for exp*5jsin5j. Note that the singular 

terms depend only kinematically upon s. The variable s is the 
energy (Ref. 2) in the relativistic cases, the energy in the non-
relativistic case. 

Note that the right-hand sides of Eq. (7) can be 
multiplied by a function g(l,s) analytic at Z=0, 0, — J, 
respectively, in the three cases, and such that gc(0,s), 
gd(0,s), ge(~h s) are unity. This will not change the 
leading singular terms of the perturbation expansion. 
In particular, the functions g may be chosen to give the 
correct threshold behaviors 

gc(l,s) = gd(l,s)={- J , 

/s\ (M-D/2 

Here a is an arbitrary number. 
Though the procedure of summation of only the most 

singular terms cannot be justified, the result for case 
(e), giving the correct branch points at l=—%zk\/g 
for the r~2 potential gives us some confidence in its 
validity. 

Our conjecture that the branch point in cases (c) 
and (d) is indeed independent of 5 and will not begin 
to move in the next order of approximation is supported 
only by the analogy to the r~2 case. 

These conclusions for the \<p4 theory differ from the 
previous results of Lee and the author.2 In this previous 
work, Regge pole behavior of the same graphs was 
extracted using a limiting process with a parameter, 77, 
in which the genuine Feynman graphs corresponded to 
the limit rj —» 0. This rj was introduced to convert the 
relevant Bethe-Salpeter equation into a Fredholm 
equation; the method of attack was the Fredholm 
method. For small rj it was concluded that there existed 
a leading pole near / = 0. In the present work it has been 
seen that when rj—0, this pole turns into a branch point. 
The previously published conclusions on the asymptotic 
dominance of the crossed bubble-exchange (or multi-
peripheral) graphs, over certain other sets of graphs, 
are maintained in our new result. 

VI. SOMMERFELD-WATSON CONTOUR AND 
HIGH COS8 LIMIT 

We begin with the representation 

(2H-1)P , ( -* ) 
f(s,x) = fQ(s)- '-I 

2i Jv 

dl-
sin7r/ 

fi(s), (8) 

where T is the contour of Fig. 4. In both of our field-
theoretic examples the leading singularity is on the real 
axis somewhere to the right of 1=0. For the weak 
coupling case, this branch point will be near / = 0 . 
When the Sommerfeld-Watson contour is opened up 
and moved to the left, the leading dependence for 
high x will be provided by the integral around the 
leading end of the cut as shown in Fig. 5. Let A be that 
segment of this contour which is drawn with a heavy 
line in Fig. 5. We now examine the high-# limit in the 
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two cases, (7c) and (7d): 

lim f dlill+Visimrl^Pii-x)^^). (9) 

In case (c) we obtain, in the weak coupling limit, 

7r 3 / 2Ay-4m 2 \ 1 / 2 

lim/(*,*) = ) {-x)a*[\n(-x)~]-v\ (10) 
2g\ s J 

where 
ac=gy\6ir\ 

In case (d) we obtain, in the weak coupling limit, 

\imf(s,x)=-2-w 
l7r3/2g-l/2| j 

with 
X{-xy*[\n(-x)-]-v\ (11) 

ad=g(2T)-2S~^. 

These limits provide the high energy behavior of the 
crossed graphs of Fig. 6 [with x=l-\-2t/(s—4w2)]. 
Note that the difference between the expressions, (10) 
and (11), and the prediction of a fixed Regge pole is 
the logarithmic factor alone. 

VII. CONCLUSIONS 

We have seen that in the perturbation treatment of 
a class of models one may easily distinguish between the 
mechanisms that produce a leading pole and those that 
produce a leading branch point in the / plane. These 
models are: superpositions of Yukawa potentials; 
ladder graphs with scalar meson exchange, vector 
meson exchange, and bubble exchange. In each of these 
examples the scattering amplitude obeys an integral 
equation, the kernel of which is an analytic function of 
/ with certain singularities, in particular with a leading 
simple pole at /= k. In each case there is also a line in 
the / plane, Re/=/i, to the left of which the individual 
integrals in the perturbation series diverge. 

When lo>h, we find a leading pole: when h>k, a 
leading branch point. That is, in perturbation theory, 
the leading moving pole arises from the repeated 
iterations of the fixed pole of the kernel. Leading cuts 
arise from analytic continuations of integrals. 

The method of summing leading terms in each order 
of perturbation theory is clearly not adequate to find 
any properties of subsidiary singularities in the I plane, 
for example, Regge trajectories beginning at 1= — 1, or 
some such place. A better approach would seem to be 

1 / 

FIG. 5. Contour for high 
cos0 limit. # i& i 

FIG. 6. Multiperipheral 
graphs. **><:>**3Bt+~ 

from the Bethe-Salpeter equation itself, by solving in 
some noniterative approach. The Fredholm method 
used in Ref. 1 is not applicable, however. The models 
with cuts are in each case characterized by a singular 
integral equation to which the Fredholm method may 
not be applied. 

The results are discouraging to the program of finding 
Regge behaviors from the simple dispersion theoretic 
approximations. For example the simple ND~l method 
(with a subtraction in D and with N computed from a 
Born term) is designed to be a cheap way of approxi­
mately summing a chain such as that of Fig. 1 or Fig. 2. 
However, we may see that this technique completely 
misses the branch points in the I plane and predicts a 
totally different cos0 —> oo limit.11 

The results are hopeful in one respect; it is always 
nice to be able to sum an infinite set of orders of 
perturbation theory even when these terms are a small 
fraction of all the terms which need to be considered. 
There is some slight hope that general criteria may be 
found for deciding which terms will be the most singular, 
and then perhaps these terms may be summed (these 
criteria more or less exist for the X#>3 theory; the 
dominant graphs are the ladders, see Ref. 3). In any 
event it would seem that much more work on simple 
models is required. 
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APPENDIX A: r~2 POTENTIAL 

We treat the r~2 potential in some detail as an 
illustration of our method, which will become somewhat 
more complicated in field theory. Consider a super­
position of Yukawa potentials 

7(r) 
i J mi 

dyy~1/2p(y) exp(-y ' 2 r ) . (Al) 

Here y is a (mass)2 variable. 
The partial wave projection of the Lippman-

Schwinger integral equation for the scattering ampli­
tude in this potential is9 

where 

ViiWY-

1 r™ d $ " 

Trio {"-J-* 

(«')- •1/4 /.oo 

-ViWJW',?,*), (A2) 

/ dyrllap(y)Qil-——)> <A3) 
11 P. G. O. Freund, Nuovo Cimento 28, 263 (1963). 
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and s is the energy. The mass of the particle which is 
scattered has been taken to be | . The energy shell is 
defined by £ = £ ' = $ . In this limit, Ti(££',s)= (expidi) 
XsinSj. 

If the weight function, p(y), behaves at infinity as 

p(y)=h+0(y-h), b>o (A4) 

the potential will have a r~2 singularity at the origin. 
We shall take p(y) = g/2; only the r~2 singularity is of 
importance in our calculation. Thus we have 

V(r)=- (g/r*) exp(-mor), (A5) 

where the value of mo, the minimum mass exchanged, 
is of no significance to us. 

Now we examine the contribution to (A3) from the 
leading term in the expansion of Qi(z) in powers of z~2,12 

Tll2T(l + l) 
(?,(*) = 2-l~h-l~l +0(z-l~*). (A6) 

W!) 
From (A3), (A4), and (A6) we see that Vi(££') has a 
simple pole at l= — J, coming from the integral of the 
first term of (A6). Separating out this first term we 
have, defining X = / + | , 

^fer)=-ar)x/2a+r+mo2)-x+^xfer).(A7) 
4X 

Now, for simplicity we fix s at some negative real value 
in (A2). The terms which will eventually be summed 
are independent of s, but it is convenient to be able to 
ignore the singularities of (£"—s)~x in (A2) in deriving 
them. 

Now denning 
1 « (£ -{ ' ) 

G ( « ' ) = , (A8) 
7r g—s—ie 

Now we examine the singularities of the integrals in 
(A13), again multiple poles at X=0. I t can be seen that 
the most singular term of (A13) is independent of s. 
If we replace one of the factors (£;—s)"1 by (&+1) - 1 , 
the extra term involving the difference, (&—j) -1 

~ (&+ 1)~S g ° e s to zero sufficiently fast as & goes to 
infinity to eliminate at least one factor of X-1 from the 
result. Since the singularities will come from the high 
£i parts of the integrals, we may also replace &x by 

12 Higher Transcendental Functions, edited by A. Erdelyi 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1, 
Eq. (3.2.41). 

we write the iteration solution to (A2) as 

F = E V(GV)». (A9) 

We assert that the most singular term at X=0 in 
each order arises from the first term in the expression 
for F \ , (A7). The proof consists of noting that î x (£,£') 
in (A7) is not singular at X=0 and that 

|*xtt,*01 <M(£+i;'+m<?)-HK')w, (A10) 

where M is some number. Note that singularities at 
X=0 come about in two ways: (1) From the 1/X in 
(A7), and (2) from the integrals implied in (A9). For 
X>0 it is easily seen that these integrals converge. At 
X=0 they diverge. 

Continuation from the convergent region, X>0, will 
give additional singularities at X=0. Now because of 
the bound, (A10), the singularities coming from the 
integrals of terms containing R\ (£,£') are no worse than 
those from the integrals of the first term on the right 
of Eq. (A7). These latter terms, however, are more 
singular because of the 1/X dependence. Using only 
the "most singular par t" of Fx(£,£')> 

Fx(f,f/) = -(« ,)x/2tt+f /+^)-x, (AH) 
4X 

we write the "most singular par t" of the scattering 
amplitude, 2 \ (£,£')> a s 

rx=f: ?x(Gfx)w=x; 2Vn), (Ai2) 
w=0 n=0 

where 

( l+£ ; ) x . A new "most singular term" is then defined 
by 

X f ^•••^ B - 1 (?+?l) - X ( l + fl)-1+X(fl+?2)-X 

Jo 

X ( l + & ) - m - • • ( l+*« - i ) - 1 + x ($« - i+F) - x . (A14) 

ftw-(s) /. 
( ^ + ? 1 + W o 2 ) - X ? l X ( ? 1 + ? 2 + W o 2 ) - X | 2 X ( f 2 + f 3 + W o 2 ) - X - • " £ n - l X ( £ „ - ! + r + « 0 2 ) ~ X 

X • (A13) 
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We begin by integrating from the left. We define 

(A15) 

• / • 

/ * ( « * - ! ) = <*fcf»-l(«*)(l+&)-1 + X 

The boundary condition comes from (A16); 

By induction one may verify the solution 

(k+l)(2n-k)l 

X(f*+fM-l)"X 

and obtain 

/ i(^?2) = X-1S2-x+?2-x lnfc+Uifo&X), (A16) £=o cn°= 

(w-*)!(w+l)!ftl" 

2(2n—1)! 
(A20) 

0-1)! 0+1)! 

Proceeding now to the end of the chain of integrals, 
where JRI(£,£2,X) is regular at X=0 and is bounded by 
£2~

xAf. Again the term, Ri, will not contribute to the 
leading singularity. The logarithmic term in (A16), ( A 1 4 ) , we find terms of the form 
however, is relevant, though regular at X=0 ; in the n+1 

next integration it will increase the order of the pole (££')x/2( — I C k\~n+k(\n£')k 

atX=0. \4X/ 
In a similar way one may verify that the integral, 

Ik, is given by Since £ and £' are now to be set equal to s, the most 
singular contribution to the 0 + l ) s t order is 

3=0 
r x ( n ) S i n g = C n 0 ( g / 4 ) n + l X - 2 n - l ? 

+ a less singular remainder. (A17) w i t h t h e definition (A20) for Cn°, n>0 and with 

By less singular terms we mean terms of the form Co°= 1. The summation of most singular terms is 

(b+i)-xX-wl(ln^+i)W2M(^+i ,X), 

where mi+nt2<k and M is bounded near X=0 for all 
£fc+i. We note the relation 

Xr 

/ 

crH +(—+inr)x-1 

Ln+1 \ d\ / J 

+less singular terms. (A18) 

Substituting (A17) into (A15) and using (A18) 

r x
s i n g = E rx

(w)sing—I 1-f 1 -— 1 ] . (A21) 
n=o 2L \ XV J 

We note the branch points at \=zk\/g. This result, 
of course, can be obtained trivially in this case of the 
r~2 potential. The integrals which arose in this case, 
however, are identical to the ones which arise in the 
two field theoretic models. 

APPENDIX B: THE BETHE-SALPETER CASE FOR 
VECTOR MESON EXCHANGE 

yields a recursion relation for the Ck3': 

ekCn
k~l n ml 

'n+l 
n=k k\ 

with €&=! for k>l, €o=0. 

In each case we deal with the scattering of two spin-
zero bosons of equal mass, m. The integral equation 

vAlv; will be of the same general form as the one in potential 
scattering, with an extra variable, the relative energy. 
The integral equation is of the form (see Ref. 1) 

/

OO / . O O 

da" dp"Vi{p,o>;p",o>")[p"*+m?-ie-{u"-Wsyi-1 

Xlp"i+m*-ie-(u>''+WsyiT1Ti(p'',o,";p',a';s). (Bl) 

Here the scattering amplitude on the mass shell is defined by 

exp(»8i) sinaj=^[4(5—4w*)]-1 '*ri((l*-f^)1 '1 > 0; ( i s -m 2 ) 1 ' 2 , 0; s). 

As a propagator for the vector mesons, we take 

(B2) 
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Opposite coupling sign to the two scalar bosons is chosen, in order to make the force attractive. The Born term 
is calculated to be 

g2 r1 s- (a>+u')2+p2+p'2+2pp'x 
Vi(p,a;pW)= / dxPl(x) - , (B3) 

where fx is the mass of the exchanged particle and g is the coupling constant. 
For /= 1, 2, 3- • • the expression (B3) may be replaced by ViA: 

g2 /p2+p'2+fx2-ie- (co-o/)2\ 
ViA= (s+2p2+2p'2-2a>2-2a>,2+n2)QA ) . (B4) 

(2TT) 3 V 2ppf J 

Here a term has been dropped which contributes only to the S wave. Equation (B4) may now immediately be 
generalized to complex /. Our complete form for T\ will be 

T(l,s) = A(s)8l,0+TA(l,s), (B5) 

where the analytic part, TA(l,s), is what is of interest at the moment. 
As in the case of the r~~2 potential the most singular terms will be independent of s; the singularities coming 

from the high p and w parts of integrals (when the final answer is taken on the mass shell some s dependence will 
result from the substitution p— (js—rn2)112; it is the s dependence in the propagators in (Bl) which is ignorable). 
Taking s=0 and rotating the a> integration contours in (Bl) counterclockwise to the imaginary axes we obtain 

da" / dp"Vi(p,c*; p'W%p'"+m'+a"^Tl(p",w" 5 * > ' ) . (B6) 
-co JO 

where 
Tl{p,<*;p',w')^TlA(p,K»;P'M;s=Q>), 

g2 /f+p'*+f+(a-o>')\ (B7) 

(2ir)3 \ 2pp' I 

It is easily seen that the integrals in the Born series solution to (B6) converge for />0. There will be singu­
larities coming from the divergence of these integrals at /= 0. 

Following the same lines as outlined in Appendix A we find that the most singular contribution at /= 0 comes 
only from the leading term in the series development of Qi(z) in powers of z~2. We define a "most singular," Vi", as 

g2 r^r(l+l) r pp' -|<+i 
• (2^2+2/>'2+2a)2+2a!,2+M2) — 
(2T)8 r ( /+ f ) L/>2+/>'2+M2+(co-a/)2 

(2^2+2/>'2+2a)2+2a!,2+M2) — . (B8) 

The argument is a little more delicate in this case. Note that the singularities at /=0 now come completely 
from the integrals; the kernel is regular at 1=0. It is still possible to prove, however, that the higher terms in 
the series development of Qi(z) (of order z~l~3) behave sufficiently better as p, o>—>«° to ensure that the most 
singular contributions do indeed come from the substitution of Vf, (B8), in place of Vi in the integral equation, (B6). 

The factors x1 /2r(l+0/r(/H-f) can now be evaluated at 2=0; /t2 may be set equal to zero. 
The wth term in the Born series, inserting the "most singular" kernel, (B8), and changing variables to %i=pt

2, 
r\i=w?, is 

(2x)«»./o (£i+i7i+m2)2 
TiM°(to; f , i » ' ) = — # r • -d^idvv • -^„-i£ ( W ) / 2-

X ^ + ^ - l / 2 : _ ^ + i , , - l / 2 . . . ^ _ 1 ^ n _ r l / 2 ^ M _ 1 + ^ + ^ B _ 1 + ^ ) 

(£2+>/2+W2)2 

X Kn-l+f '+Vn-1+V'- 2 (v^l^yT1-1 (?) "+1)/2 • (B9) 

We set w2= 1 and change variables to d, £j where »?i=/i(£;+l)- The variables v andV may be set equal to zero 
and £, £' to unity, with the exception of those factors standing to the extreme right and left in (B9). 

We obtain 
„2n -oo n_1 ti-lli f» 

r , W t t , 0 ; r ,0)= / n -dk / div • •#*.1($F) (H-o«(l+*0-1fti(l+fc)+&(l+fe)] 
(2x)3"Jo « (1+^-)2 Jo 

X[6(l+^)+f2(l+/2)-2(/1 /2^2)1 /2]-M( l+?2)-1 + i- • • , (BIO) 
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where some minor modifications have again been made 
which do not change the nature of the singular 
contributions. 

It may be seen that in the representation (BIO) the 
singularities at 1=0 come from the £ integrals. Further­
more, the most singular term of the £ integrations are 
independent of the variables U\ we may evaluate the 
inner integrals at ii=0 to obtain the leading singu­
larity. From the £ integrals alone then we obtain the 
chain 

-f dtv 
X(l+k) - w fe+£ 3 ) - J 

•^„_1(?1+l)-I(?1+?2)-J 

(1+Sn-l)-1. (Bll) 

This is the same chain as encountered in the r~2 

potential, Eq. (A14). 
The most singular term in the wth order in the 

present case is, thus, 

zv->« (*,?)= 
(«') 1/2 

(2TT)3" I*"1 

X 
£-1/2 - p - 1 

dt Cn 
r /•» r1'2 -| 

(B12) 

in terms of the coefficients, C, defined in (A20). 
The expression which generates the most singular 

term in each order is 

irl / l g2 \v*-] 

2(^H— ) . (B13) 
7rL2 \ 4 64TT2// J 

On the mass shell we set (££')1/2= (>-4m2)/4. The 
singular part of (B13) is now 

ZV(*)= — 
s—4:in2\ \>('--)T-

4ir 

APPENDIX C: THE gp* THEORY 

(B14) 

The bubble exchange graphs of Fig. 1 are generated 
for /= 1, 2, 3- • • by the integral equation (Bl) with1,2 

Vi(p,a\p',<a') 

where 

r /p2+p,2+y-it~ (a>-a/)2\ 
= / dyp(y)Ql[ , 

Jim** \ W 1 

p(y)~-
r vy-* 

8(27r)5L y 

2pp' 

4w2"]1/2 

(CI) 

This expression for Vj is the form for the exchange 
of a scalar particle of mass, y112, weighted by the 
appropriate mass spectral function for the bubble. The 
basic bubble (the first graph of Fig. 1) is of course 
divergent, but this divergence is only in the 5 wave. 
As before we perform our continuation to complex I 

from the analytic interpolating function for 1=1, 2, 
3--». 

As in the vector meson case the integrals in the 
iteration solution converge for ReZ>0. Again they 
diverge for /=0 ; singularities at Z=0 will result from 
continuation of the integrals. 

Again the leading term in the expansion of Qi(z) 
gives rise to the most singular terms. Also, only the 
asymptotic form of the spectral function will matter. 

lim p(y)= , 
^ o o g ( 2 7 r ) 5 

(C2) 

It is the large y part of the integral in (CI) which gives 
rise to poles at 1=0. 

We again may set ^=0 without chaging the singular 
terms. The relevant part of Vi, Vi, is given by 

g2 7 ^ ( 1 + / ) 
Vt= (ppf)m 

8(2TT)5 /T(H-f) 

X[>2+£'2+4m2- (co-V)2]-*. (C3) 

The difference, Vi— Vi is regular at /=0 and bounded 
by the form 

| Vi- Vi\ < M ( ^ ) m C ^ 2 + ^ , 2 + 4 w 2 - (o>-o/)2]-*. (C4) 

Therefore, the most singular terms will come from Vi. 
We note the strong similarity between the expression 

(C3) for the g<p4 case and the expression (B8) for the 
vector meson exchange case. The behaviors as p, p', 
o), a)' approach infinity are essentially the same. How­
ever note that in the gp* case Vi has a pole at 1=0 
while in the vector meson case the singularities come 
from the integrals alone. Thus, for the g<p4 case the 
order of the pole at Z=0 will increase by two in each 
successive order of perturbation theory. The situation 
in this respect is identical to that in the r~2 potential 
case. 

A series of steps exactly analogous to those following 
(B8) will suffice to demonstrate that the most singular 
terms in each order are generated from a chain exactly 
of the form (BIO). 

In this case the equation analogous to (Bll) is 

T^(m= 7T l2n~l [ 3 2 ( 2 7 r ) 4 > ' 
(C5) 

On the mass shell, we have 

oo 5—4m2rl 
E zv»>(*)= 1\ 
n=l 27T 

G-C- r 
32(2TT)4 /2 

) ],(C6) 

the singular part of which is 

s—4w2 

7Y(s) = -
-4w 2 / g2 \ " 2 

4jr \ 8(2ir)V 
(G7) 


