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It is shown that the simple Hartree-Fock approximation to the free energy of a many-boson gas changes 
the Bose-Einstein condensation from a third- to a second-order transition. A term is added to the energy 
of the interaction system which is proportional to the specific heat of the ideal gas system. Quantitative 
estimates of the effect for liquid helium give an order of magnitude about 5 times too high, which shows the 
importance of the effect and the necessity for screening it out. 

IN this article we point out that a very simple mecha
nism exists which changes the order of the Bose-

Einstein condensation from a third- to a second-order 
transition. Quantitative estimates based on the poten
tial between helium atoms leads to a specific heat in the 
critical region which numerically is too high as compared 
to experiment. The theory is too crude to reproduce the 
observed logarithmic singularity.1 

The mechanism in question is simply the manner in 
which the Hartree-Fock theory functions in statistical 
mechanics. The free energy of a many-boson system in 
Hartree-Fock theory is 

F=Fo+(l/2)Zb(0)+v(k-
kk' 

•k ' )XkV(k ' ) ; (1) 

FQ is the unperturbed free energy 

= *2Xkln[l-exp(-/3(6k-M))]; 

e(k) is the kinetic energy= fi2k2/2m, and v(k) is the 
Fourier transform of the interparticle potential given by 

»(k)= (I/O) / d*r v(r) exppk-r]. (2) 

Here Q is the volume of the container; 

«(k) = [exp( /3(€ i :-M))-l]-1, 
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1 M. J. Buckingham and W. M. Fairbank, in Progress in Low-
Temperature Physics, edited by C. J. Gorter (North-Holland 
Publishing Company, Amsterdam, 1961), Vol. III. 

13= (1/kT), and /x=the unperturbed chemical potential. 
In a full Hartree-Fock theory one should replace e(k) 
by the Hartree-Fock single-particle energy. This will 
not be done in this article. It introduces no new physi
cal effects. Also, offhand it seems unjustified to include 
some higher order terms in v and not others, in particu
lar, when there does not arise any particular problem of 
consistency. 

Equation (1) gives for the energy 

£=d/3F/d0=£w(k)e(k) 

+ 1 L [K0)+*(k-k0>(k)»(k ') 
kk' 

+P Z [»(0)+»(k-k')>(k')(d»(k)/a/3). (3) 
kk' 

It is the last term in Eq. (3) which is responsible for the 
change in the order of the transition. The specific heat 
of the first two terms gives rise to a third-order transi
tion. Therefore, we consider below the last term which 
we denote byE'. Noting that £k(d»(k)/d0) = dN/dfi= 0, 
we have 

E'=(3j: f>(k-k')*(k') (dn(k)/dl3), (4) 

Expanding v(k) in a power series according to v(k) 
= v(0)+ak2-\ gives 

E'=/3aX; (k-kOMk')<^(k)/d/3 

=/te E w(k')E k2(dn(k)/d(3). (5) 

The terms of order k4 and higher in v(k) do not con
tribute in an important way to the effect studied. 
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We now write k2= (2tn/h2)e(k) and observe that Eq. 
(5) can be written as 

E'^(2tna/h2)pN(dE0/dl3) = 
- T(2ma/h2)N(dE0/dT), (6) 

where Eo=22 ^k^k- In this way we see that the Hartree-
Fock energy contains a term proportional to the speci
fic heat of the ideal gas which is continuous at the transi
tion point. The specific heat due to E' (i.e., dE'/dT) is 
proportional to (dCv°/dT) which is discontinuous, 
thereby changing the order of the transition. 

As is well known, the theory for T<TC (where Tc is 
the transition temperature) is complicated by the macro
scopic value of no. We, therefore, take the above con
siderations to have meaning only for T> Tc, and there
fore, restrict our quantitative estimate to this region. 

For the potential we will take a hard-sphere repulsion 
plus the attractive part of the potential of de Boer and 
Michels.2 For the hard-core part, since we are in Born 
approximation, we may use a pseudopotential method 
with flr6puisive(k) = a. Therefore, a is due to the attrac
tion alone and, hence, positive (i.e., ^attractive(k) 
= Attractive(0)+ \<x\k2). We then have 

4T r°° re d-] 

«=— / M — , (7) 
612 J ro Lr12 r 6 J 

where r0 is given by z;(r0) = 0 and c=447X10~12 erg A12 

d— 1.54X 10^12 erg A6. Using the density of liquid helium 
of 2.2X1022 per cm3 gives 

£ ' = -29T(dEQ/dT). (8) 

2 J. de Boer and A. Michels, Physica 5, 945 (1938). 

This term gives rise to two terms in the specific heat. 
However, the term proportional to (dEo/dT) is exactly 
canceled by the second term on the right-hand side of 
Eq. (3). The result is then 

Cv=Cv°- 29T(dCv°/dT). (9) 

At T= TVf 0, we have CV°= 2&/atm, 

dCv°/dT= -0.78(&/T)/atm, 

which gives 

Cv(T=Tc+0)= (2+22 )&/atm, (10) 

or an enhancement by a factor of 12 over the ideal gas 
value. The scale of the observed values is of the order 
of twice ideal. It is seen that the simple Hartree-Fock 
modification must be an important contribution to the 
observed departure from ideal gas behavior, and in 
fact, in subsequent theory must be somewhat diminished 
in importance. 

Work is now being done on the complete statistical 
mechanical theory of the problem. Indications are that 
simple subsets of graphs (rings and ladders) do not 
change the above analysis qualitatively, but may be 
expected to reduce the above estimate because of screen
ing. Methods are being developed which will handle the 
no problem for T<TC and it is hoped that this work will 
be completed in the near future. 

I am grateful to J. de Coen for having made the cal
culations. It has been pointed out to me by Dr. Pierre 
Resibois that a similar circumstance arises in the theory 
of transport coefficients.3 

3 P. Resibois and J. P. Puttemans, Physica 26, 775 (1960). 


