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The partition function method proposed by Feynman for pure liquid He4 and previously extended to 
treat pure liquid He3 by Kikuchi is here applied to liquid mixtures of He3-He4. The variation of the X point 
with mole fraction He3, the isotopic phase separation curve, and the excess functions of mixing are discussed. 
The theoretical X line is interpreted as a cooperative boson transition and follows the experimental results 
closely up to X3 = 0.5 irrespective of the effective mass of the He3 atoms while above X3 = 0.5 the X tempera
tures are too high. An asymmetric isotopic phase separation is found in the mixtures at temperatures below 
a critical temperature that depends slightly on further assumptions in the model but which is of the correct 
order of magnitude (1°K). The phase separation is due to the quantum dynamical effects as opposed to the 
purely statistical effects arising out of the different inherent symmetries of the wave functions for He3 and 
He4. The calculated excess Gibbs free energies of mixing become positive in "time" to effect the phase 
separation but are less positive than the experimental values and are in fact of the wrong sign above 1°K. 
The calculated excess entropies of mixing are much too positive. The model used assumes zero excess volumes 
of mixing. 

INTRODUCTION 

IN 1953 Feynman1 applied his path-integral method 
of quantum mechanics2 to a system of He4 atoms 

and essentially factored the partition function for the 
system into two parts, one dependent on the quantum 
statistics of the atoms, assumed to move in fictitious 
motion through various permutations as free particles 
with an effective mass, and the other factor dependent 
on the actual interatomic potential and in particular on 
the energy of the system at absolute zero. Assuming 
the second factor to be a continuous function of 
temperature, Feynman neglected it and, making a 
random-walk estimate for the fictitious motions during 
the permutations, showed that the Bose statistics of 
He4 atoms led to a third-order transition in the thermo
dynamic functions, a result characteristic of an ideal 
Bose gas. 

One of us3 improved the treatment of Feynman's 
statistical factor for pure He4 by using a lattice model 
for the permutations. The lattice served as a structure 
on which permutation paths could be followed by the 
quasifree atoms without excessive overlap of their 
force fields and, thus, repulsive effects of the actual 
potential were implicitly introduced. A second-order 

* Work supported in part by the U. S. Atomic Energy Com
mission. 

f Preliminary reports of this work were presented at the Second 
Symposium on Liquid and Solid Helium Three, held at the Ohio 
State University, 1960 and at the Seventh International Con
ference on Low Temperature Physics, held at the University of 
Toronto, 1960. 

t Present address: Department of Chemistry, American Univer
sity of Beirut, Beirut, Lebanon. 

1 R. P. Feynman, Phys. Rev. 91, 1291 (1953). 
2 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). 
3 R. Kikuchi, Phys. Rev. 96, 563 (1954); to be referred to as I. 
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transition in the thermodynamic functions was obtained 
which is in accord with experiment on the X transition 
in He4. With the same approximations it was further 
shown4 that pure He3 atoms, treated as fermions, do 
not exhibit a X transition. 

The permutation types used in I needed extension in 
order to discuss systems with bosons at temperatures 
less than 1°K and this extension has recently been 
developed5 and used to treat the problem of pure He4 in 
more detail. 

In the present work the complete formalism of I, 
II, and III has been applied to liquid He3-He4 mixtures 
in order to calculate the variation of the X point with 
mole fraction He3 and to determine the curve of isotopic 
phase separation and to obtain the excess functions of 
mixing. 

THE PARTITION FUNCTION AND ITS 
PARAMETRIZATION 

We treat a mixture of Nz He3 atoms and N* He4 

atoms with N*+NA=N. The He3 atoms differ from He4 

atoms by virtue of their statistics and differ among 
themselves by having their nuclear spin 'up' or 'down.' 
He4 atoms can only be permuted with other He4 atoms 
as bosons and only He3 atoms of like nuclear spin can 
be permuted among themselves as fermions. The total 
partition function of the system is 

Q=qQo, (1) 

4 R. Kikuchi, Phys. Rev. 99, 1684 (1955); to be referred to as I I . 
It is worth noting that Professor Feynman's comment recorded in 
Ref. 4 of this reference is equally valid for the present work. 

5 R. Kikuchi, H. H. Denman, and C. L. Schreiber, Phys. Rev. 
119, 1823 (1960); to be referred to as III . 
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with Qo, the dynamical factor, incorporating an 
unknown function of temperature Kp, being 

= -Xz l nZ 3 -X 4 lnX4+f Xz ln( ) 
N \ 2wti2 J 

/mlkT\ 1 
+fX4 ln( ) + - l n ^ (2.1) 

and q, the statistical factor, being 

q= Z E E E ( - D P ^ 
spin distributions Po PA PB 

r r-mlkT NA n 
X / exp — £ (z"PoZ,)2J 

r—mzkT NZ ~i 
Xexp £ (H-PAPB^)2 

L 2W «-i J 
Xp(zv • -*N)dzv -dzN. (2.2) 

In the above equations, Po denotes a permutation 
among the bosons; PA denotes a permutation among 
the fermions with spin + i ; PB denotes a permutation 
among the fermions with spin — \\ mz = effective mass 
of a He3 atom; ml = effective mass of a He4 atom; 
XZ=NZ/N, X4=Ni/N=l-Xz. In obtaining Eq. (2) 
we have combined the methods of II and III which 
follow from Eq. (7) of Ref. 1. In this, the following 
approximations have been made. The actual interatomic 
potential which depends on z»- has been replaced by a 
modulating one, independent of Z;, and absorbed into 
the factor K$ in a form proportional to exp(— UQ/RT), 
where Uo is the energy of the system at absolute 
zero. Thus, we have effectively free particles but with 
masses greater than the actual masses of He3 and He4 

atoms. No lattice-model approximation has yet been 
made but the partition function has been factored into 
two parts: Qo, dependent on the dynamics of the 
interatomic interaction and on the zero-point energies 
but independent of statistics, and q, independent of the 
dynamics but dependent on the quantum statistics. 
Qo as function of T has been assumed to be continuous 
and to have no effect on the temperature of the X 
transition in our mixtures. As we shall see, it is necessary 
to consider it when calculating the isotopic phase 
separation but for the moment we will concentrate our 
attention on q. 

The density function p(zi---Zisr) is assumed to be 
zero everywhere except for z's located on the sites of a 
lattice with coordination number c, nearest-neighbor 
distance d, and total number of sites N. It is then 
possible to express q as the sum of the product of a 
combinatorial factor times Boltzmann factors over all 
possible distributions of polygons in space arising from 
closed chains of permutations among permutable types 

Point Configuration Probability Wtlght (a..) 
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FIG. 1. Point probability parameters. A represents He3 atoms 
with nuclear spin + i , B represents those with spin — §. All 
other single sites are occupied by He4 atoms taken up in various 
kinds of permutation cycles. —> represents a short side of length 
equal to the nearest-neighbor distance. > or represents a 
long side. A connects a long side with a short side, o is a lattice 
point between two long sides. The weights are expressed in terms 
of ct the number of nearest neighbors on the permutation lattice. 

(i.e., He4 only with other He4 atoms, etc.) that lead to 
different Boltzmann factors. The combinatorial factor 
and the arguments of the exponentials of the Boltzmann 
factors can be shown, as in II and III, to depend in 
good approximation on parameters representing all 
single-site and pair configurations that are possible 
on the lattice on which the permutations are carried 
out. The most important single term contributing to 
the sum is then found and used in place of the entire 
sum itself as is usually done in statistical mechanics by 
minimizing an appropriate free-energy expression with 
respect to the independent parameters. 

The total number of point and bond configurations 
are given in Figs. 1 and 2, respectively. The weights 
assigned to the various configurations in terms of c, 
the number of nearest neighbors, are the numbers of 
different ways of obtaining a given configuration due 
to the symmetry of the lattice. /?65, for example, is 
found by multiplying the number of ways of selecting 
2 directions out of {c— 1), i.e., (c— l)!/2!(c—3)1 by a 
factor 2 for possible interchange of left and right, and 
by another factor 2 for the two directions of cylical 
permutation possible. In the figures we distinguish 
between short sides of polygons which are equal in 
length to a nearest-neighbor distance d, and 'long' sides 
which are of length equal to any lattice displacement 
greater than d. An arrow indicates the direction of 
permutation. At a triangle lattice point A a long side 
meets a short side. An open circle O is a lattice point 
where two long sides meet. In counting /?# in Fig. 2 the 
two different directions for a long side (when there is no 
arrow attached to it) are not counted. 

We have a total of 39 parameters and define a 40th f, 

2 r = * i - * , , (3.1) 

so as to be proportional to the excess of H e 3 + | spins 
over the opposite type. In addition to Eq. (3.1) we 
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have the following requirements: 

%n+cxz2+c(c—l)xn+2cxu+xu= 1 —X8, (3.2) 

Xi+X2=Xz, (3.3) 

^1 = ^1+^2+^41+ (C— 1)^42+ (C— 1) (C— 2)^43 

+2(c-l)yu+y*s, (3.4) 

x2=y2+yz+yn+ (c—i)yw+ (c— 1) (c— 2)yhZ 

+ 2(^-1)^54+^55, (3.5) 

^31= ^41+^51+^61+ (C— 1)^62+ (C— 1) (c— 2)^65 

+ 2 ( c - % 6 9 + j 6 1 0 , (3.6) 

^32 = ^42+^52+^62+ (c— 1)^63+ (c— 1) (c— 2)^66 

+ 2 ( c - l ) y 6 U + y 6 U , (3.7) 

#32= ̂ 64, (3.8) 

^33=^43+^53+^65+ (<?— 1)^66+ (̂ — 1) fc—2)y67 

+ 2 ( c - l ) y . i . + y e i 4 , (3.9) 

#33 = (C~ 1)^68+^617 , (3.10) 

X34=3;44+^54+3'69+ (c— 1)^611+ (c— 1) fc — 2)^613 

+2(C-l)3;615+3>6i6, (3.11) 

#34 = (C— 1)^617+^618 , (3.12) 

#35= ^45+^55+^610+ (c— 1)^612+ (c— 1) (c— 2) j 6 i 4 

+2(c-l);y6i6+;y6i9. (3.13) 
Equations (3.2) and (3.3) represent the correct counting 
up of He4 and He3 atoms, respectively, and their sum 
gives the proper normalization of single-site probabil
ities. Equations (3.4) through (3.13) are consistency 
requirements derived in each case by equating the 
number of lattice sites of given type to the total number 
of such sites involved in the pairs. The normalization of 
pair probabilities follows from Eqs. (3) and is not an 
independent requirement. Because of the 13 Eqs. (3), 
only 27 of our 40 parameters are independent. 

We approximate the total combinatorial factor GT in 
the pair approximation of Kikuchi,6 

GT—GGIS, (4) 
where 

lnG= N(c—1)5^ %i \nXi+N(c—1)2 a*%Xzi bi#3; 
t= l a=l 

Nc 3 Nc 5 
11 &iyi lny»- 5Z 04<y4* *n3to 

2 «-i 2 *-i 

iVc 5 j\fc 19 
2 foOta ln^si E foOto lnye* (5.1) 

2 *-i 2 t'-i 

and G/5 is the factor coming from long side jumps in 
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r. 2. Pair probability parameters. 
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Conventions as in Fig. 1 

boson permutations and reads as (see III): 

\nGis=N\nN-N+ £ iVjOntfi-lntf,), (5.2) 

with 

and 

£ ATZ = ^ = (c*l4+*S5)iV 

#i=(^34+*35)iVV0>, 

(6.1) 

(6.2) 

6 R. Kikuchi, Phys. Rev. 81, 988 (1951). 

in which Nt denotes the total number of sides in a 
configuration having length I between two He4 atoms 
and Ni<® is a purely geometrical number giving the 



910 H E C H T , K I K U C H I , A N D S T E I N 

number of sites which lie at a distance / from a certain 
lattice point. 

THE FREE ENERGY AND ITS MINIMIZATION 

The Helmholtz free energy F is given by 

F=-kTliiQ. (7) 

As shown in ( I - I I - I I I ) , when the sum that is Q is re
placed by its maximum term, the minimum free-energy 
expression has virtual potential energy terms coming 
from permutations along polygon sides for the bosons 
of the form 

(cNT4)kT[yQ4+ (c— l)2yu+yeis+2(c—1)^17] 

*»„ P 
+ £ kT-TtNi, 

l>d d2 

an energy term coming from fermion permutations 

-kT'£\iiB(k,k), 
k 

a magnetic energy contribution 

with H the external magnetic field and fx the nuclear 
magnetic moment of He3, and n, a dimensionless ratio, 

T4=(tn/d2kT/2fi2). (8) 

In addition, there are, of course, terms from the log
arithm of the complete combinatorial factor. 

The symbols in the term arising from fermion 
permutations will now be explained using further 
notation defined explicitly in I I . In considering the 
formulation of the determinant that enters into the 
sum over He3 permutations it seems that we should 
always take the origin to be at one of the He3 atoms so 
that (in the notation of II) p (origin) = 1 always, even 
in the limit that X 3 —» 0 because then, as will be seen 
below, the equations reduce consistently to those for 
pure He4. In any case the difference between an assem
bly of pure He4 and one with He4 atoms plus one He3 

atom should be of no significance. We, thus, use 

£(origin) = l , (9.1) 

^(nearest neighbor) = yt-\-yz=p(d), (9.2) 

^(further n e i g h b o r ) ^ ^ ^ X i 2 + x 2
2 . (9.3) 

We then express the B(kk) of I I after an appropriate 
unitary transformation as 

JB(kk) = E { e x p [ - ( a 3 | x l 2 + 2 7 r * . x ) ] } 
x 

X{p(\x\)-p„)+p^'Qtk), (10) 

in which Bs(kk) is the value of B(kk) when all spins 
are aligned in one direction and is a function of certain 

sums expressible in terms of theta functions7 and 
dependent also on the lattice used for the permutations 
and a^^mzkT/2¥y with k the general vector of the 
lattice reciprocal to the space lattice used for permuta
tions. We will replace ]Tk ln^(kk) with 

+1/2 

— dxdydz \nB {kk), (11) 

- 1 / 2 

where 

a— 1 for a simple cubic space lattice, 

= 2 for a face-centered cubic lattice, 

= 4 for a body-centered cubic lattice. 

The reason for division by the integer a is that a is the 
number of sites per unit cell of the lattice reciprocal 
to the space lattice used. In Eq. (11) and in the equa
tions below for the Bs(kk), x, y, z, are variables of 
integration equal to K/L, \/L, fi,/L, respectively, where 
K, A, fi are integers relating to the components of the 
general reciprocal lattice vector and L— (N)1/3. 

Selecting 27 independent variables out of our 40 
parameters and using Eqs. (3) and (9) in Eq. (10), 
we find 

^ ( k k ) = ( l - J X 3
2 - 2 f 2 ) + ( j X 3

2 + 2 f 2 ) ^ ( k k ) 

+ 2 ^ 3 ( E c o s ) { X 3 - j X 3
2 - 2 f 2 - 2 3 ; 2 - ^ 1 - 3 ; 5 i 

- (c—1)^42— (c—1)3^52— (c— 1) (c— 2)y4d 

-(c-l)(c-2)y5Z-2(c-l)yu 

— 2 {c—1)3^54—^45—3^55}, ( 12 ) 

in which 
rz^a^d2 = mU2kT/2fi2 (13) 

and (X) cos) is a factor which is a sum over cosines 
dependent on the lattice used. 

Recalling that x, y, z, without subscripts are integra
tion variables and not probability parameters, it is 
convenient to collect here the forms assumed by 
( £ cos) and Bs(kk) for different lattices: 

Square lattice (s=4) 

GC cos) = cos27r:r+cos27ry, (14.1) 

Bs(kk)=$z(xye-T*)dz(y,e-Tz). (14.2) 

Simple cubic lattice (c=6) 

CL COS) = cos27rx+cos27ry+cos27rz, (14.3) 

Bs(kk) =Mx,<rr*)&3(y9(T
r*)Mz,<rT*) • (14.4) 

Body-centered cubic lattice (c=8) 

CC cos) = cos2ir(x+y+z)+cos2ir(—x+y+z) 
+cos2w(x+y—z)+cos27r(x—y+z), (14.5) 

^ ( k k ) = ^ 3 ( 2 x , e - ( 4 / 3 > ^ 3 ( 2 3 ; , ^ ( 4 / 3 ) r 3 ) ^ 3 ( 2 S j e - ( 4 / 3 ) r 3 ) 

+^2(2^,^-(4/3)^2(23;,g-(4/3)^2(22,e-(4/3)^). 

(14.6) 
7 See, for example, E. T. Whittaker and G. N. Watson, Modem 

Analysis (Cambridge University Press, New York, 1927), 4th ed., 
Chap. 21. 
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Face-centered cubic lattice (c= 12) 

QZ cos) = cos27r(a;+3;)+cos27r(3;+2)+cos27r(2+^) 

+cos27r(x—y)+cos2w(y~z)+cos27r(z— X) , 

(14.7) 
Bs (kk) = # 3 (2x,e~2T*)#z (2y,e~2T^z (2z,e~2T*) 

+tf 2 (2x,e-2Ts)#2 (2y,e-2T*)#3 (2z,e~2T3) 
+ # 2 (2x,e-2T*)&3 (2y,e-2T2)&2 (2z,er27*) 

+M^,e~2^)M^y,e-2TS)M^e-2T'). (14.8) 

Two different types of theta functions appear in Eqs. 
(14) and the different arguments should also be noted 
carefully. Equation (14.7) is a corrected form of Eq. 
(5.7) of I I in which some terms were omitted by the 
printer. 

We will not be able to combine the face-centered 
cubic lattice form with our counting of boson permuta
tions since the boson counting is not valid for lattices 
in which there are pairs of nearest neighbors among the 
nearest neighbors of a given site. Nevertheless, the fee 
equations are included for completeness with regard to 
the case of pure He3. 

We may finally write down the free-energy expression 
as 

F 

kT 

+1/2 

2ixNm N r r r 
= -ln(?o / / dxdydz InBQsk) 

-1/2 

-lnG+NcT4£yu+ (c— l)2yw+ym 

+2(c-l)y6i7l+: 

kT 
(15) 

where 

F' P 
-= £ T 4 — N t + N - N l a N 

kT i>d d2 

Exiv,(ii)iyr,-in2v,)-x[#- £*#,], 
l>d l>d 

(16) 

and X in the last term of (16) is a Lagrangian multiplier 
for the condition (6.1). The only dependence of F on 
Ni is in F' so that we first minimize F (i.e., Ff) with 
respect to Ni. The process is precisely the same as in 
I I I . We find 

N^NtexA - - ( X + l ) . (17) 

Summing both sides of Eq. (17) over all l>d and 
using Eq. (6.2), the multiplier X is determined by 

B = Ne*+»=(T, Ni«»<rl*r*td*)-1- -ce (18) 

in which a new quantity B has been defined. The B in 
Eq. (18) is not to be confused with B(kk) from Eq. (12). 

The meaning of iVV0) defined in connection with Eq. 
(6.2) permits us to express B in terms of more theta 
functions this time with arguments depending on n 
(see I I I ) . We have for the simple cubic lattice (c = 6) 

j 5 = [ ^ 8 ( 0 , ^ * ) ] 8 - l - 6 e - r 4 , (19.1) 

and for the body-centered cubic lattice (c—S) 

5 = [ ^ 3 ( 0 , e - ( 4 / 3 ) ^ ) ] 3 + [ ^ 2 ( 0 ^ - ( 4 / 3 ) r 4 ) ] 3 _ 1 _ _ 8 e - r 4 < ( 1 9 # 2 ) 

The final expression for Fr is 

Fr/kT=N{cxu+xzh){\~\nB~\ii{cxZi+xZh)}. (20) 

Then using Eqs. (15) and (5.1), the total free energy is 

+1/2 
F 

NkT 

—InQo 2fxH 1 f f r 
f— / / / dxdydz lnB(kk) 

N kT a J J J 
- 1 / 2 

2 5 

— (c—1)2 Xi InXi— (c— 1 )E aziXu \nxZi 

C 3 C 5 

+ - L fry*- lnyi+- E $uyu lny4* 
2 i = i 2 i = i 

C 5 C 19 

+ - E foty&i ln^5*+- E Pt%y<n ln^e* 

2 *~i 2 i=i 

+ CTA\JU+ (C— l ) 2 ^68+2 (C— 1)^617+^618] 

+ [^34+^35][l — ln5—In (^34+^35)]. (21) 
This is a function of the parameters given in Figs. 1 
and 2 and f defined by Eq. (3.1). The 27 independent 
parameters were chosen to be f, #35, 3̂ 2, 3^1, V42, 3^3, 3>44, 
^ 4 5 , 3>51, ^ 5 2 , 3>53, ^ 5 4 , 3>55, ^ 6 3 , ^ 6 4 , 3>66, ^ 6 7 , V 6 8 , V 6 9 , 3>611, 

3>ei2, 3̂ 613, yen, y&u, 3*616, y&ih a n d 3;ei9. The 13 dependent 
variables are expressed in terms of the independent 
ones and this substitution is made in Eq. (21) for the 
free energy which is then minimized with respect to 
each of the 27 independent variables in turn leading to 
27 higher order algebraic equations which must be 
solved simultaneously. 

Minimizing first with respect to f it is easily seen 
that, for vanishing external magnetic field (£T = 0), f = 0 
is a possible solution. We have chosen this case as 
appropriate, thus, ruling out any ferromagnetic possibil
ity. This is in accord with all the known data on pure 
He3 and its mixtures with He4. We will take f = 0 
throughout the rest of this paper and write J5(kk)o to 
indicate that f = 0 in Eq. (12). 

Next, minimizing with respect to yu and yu there 
results the 5 relations 

ya2=y^ (yi/y*), 1 < i< 5 , 

which when substituted into Eqs. (3) requires that 

yi=yz 
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as is the case in pure He3. This, in turn, leads to 

yu=yu, l < i < 5 . 

Minimizing with respect to y^ we are led to the 
relation 

+1/2 
(yiyz\ 4 f f f dxdydz c fyiyz\ 4 r r r dxdydz b* -> 

A-^hllJJmr^- (22) - * > . < — 
-1/2 

Further details of the algebraic manipulations will be 
omitted and only the final results given. They appear 
in terms of two new variables a and 7, where a is defined 
as 

a = ( c - l ) + ( W * 6 5 ) 1 / 2 , (23) 
in which 

* K = W y « f o r i=2> 3, • • •, 19, (24) 

as 

7 = l + 2 ^ 2 / ^ i ) 1 / 2 . (25) 

The minimization with respect to the remaining 15 The final results are the following two simultaneous 
variables follows closely the procedure used in I I I . equations for a and 7 : 

Za-(c-l)3{la2-(c-l)3(a+l)2e~^-aZa2(y-l)+2ya-(c-l)(y-l)^} 

e=:/// c /Vi\ 2 
•In 

2 \yt 

-1/2 

( 1 - X 3 ) a ( a + 1 ) [ > 2 - ( C - 1 ) ] 

dxdydze~rs (X) cos) 

3 (kk) 0 ' 

(26) 

(27) 

with B given by Eqs. (19) and (yi/yz) and B(kk)o given explicitly in terms of a and 7 by 

' y A 2 Z 3 e - 2 ^ [ a 2 - (c-!)](«+ l ) 2 - 4 X 3 e - ^ 7 a 2 - 2 ( - y - l V - ^ [ a 2 - ( c - l ) ] + ( 7 - l ) 2 ( l - X 3 ) [ a 2 - ( c - 1 ) ] 

(SF vy2. 

and 

( l - X 3 ) [ a 2 - ( ( ; - l ) ] ( 7 - l ) 2 
(28) 

5 ( k k ) 0 = ( l - i Z 3
2 ) + | X 3

2
J B « ( k k ) + 2 e - " X 3 ( i : c o s ) ( l - i X 3 ) 

{ 2 e - 3 ( 2 : c o s ) ( 7 - l ) [ : a - K T - l > ^ ] ( l - X 3 ) [ a 2 - ( < ; - l ) ] } 

{ [ a 2 - ( c - l ) ] ( a + l ) 2 e - r o - a [ a 2 ( 7 - l ) + 2 7 a - ( c - l ) ( 7 - l ) ] } 
(29) 

Upon solution of these equations, the probability ^55=^45=^61^610(7"" l ) / 2 , 
parameters may be found as follows: 

f=o, 
Xi = X%— 2^3, 

^31 = ^6l(^~r4)«, 

%z2=y<iiZ(>2(e-Ti)a, 

Xzz = y6iZ65(e-Ti)a, 

3̂4 = j61^69(e~T4)a, 

Xz5=y6iZ6io(e~Ti)a, 

Xz y* 
yi=y*= - [ > * - ' « - • ( 7 - 1 ) ] , 

2 ( 7 - 1 ) 

^61 = ^41 = ^ ( 7 — l ) / 2 , 

^52=^42=^61^62(7—1)/2, 

^53=^43=^61^65(7—1)/2, 

^54 = ^44 = 6̂1̂ 69 ( 7 - l ) / 2 , 

(30.1) 

(30.2) 

(30.3) 

(30.4) 

(30.5) 

(30.6) 

(30.7) 

(30.8) 

(30.9) 

(30.10) 

(30.11) 

e r 4 ( l - * 3 ) [ V - ( < : - l ) ] 

y6i={Za*-(c-ima+iye-r* 

-a[a2(7- l)+2ya- (c-1) (7-

Z62=e-T*/a, 

6̂3 = ^622, 

Z64=e-2 '4, 

e~Ti[a2-{c~\)~]-ay 
#65 = , 

a£a2-(c-l)'] 

^66=262^65, 

I ) ] } " 1 , 

268=^65^ T4, 

£69 = [a— (C— 1)]S65, 

(30.12) 26io= [ a - fc-l)>65, 

(30.13) 2611 = 6̂2269, 

(30.14) 

(30.15) 

(30.16) 

(30.17) 

(30.18) 

(30.19) 

(30.20) 

(30.21) 

(30.22) 

(30.23) 

(30.24) 

(30.25) 
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2 6 1 2 = 2 6 2 2 6 1 0 , 

2e 13 = 265269, 

2 6 1 4 = 2 6 5 2 6 1 0 , 

2 6 1 5 = 2692 = 2614 , 

2 6 1 6 = 2 6 9 2 6 1 0 , 

(30.26) *e i7=[a- (c- l ) ]6T*«* w , (30.31) 

(30.27) 26i8= [ a - ( c - 1 ) > - ^ 2 6 5 , (30.32) 

(30.28) 26i9=26io2. (30.33) 

^ • ' When these results are substituted into Eq. (21) 
(30.30) we have 

•lng0 1 

NkT N 

+ 1 / 2 

- f f f dxdydz\nB(kk)0-(c-l)Xz\n(—\+ilx*-(y-l)yJcurr'--2^1\ 

- 1 / 2 

(7-D (7-1)2 
[ A , (7-i) r (7-1)1] c/ r(7-i)2 i c 
J y a i U ^ * J J + - ( 7 - l ) 2 3 ' 6 i l n | y,A- (c-l)(l-Xz) l n * 8 i + - ( l - X ) lny* 

r ( 7 - i ) i c 

+cx3i+xzb+cZe~Tia- (y-l)](y-i)y*i In y6i —(7-l)3>6i[>-T 4a:- ( 7 - I ) ] lnyci. (31) 

THE X POINT AND ABOVE 

As T and, thus, T4 is increased from zero it can be 
seen from Eq. (30) that a T is reached at which 3^5 
and, thus, also X33 through #35, 3̂ 43 through 3/45, 3>53 
through ;y55, and y&& through 3̂ 19 all become zero. Any 
further increase in T would result in negative values for 
these probability parameters which is not possible. 
Hence, this point is associated with the X transition. 
Note that the only polygons describing He4 permuta
tions that can be used above the X point are the double-
sided ones. The condition for the X point is obtained 
from Eq. (30.19) and is 

a 2 - ( c - l ) 
*H*«>x= . (32) 

ay 

Using Eq. (32) in Eqs. (26) and (27), the a and y at 
the X point are found from 

/ [ a - ( . - l ) ] C a 2 + l + c ( 7 - D ] / x 

( B ) x = - — (33) 

Thus, Eqs. (32)-(34) serve as three simultaneous 
equations for the three unknowns T\, a\, y\ in a mixture 
of given X3. 

For temperatures above the X point for a given 
mixture, we must set all probability parameters equal 
to zero except xh x2, #31, #32, yi, 3>2, yz, y*i, y&, yBi, 3^2, 
Jei, 3>62, 3^3, ^64, and f. Then, of course, many of the 
Eqs. (3) and many of the 27 equations found by 
minimizing F in Eq. (21) become trivial identities and 
another set of solutions can be found for the 16 remain
ing parameters enumerated above. These solutions 
are given in terms of 7 defined by Eq. (25) and 
a new parameter r, where r is the positive square root of 

r 2 - 7 2 + 4 ( c - - l ) e - 2 ^ . (35) 

and 
( l - X 3 ) ( a + l ) [ a 2 - ( c - l ) ] 

+1/2 

C ln | 
2 \y* \ Jl A <T J J J 

- 1 / 2 

dxdydz e_(r8>x(Z) cos) 

£(kk)„ ' 
(34) 

I t should be noted that the parameter a used in the 
equations below the X point does not enter the equations 
above X point although at the X point itself it is easy to 
show that 

n—H>- <36) 

Above T\ the single equation that must be solved 
for 7 is still Eq. (27) but now its component parts have 
changed. Namely, 

y i \ 2 X 3 [ 2 ( c - l ) + c : ( r - 7 ) ] - ( 7 - l ) ^ + l ) ^ - 7 ) ( l - ^ 3 ) 6 2 ^ 

( - ) -
\y2/ 

(y-iy(l~Xs)(r-y)e^ 

and 

5 ( k k ) 0 = ( l - | Z 3
2 ) + | X 3

2 B s ( k k ) + 2 e - " X 3 ( E C O S ) ( 1 - J X , ) -
e - " ( E c o s ) ( 7 - 1 ) ( r + 1 ) ( r - Y ) ( 1 - X s ) e i r * 

[ 2 ( c - l ) + c ( r - Y ) ] ' 

(37) 

(38) 

Using Eq. (32) it is not difficult to show that at the X point Eqs. (37) and (38) are identical with Eqs, (28) 
and (29), respectively, so that 7 and, thus, all the probability parameters are continuous at T\. 
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by 
The probability parameters above T\ are then given mixture equal to 

f=0, 
Xi = X2 = ^Xs, 

2(c-l)yue-2T4 

#31 = -
(r—y) 

. — 2 T 4 %<$2 = y6ie 

yi=y*=ix9-iy91(y-i)(r+i), 

y2=l(y-iyy<n, 

^41 = ^51 = ^61(7—1) /2 , 

y 4 2 = y 5 2 = y 6 i 2 6 2 ( 7 - l ) / 2 , 

e*«(l-X*)(r-y) 

2 ( c - l ) + c ( r - 7 ) 

z 6 2 = ( r - 7 ) / 2 ( c - l ) , 

S63=262
2 , 

zM=e~2TK 

(39.1) 

(39.2) 

(39.3) 

(39.4) 

(39.5) 

(39.6) 

(39.7) 

(39.8) 

(39.9) 

(39.10) 

(39.11) 

(39.12) 

When these results are substituted into Eq. (21) we 
have an expression for the free energy above 7 \ : 

r F lnQo 

.NkT N 

+1/2 

- f f fdxdydzlnB(kk)o-(c-l)Xz\J 

- 1 / 2 

/ X$ 

2 

- ( ^ - l ) ( l - Z 3 ) l n ^ i + q 

" ^ 3 ^ 6 1 

-X~3 3>61 

( 7 - 1 X H - 1 ) 

r A 3 3̂ 61 
Xln ( 7 -

L 2 4 
l)(r+l) 

( 7 - 1 ) 2 

+c -y6i 

• ( 7 - l ) 2 ( 7 - 1 ) 
Xln| — ~y6i + - y 6 i ( 7 - l ) ( ^ + 2 — 7 ) l n -

J 2 

+ - y 6 i [ 4 e - 2 T 4 + r 2 + 2 f 7 + 8 T - 3 7 2 - 4 ] ln^61. (40) 

SOLUTION OF THE EQUATIONS 

All the necessary equations given in the preceding 
sections of this paper have been solved numerically 
by the electronic digital computer, MANIAC II , at the 
Los Alamos Scientific Laboratory. Certain parameters 
had first to be selected. From Eq. (8) we see that d2, 
the square of the nearest-neighbor distance enters the 
calculation. In expressing this we have neglected any 
volume changes on mixing and set the volume of the 

Vm^X&z+X&A , 
so that 

(41) 

(42) 

with ^=1 .0 for a simple cubic lattice and p = %X22/s 

= 1.19055 for a body-centered cubic lattice and where 
Vj is the molar volume of pure isotope j and St is 
Avogardo's number. We have further chosen char
acteristic values for the molar volumes of the pure 
components appropriate to the pressure of their 
saturated vapors at the X point of pure He4 and below 
and assumed them temperature-independent for 
simplicity. Our values are 

#3=37.7 cm3 mole-1, (43.1) 

£4= 27.5 cm3 mole"1 . (43.2) 

From Eq. (13) we see that 

T 3 = ( w 3 ' / W ) r 4 . (44) 

I t is, thus, also necessary to specify m% and w / . The 
latter, which is the effective mass of He4 atoms, is 
chosen so that the experimental X point in pure He4 

under its saturated vapor pressure (2.172°K) is obtained 
in the limit of X3=0. This effective mass is 

Mi= (1.648)^4 for simple cubic lattice (45.1) 

= (1.671)^4 for body-centered cubic lattice. (45.2) 

Two choices were made for m-i: 

mz=(5.25)mz, 

mz'= (2.00) w 3 . 

(46.1) 

(46.2) 

Equation (46.1) was found necessary by Kikuchi in I I 
to best fit the nuclear magnetic susceptibility data of 
Fairbank, Ard, and Walters8 in the case of permutation 
counting in pure He3 on a simple cubic lattice. Equation 
(46.2) has been suggested by the specific heat measure
ments of Brewer, Daunt, and Sreedhar.9 

The results for the X temperatures as a function of 
Xz, still not considering a possible phase separation, are 
tabulated in Table I. I t is gratifying to note that these 
temperatures do not essentially depend on the arbitrary 
permutation lattice chosen nor even on the choice of 
the He3 effective mass. These results are more in accord 
with the experimental results of Zinov'eva and Peshkov10 

than with that of Elliott and Fairbank11 or Roberts and 

8 W. M. Fairbank, W. B. Ard, and G. K. Walters, Phys. Rev. 
95,566(1954). 

9 D. F. Brewer, J. G. Daunt, and A. K. Sreedhar, Phys. Rev. 
115, 836 (1959). 

10 K. N. Zinov'eva and V. P. Peshkov, Zh. Eksperim. i Teor. 
Fiz. 37,33 (1959) [translation: Soviet Phys.—JETP10,22 (I960)]. 

11 S. D. Elliott, Jr., and H. A. Fairbank, in Proceedings of the 
Fifth International Conference on Low-Temperature Physics, 1957, 
edited by J. R. Dillinger (University of Wisconsin Press, Madison. 
1958), p. 180. 
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TABLE T. Theoretical X temperatures in He3-He4 liquid mixtures 
as function of X3 neglecting possible phase separation. 

Permutation 
lattice 

m\ 
mz 

xz 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

sc 
1.65 W4 
5.25 mz 

T(°K) 

2.172 
2.099 
2.026 
1.954 
1.880 
1.806 
1.731 
1.655 
1.577 
1.497 
1.415 
1.329 
1.240 
1.147 
1.047 
0.941 
0.824 
0.695 
0.545 
0.359 
0.000 

sc 
1.65 W4 
2.00 m3 

T(°K) 

2.172 
2.099 
2.026 
1.954 
1.880 
1.806 
1.731 
1.655 
1.577 
1.497 
1.414 
1.328 
1.239 
1.144 
1.044 
0.937 
0.821 
0.691 
0.543 
0.358 
0.000 

bcc 
1.67 W4 
2.00 mz 

7\°K) 

2.172 
2.101 
2.030 
1.958 
1.886 
1.813 
1.739 
1.663 
1.585 
1.504 
1.421 
1.334 
1.242 
1.146 
1.044 
0.934 
0.815 
0.684 
0.534 
0.350 
0.000 

2.0 

1.6 

T(°K) 

1.2 

0.8 

0.4 

0 
C 

~Fjn . 

Sydoriak.12 Since, however, the first mentioned results 
are believed to be too high13 our theoretical results 
are certainly too high for X 3 > 0.5. A graphic comparison 
is given in Fig. 3. 

The X line is seen to go to zero only when X 3 = l . 
Hecht's14 prediction that the X line could go to zero 
with a finite fraction of He4 atoms present is seen to be 
incorrect since it was based on the limited type of 
permutation cycles used in I and neglected cycles 
involving jumps of a long-range nature on the permuta
tion lattice. I t is just these long-range cycles that are 
of importance when the temperature is less than 1°K as 
shown in I I I . The situation is analogous to the case of 
Curie points for dilute ferromagnetic materials for which 
it is known15 that only if the interaction is strictly 
nearest-neighbor can the Curie point vanish with a 
nonzero mole fraction of ferromagnetic centers. 

In order to look for an isotopic phase separation at a 
fixed temperature, it is necessary to consider the second 
derivatives with respect to X 3 of G, the Gibbs free 
energy, which for a condensed phase is essentially 
equal to F given by Eq. (7). If this second derivative 
is always positive as X 3 varies from 0 to 1, there is no 
phase separation. If in part of the range the second 

12 T. R. Roberts and S. G. Sydoriak, in Proceedings of the Fifth 
International Conference on Low-Temperature Physics, 1957, 
edited by J. R. Dillinger (University of Wisconsin Press, Madison, 
1958), p. 170. 

13 T. R. Roberts and S. F. Sydoriak, in Proceedings of the Second 
Symposium on Liquid and Solid Helium Three, Columbus, Ohio, 
1960, edited by J. G. Daunt (Ohio State University Press, 
Columbus, 1960), p. 173. 

14 C. E. Hecht, Physica 24, 584 (1958). 
15 R. Brout, Phys. Rev. 115, 824 (1959). 
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3. The theoretical X line in He3-He4 liquid mixtures as 
function of X3 for the simple cubic permutation lattice with 
effective mass ratio (mi/mt) = 2.40. Various experimental X 
temperatures and phase-separation temperatures are also shown. 

derivative is negative, a phase separation has occurred 
and the separated mixtures that are in equilibrium are 
determined by the two X 3 values outside of the negative 
second-derivative region for which the first derivatives 
of G with respect to X 3 are equal, i.e., by the points of a 
common tangent.16 

Tabulated quantities related to the free energy were 
produced in terms of the quantity E, 

r F 
E = 

InQo" 
+ 

LNkT N 

- | X 3 In 
Mi 

+ X 3 l n X 3 + X 4 l n X 4 . (47) 

For one total mole of mixture, using the tilde to indicate 
molar quantities, identifying F of a condensed phase 
with G, and using Eq. (2.1), we obtain 

G 
E= hln| 

RT 

mA
fkT\^2 

LA 2wfi2 
(48) 

where R is the gas constant. At any fixed temperature 
T as we vary X3, we compute E from Eq. (31), as long as 
X 3 is such that the fixed T is below the X point of the 
mixture. When the X 3 is large enough and if our fixed T 
is below the T\ of pure He4, we will reach a range of X 3 

values for which the fixed T is above the X point of 
the mixtures and Eq. (40) must be used to compute E. 

1 6 1 . Prigogine and R. Defay, Chemical Thermodynamics, 
translated by D. H. Everett (Longmans Green and Company, 
London, 1954), Chap. 16. 



916 H E C H T , K I K U C H I , A N D S T E I N 

If we neglect the possible X3-dependence of the dynam
ical quantity K$ in Eq. (48), the second derivative of 
E with respect to X3 will be the second derivative of G 
with respect to X3 at any constant temperature. 
Analysis of our results shows clearly that this neglect 
gives second derivatives which are always positive no 
matter what the temperature. This indicates no 
isotopic phase separation due to quantum statistical 
effects alone and in fact shows that these effects favor 
an ordered mixture of the isotopic species as the 
temperature approaches absolute zero, since the molar 
excess Gibbs function (see below), neglecting the X3 

dependence of Kp, is negative. 

ISOTOPIC PHASE SEPARATION CURVE AND 
EXCESS FUNCTIONS OF MIXING 

In view of our result that the quantum statistical 
effects do not lead to isotopic phase separation, we 
assume the inherent cause of the experimentally 
observed separation to be due to the difference in 
zero-point motion of the two isotopes which is empir
ically manifested by the difference in molar volumes 
given by Eq. (43). In this we follow the interpretation 
of Prigogine et a/.,17-18 in principle, but not in detail. 
It is necessary to make a crude estimate of the func
tional form of K$. Without committing ourselves 
on the complete temperature dependence of K&, we 
follow Feynman1 in assuming Kp proportional to 
exp(—Uo/RT), where UQ is the energy of the system 
at absolute zero. The dependence of Kp on X3 may be 
estimated by expressing UQ as a sum of nearest neighbor 
pair energies on a formal space lattice (not to be con
fused with the formal lattice used earlier for counting 
permutations). The result is 

Uo=0z{(l-Xz)eu+W(O)yu+Xzen}, (49) 
where 

JF(0) = [ 2 e 3 4 - € 3 3 - € 4 4 ] , (50) 

z is the number of nearest neighbors, and y34 is the 
probability of a He3-He4 pair. Effective pair potentials 
en have been introduced because of the different molar 
volumes of the pure components and of the mixtures 
as determined by Eqs. (41) and (43). This part of our 
theory is clearly semiphenomenological. We proceed 
as if we had no phase separation until we note in a 
certain region of the T-X% plane that we obtain 
unphysical results, i.e., (d2G/dXz2)r less than zero and 
then conclude that a phase separation has occurred. 
Hence, as the simplest approximation we can assume 
that the distribution of the isotopic species prior to 
phase separation is completely random. This means 
making a Bragg-Williams approximation for y34 
such that 

y 3 4=X 3 ( l -X 3 ) (51) 
1 7 1 . Prigogine, R. Bingen, and A. Bellemans, Physica 20, 633 

(1954). 
1 8 1 . Prigogine, Molecular Theory of Solutions (North-Holland 

Publishing Company, Amsterdam, 1957), Chap. 19. 

and yields 

Kfi ocexp(-c1X3/r)exp(c2X3
2/r), (52) 

where 
Cl=z(€zi—€u)/k, (53.1) 

c2=zW(0)/2k, (53.2) 

and k is Boltzmann's constant. Furthermore, using 
a Lennard-Jones form for the UJ and the helium 
parameters19 

(€/jfe)=10.22°K, #cr3= 10.06 cmVmole, (54) 

the lattice energy per like pair is 

€«=4eT -1 , (55) 
W(?i*)A 7 2 W) 2 J 

with 
Vi*=Vi/fio* (56.1) 

and 
y=v/a\ (56.2) 

where v is the volume per atom and a is the nearest 
neighbor distance on the space lattice. The average 
pair energy in a random mixture may be denoted by 
ex3, where 

r 1 * i 
L7W)4 7 2 M 2 J 

= 2X3(l~Z3)e34+X3
2633+(l-Z3)2€44. (57) 

From Eq. (57) €34 and, thus, W(0) and, thus, c2 can be 
estimated for any simple space lattice. There is some 
ambiguity in this estimate depending on the X3 

value chosen and, hence, the average of the limits as 
Xz —» 0 and as Z 3 —> 1 was chosen as the appropriate 
value. The results for cubic space lattices are 

fee c2=3.1°K, (58.1) 

sc c2=2.4°K, (58.2) 

bec c2=2.3°K. (58.3) 

Equations (48) and (52) lead to 

( ) = ( ) , (59) 

so that with c% positive phase separation is possible if 
T is low enough, even though the first term on the 
right of Eq. (59) is always positive. It is of interest to 
write down an expression for the molar excess Gibbs 
function of mixing. This is defined as 

GE G <33° X4G4
0 

— = Xz lnX3-X4 lnX 4 -X 3 , (60) 
RT RT RT RT 

19 J. de Boer, in Progress in Low-Temperature Physics II, edited 
by C.J. Gorter (North-Holland Publishing Company, Amsterdam, 
1957), Chap. 1. 
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TABLE II. Theoretical critical He3 mole fractions Xzc and 
critical temperatures Tc for isotopic phase separation as function 
of permutation and space lattice model combinations. 

Permutation lattice 
Effective mass ratio : 

Tc 

Space lattice 
fee 1.3 
sc or bee 1.0 

sc 
2.4C > 

Xze 

0.57 
0.57 

sc 
0.914 

Te 

1.2 
0.9 

Xzc 

0.56 
0.56 

bee 
0.902 

T e Xze 

1.2 0.56 
1.0 0.56 

where Gt° is the molar Gibbs function of pure species i. 
From our previous expressions we have 

[ — }=[ — )+-Xt(l-Xt), (61) 
\RTJ \RT/ T 

where 

I—J = £ - X 3 lnX3-X4111X4-X3E3-X4E4 (62) 

and 
E 3 =Hm(E) , (63.1) 

Xz-*l 

£ 4 = l i m ( £ ) . (63.2) 
X3-X) 

The primed quantity arises from the quantum statis
tical effects and is always negative. We note that 
assuming the proportionality in Eq. (52) we can 
obtain GE without any ambiguity from Eq. (61) since 
the natural logarithm of the unknown proportionality 
function which may depend on T is cancelled in the 
subtractions of Eq. (62). The molar excess entropy of 
mixing is given by 

S*=-(—7) (64.1) 
\ W Jp,xz 

or 

SE /dE\ /dEz\ 
—=-r — +XZT(—) 
R \dT/p,Xz \dT/p 

/dE,\ /G*\' 

and the molar excess enthalpy of mixing is obtained 
from 

HE=GE+TSE. (65) 

A numerical analysis of the results of the machine 
calculation for the E function of Eq. (47) using the 
methods of Ref. 16 was carried out to obtain critical 
He3 mole fractions XZc and temperatures Tc. The 
experimental results for phase separation, based on the 
work of Zinov'eva and Peshkov10 and Sydoriak and 
Roberts20 and also shown in Fig. 3, show a critical 
point of 0.88°K at X3c=0.64. Our results are given in 

20 S. G. Sydoriak and T. R. Roberts, Phys. Rev. 118, 901 (1960). 

TABLE III . Comparison of experimental results with rough 
theoretical Xz values for coexisting liquid phases below Tc using 
a simple cubic permutation lattice with effective mass ratio 
(mz'/nii) =0.914 and a body-centered cubic space lattice. 

Coexisting X3 values 
T(0E) Theory Experiment 

~ 0 8 0.40-0.80 0.472-0.740 
0.7 0.30-0.88 0.365-0.805 
0.6 • • • 0.290-0.860 

Table II and depend on which combination of permuta
tion and space lattices were chosen for the calculations. 
We cannot really differentiate between use of an sc 
or a bec space lattice since their c2 values from Eq. (58) 
are so close. The fee space lattice leads to Tc values that 
are too high. Perhaps this is connected with the 
fact that the eight nearest neighbors on a bec 
lattice are more in accord with the actual spatial 
arrangements in liquid helium as revealed by neutron 
scattering work,21 which indicate that on the average 
there are 8.5 nearest neighbors, than are the twelve 
nearest neighbors On a fee lattice. It is satisfying to 
note that our calculations predict an asymmetric phase 
separation curve and in the right direction (X3 c>i). 
This asymmetric effect arises in these calculations only 
from the quantum statistical terms but this is probably 
an artifact of our crude treatment of the dynamical 
terms and as we shall see below a better treatment of 
these dynamical terms is certainly required to arrive 
at correct excess entropies of mixing. In the Prigogine18 

theory of isotopic mixtures, which neglects the effects 
of quantum statistics, the simplest expression for the 
excess Gibbs function [Eq. (19.3.7) of Ref. 18] leads to 
an asymmetrical phase separation but shifted to the 
wrong side, i.e., XZc<h This result of the Prigogine 
theory has only become calculable since the publication 
of compressibility data22'23 on the pure isotopes. 

It is extremely difficult to estimate numerically by 
the method of common tangents the Xz values for the 
two liquid mixtures that are in equilibrium at any 
given T below Te. Hence, we shall not attempt to plot a 
theoretical phase-separation curve. We were premature 
in doing so in our report to the Toronto Conference24 

and, in fact, the E values on which that phase separation 
curve was based have since been revised. Taking the case 
of sc permutation lattice with effective mass ratio,24a 

(w3
//w4

/) = 0.914 and bec space lattice for which the Tc 

is 0.9 °K, we compare in Table III some rough estimates 
2 1 D. G. Hurst and D. G. Henshaw, Phys. Rev. 91, 1222 (1953); 

100, 994 (1955). 
22 H. L. Laquer, S. G. Sydoriak, and T. R. Roberts, Phys. Rev. 

113, 417 (1959). 
23 R. H. Sherman and F. J. Edeskuty, Ann. Phys. (N. Y.) 9, 

522 (1960). 
24 C. E. Hecht, R. Kukuchi, and P. R. Stein, in Proceedings^ of 

the Seventh International Conference on Low-Temperature Physics, 
edited by G. M. Graham and A. C. Hollis Hallett (The University 
of Toronto Press, Toronto, 1961), p. 637. 

2ifk Note added in proof. This mass ratio corresponds to mz' = 
2.00 mz in (46.2) together with nti in (45). 
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of the coexisting X 3 values with the experimental 
results. Both our calculations and the experimental 
results show that the phase separation line for He3-rich 
mixtures approaches the temperature axis, as T —> 0, 
more rapidly than does the line for He4-rich mixtures. 
This is in qualitative accord with the deductions drawn 
by Edwards and Daunt25 from the theories of Zharkov 
and Silin26 and Pomeranchuk.27 In fact, the former 
theory indicates that the phase separation line for 
He3-rich mixtures is asymptotic to the temperature 
axis as T —* 0, while the latter indicates the possibility 
of the phase separation line for He4-rich mixtures not 
passing through the origin of the phase diagram thus 
leading to a stable isotopic mixture at the absolute 
zero. Our numerical results are not extensive enough to 
enable us to draw conclusions about an asymptotic 
approach to the temperature axis on the He3-rich side 
but from Eq. (59) the second derivatives of the molar 
Gibbs function at fixed T tends to minus infinity as 
T —* 0 and this means phase separation. Intuitively we 
would expect from the Third Law of Thermodynamics 
that this phase separation would be into two pure 
phases at the absolute zero. However, on a purely 
phenomenological basis the suggestion of De Bruyn 
Ouboter and Beenakker28 that the excess entropy of 
mixing due to nonideal effects could tend to R[_X% lnX3 

+ (1 —X3)ln(l—X3)] (negative) at the absolute zero 
such that the total entropy of mixing still goes to zero 
would also be in accord with the Third Law. 

Turning to the excess functions of mixing we can 
compare our calculated results with the values derived 
by Taconis et alP from an extensive series of specific 
heat and vapor pressure measurements. Experimen
tally the molar excess enthalpy of mixing HE is always 
positive and increases with increase of temperature. 
The molar excess entropy of mixing SE is much more 
complicated being positive always above 1.5°K but 
negative in the He4-rich mixtures at temperatures less 
than 1.5°K and finally being everywhere negative for 
temperatures less than 1°K. The molar excess Gibbs 
function is found always to be positive but measure
ments have not extended above 1.7°K. Theoretically 
our excess Gibbs functions are not positive enough and 
in fact are negative above 1°K if we use the bcc space 
lattice. They become positive in 'time' to effect the 
phase separation predicted in Table II . The theoretical 
SE values are always much too positive and never 
negative and thus finally the theoretical HE values are 
much too positive. We should recall that we have 
neglected any volume change on mixing whereas experi-

25 D. 0. Edwards and J. G. Daunt, Phys. Rev. 124, 640 (1961). 
26 V. N. Zharkov and V. P. Silin, Zh. Eksperim. i Teor. Fiz. 37, 

143 (1959) [translation: Soviet Phys.—JETP 10, 102 (I960)]. 
2 7 1 . J. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 19, 42 (1949). 
28 R. De Bruyn Ouboter and J. J. M. Beenakker, Physica 27, 

219 (1961). 
29 R. De Bruyn Ouboter, K. W. Taconis, C. Le Pair, and J. J. M. 

Beenakker, Physica 26, 853 (1960). 

FIG. 4. Excess Gibbs free energies of mixing in He3-He4 liquid 
mixtures at 0.9°K from theory (circles) and experiment (solid 
curve) using model combination of a simple cubic permutation 
lattice with effective mass ratio (ms'/m/) =0.914 and a simple 
cubic- or body-centered cubic space lattice. 

mentally30 the excess volumes are negative and increas
ing in absolute magnitude with increase of temperature. 
This neglect could tend to make our SE values too 
positive. Nevertheless, it is clear that our theory cannot 
give a correct description of the behavior of SE which 
depends so sensitively on the details of both statistical 
and dynamical effects. I t should be noted that from 
Eq. (64.2) our calculated SE depends only on the 
statistical effects since our simple way of treating the 
dynamical effects adds in a regular solution term in the 
expression for the excess Gibbs function and the excess 
entropy of mixing for regular solutions is zero. 

We have chosen to display our theoretical results for 
the model combination of sc permutation lattice with 
effective mass ratio 0.914 and bcc or sc space lattice. 
The results are not qualitatively different for other 
model combinations. For fixed temperature of 0.9°K 
we give in Fig. 4 the experimental GE curve and various 
calculated points while in Fig. 5 we give the experi
mental SE curve and various calculated points. 

SUMMARY 

In this paper the fruitful Feynman treatment of the 
statistical thermodynamic properties of a system of 
interacting bosons has been extended to treat semi-

30 E. C. Kerr, in Proceedings of the Fifth International Conference 
on Low-Temperature Physics, edited by J. R. Dillinger (The Uni
versity of Wisconsin Press, Madison, 1958), p. 158. 
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phenomenologically a system of interacting bosons and 
fermions. This has been applied to liquid He3-He4 

mixtures and the X transition characteristic of a 
cooperative interaction between bosons has been seen 
to persist in these mixtures as long as any He4 atoms 
are present. The X line follows the experimental results 
closely up to X3=0.5 irrespective of the effective mass 
of the He3 atoms while above X3=0.5 the theoretical X 
temperatures are too high. An asymmetric phase 
separation has been predicted in these mixtures below 
0.9°K and the phase-separation curve is estimated to 
run outside the X line at sufficiently high He3 concentra
tions (X3>0.85) so that in this region the experimental 
X line will appear to coincide with the phase-separation 
curve. Experimentally29 this apparent coincidence of X 
line and phase-separation curve occurs for X3>0.73. 

We have not attempted to calculate the heat capac
ities of the mixtures and so cannot directly say what our 
models predict for the nature of the mixture heat 
capacity at the mixture X temperature. From the 
theoretical results in III for pure He4, however, we 
expect that our theory gives a second-order transition 
at the mixture X temperatures. Taconis et al.29 suggest 
that the experimental transition in the mixtures may be 
strictly second-order whereas experiment on pure He4 

indicates31 a transition of a more complicated nature, 
i.e., a second-order transition combined with a log
arithmic singularity in the heat capacity. 

Chester32 first pointed out that the quantum dynam
ical or "diffraction" effects and the statistical effects 
might be considered as two competing mechanisms in 
settling the properties of He3-He4 liquid mixtures. 
As a result of the present work we may cite two points 
supporting this concept. First, the statistical effects 
alone do not lead to isotopic phase separation but the 
dynamical effects alone would do so. This has received 
independent experimental verification from the work of 
Edwards et a/.33 who report isotopic phase separation 
in solid mixtures of He3-He4 at pressures in excess of 

31 M. J. Buckingham and W. M. Fairbank, in Progress in Low-
Temperature Physics III, edited by C. J. Gorter (North-Holland 
Publishing Company, Amsterdam, 1961), p. 80. 

32 G. V. Chester, in Proceedings of the Second Symposium on 
Liquid and Solid Helium Three, edited by J. G. Daunt (Ohio 
State University Press, Columbus, 1957), p. 170. 

33 D. O. Edwards, A. S. McWilliams, and J. G. Daunt, Phys. 
Rev. Letters 9, 195 (1962). 

FIG. 5. Excess entropies of mixing in He3-He4 liquid mixtures 
at 0.9 °K from theory (circles) and experiment. Conventions as 
in Fig. 4. 

30 atm. In such solid mixtures the atoms are localized 
and should obey Boltzmann statistics and not exhibit 
nonideal behavior due to statistical effects. Secondly, 
the excess entropy at 0.9°K as calculated by our theory 
depends only on the statistical effects and is much too 
positive while the excess entropy at 1.4°K as calculated 
with the neglect of statistical effects from the theory 
of Prigogine by Simon and Bellemans34 is much too 
negative. It does not, however, seem that the statistical 
effects should dominate at lowest temperatures. 
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