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The effect of isotopic defects on the decay of the momentum autocorrelation function and on the trans­
port of energy in a harmonic crystal is investigated. A spectral representation is obtained for the classical 
momentum autocorrelation function of particle j , pjj{t). The spectral density is directly related to the 
normal mode frequency spectrum of the crystal. The recent investigations of pa (t) in a perfect one-dimen­
sional crystal and a one-defect one-dimensional crystal are discussed as special cases of this general Wiener-
Khinchin formula. The quantum mechanical momentum autocorrelation function of the defect particle 
in a one-defect crystal is treated in detail for the case in which the defect particle is very heavy. The explicit 
results obtained are of interest in the theory of Brownian motion. A formal relation expressing the average 
momentum autocorrelation function in an isotopically disordered crystal as the cosine transform of the fre­
quency spectrum of the crystal is derived. The energy transport property is studied in terms of (p2[j,tj), 
the time-dependent ensemble average dispersion of the momentum of lattice particle j when the crystal 
is divided initially into two regions characterized by different temperatures. A simple identity is derived, 
which expresses {p2[j,f]) in terms of the solution of a particular initial value problem of the crystal lattice 
equations of motion. The local temperature at lattice site j , which is related to the momentum dispersion 
by means of the definition {p2[_j ,f\) = M jkBT[j ,t], is determined analytically in the case of the perfect 
and the one-defect one-dimensional crystals. The local temperature is determined numerically with the aid 
of an IBM-7090 computer for five isotopically disordered 100-particle one-dimensional crystals. 

INTRODUCTION 

TH E purpose of this paper is to unify and extend 
the investigation of the effect of isotopic impuri­

ties on the statistical dynamical properties of harmonic 
crystal lattices. The crystal model considered is a 
perfect periodic lattice in which one or more of the 
lattice particles has a mass M which is different from 
the mass m of the remainder of the lattice particles. 
The forces between particles are linear in their relative 
displacements. Two problems are considered in detail. 
The first is concerned with the effect of isotopic impuri­
ties on the rate of decay of the classical and the quantum 
mechanical momentum autocorrelation function in a 
crystal characterized by a uniform temperature. The 
second problem is concerned with the effect of isotopic 
impurities on the transport of energy in a lattice which 
is characterized by an initial nonuniform temperature 
distribution. The former problem, which deals with 
fluctuations in an equilibrium ensemble, has received a 
great deal of attention recently1-6; the latter problem 
has not. Section A of this paper is devoted to the study 
of the momentum autocorrelation function and Sec. B 
to the energy transport problem. In Sec. A, a spectral 
representation of the momentum autocorrelation func­
tion is obtained for a canonical ensemble. In such an 
ensemble, the momentum of a lattice particle is a 
stationary Gaussian random variable and the spectral 

1 R. J. Rubin, in Proceedings of the International Symposium on 
Transport Processes in Statistical Mechanics, August, 1956, edited 
by I. Prigogine (Interscience Publishers, Inc., New York, 1958), 
p. 155. 

2 P. C. Hemmer, thesis, Trondheim, Norway, 1959. 
3 R. J. Rubin, J. Math. Phys. 1, 309 (1960). 
4 R. J. Rubin, J. Math. Phys. 2, 373 (1961). 
6 R. E. Turner, Physica 26, 269 (1960). 
6 S . Kashiwamura, Progr. Theoret. Phys. (Kyoto) 26, 568 

(1961); 27, 571 (1962). 

representation is a version of the Wiener-Khinchin 
relation between an autocorrelation function and its 
spectral density. In the present application, the 
spectral density is directly related to the normal mode 
frequency distribution of the lattice. In Sec. Al the 
recent investigations of the classical momentum auto­
correlation function in a perfect one-dimensional 
crystal2 '7-9 and a one-defect crystal1-6 are discussed as 
special cases of the general Wiener-Khinchin formula. 
A formal relation between the average momentum 
autocorrelation function in an isotopically disordered 
crystal and the frequency spectrum of the crystal is 
obtained in Sec. A2. The quantum mechanical momen­
tum autocorrelation function of a very heavy defect 
particle in an otherwise perfect one-dimensional 
crystal is treated in Sec. A3. The results in this section 
are of special interest in the theory of Brownian motion. 

In Sec. B a particular energy transport problem is 
treated. Except for the familiar result that the thermal 
resistance of a harmonic crystal is zero, very little is 
known about the energy transport properties of such 
systems. The purpose of Sec. B is to formulate and to 
study in detail an energy transport property of a one-
dimensional harmonic crystal and compare the results 
obtained for (1) the perfect crystal, (2) the crystal 
containing one isotope defect, and (3) the isotopically 
disordered crystal. The energy transport property is 
defined for a spatially nonuniform ensemble. The 
nonuniform ensemble is prepared by dividing the 
crystal lattice into two regions and clamping the 
particles in the surface between the two regions in 

7 G. Klein and I. Prigogine, Physica 19, 1053 (1953). 
8 P. Mazur and E. W. Montroll, J. Math. Phys. 1, 70 (1960). 
9 L. S. Garcia-Colin, Technical Note AFOSR-TM-60-466, 1960, 

Institute for Fluid Dynamics and Applied Mathematics, Univer­
sity of Maryland (unpublished). 

964 



M O M E N T U M A U T O C O R R E L A T I O N F U N C T I O N S 965 

their equilibrium positions so that no dynamical 
disturbance in one region can be communicated to the 
other. The two isolated regions are characterized by 
different canonical distributions of coordinates and 
momenta, i.e., the temperatures in the two regions are 
different. In such an ensemble, when the clamped 
surface particles are released, the momentum of each 
particle is a nonstationary Gaussian random variable. 
Thus, the momentum distribution function for a lattice 
particle is a simple Gaussian function; and we identify 
the time-dependent dispersion in the momentum of the 
particle with a local temperature. 

A formal expression is derived for the time-dependent 
dispersion of the momentum of a lattice particle which is 
valid for a one-, two-, or three-dimensional harmonic 
crystal. The associated local temperature in the middle 
of the hot region of the lattice is studied analytically in 
the case of the perfect one-dimensional lattice in Sec. 
Bl and in the case of the one-defect one-dimensional 
lattice in Sec. B2. In Sec. B3 it is studied numerically 
with the aid of an IBM-7090 computer for several 
isotopically disordered one-dimensional crystals con­
sisting of 100 particles, 50 of mass Wi and 50 of mass 
^2. In all three cases it is clear that energy propagates 
at the speed of sound, a result which is related to the 
infinite thermal conductivity of the crystals. However, 
the tails of the temperature-time curves are significantly 
different in the three cases. 

Formal Solution of Classical and Quantum 
Mechanical Equations of Motion 

We now obtain a formal solution of the classical and 
quantum mechanical equations of motion of a lattice 
of harmonically coupled particles which is used in 
Sees. A and B. The solution of the classical equations of 
motion expresses the momenta (or positions) of the 
lattice particles as time-dependent linear combinations 
of initial normal coordinate positions and momenta. 
The solution of the quantum mechanical equations of 
motion in the Heisenberg representation can be obtained 
from the classical solution by replacing the normal 
coordinate positions and momenta by their operator 
equivalents.10 

The kinetic and potential energy quadratic forms for 
a harmonic crystal lattice can be written most con­
veniently in matrix notation as 

i±TM± and £xrVx, 

respectively, where M is a diagonal matrix whose ith 
diagonal element Mi is the mass of the particle at 
lattice site i (particle i). V is the positive semidefinite 
potential energy matrix, and x and x are column vectors 
whose ith components x[i,f\ and %[i,f\ are, respectively, 
the displacement from equilibrium and the velocity of 
particle i in a given lattice direction. The superscript T 

10 A. Messiah, Quantum Mechanics (Interscience Publishers, 
Inc., New York, 1961), Vol. 1, Chap. 12. 

denotes the transpose of a matrix. The classical equa­
tions of motion in this notation are 

Mx„=-Vx. (1) 

To solve Eq. (1), introduce the vector y=M1/2x, and 
obtain y„=-Wy, where W=M-1/2VM~1/2. Then de­
fine the new vector Q=Sry where the yth column of 
S is the jth normalized eigenvector of the symmetric 
matrix W associated with the frequency coy. [S is an 
orthogonal matrix and J^j Sjk2=J^kSjk2=^.2 The 
equation of motion in the new variables is diagonal in 
form 

Q „ = - a 2 Q , (2) 

where the yth equation of motion is (?[jV]= — w/Qfj,/]. 
The general solution of Eq. (2) is 

Q(0 = ^-1sin(Q/)P(0)+cos(aOQ(0) (3) 
and 

P(0 = cos(Q/)P(0)-Q sin(aOQ(0), (4) 

where Y(t) — Qt(t) and the matrix functions sin(12/) 
and cos(£M) are 

oo ( - l ) ^ 2 n + l „ (—l)nt2n 

J2 &2n+1 and £ a2-, 
n=o (2H-1)! »-<> (2n)l 

respectively. Consequently, the general solution of 
Eq. (1) is 

x^HM-^SSX-1 sin(aOP(0)+M-1/2S cos(Q0Q(0) (5) 

and 

p(/) = M1/2S cos(aOP(0)-M1/2Sft sin(QOQ(0), (6) 

where the particle momenta are represented by p(/) 
= Mx(/). 

The corresponding solutions of the Heisenberg form 
of the quantum mechanical equations of motion can 
be obtained very simply from the classical solutions in 
Eqs. (5) and (6). Consider the case of a harmonic 
oscillator with the Hamiltonian J(P2+o>2()2). The 
Heisenberg equations of motion for the operators O 
and ty are 

where [ G , § ] denotes the commutator — (i/ft)(Q^) 
— § 0 ) . Due to the special commutation properties 
of ^ and Q with the Hamiltonian § , the Heisenberg 
equations of motion are identical with the classical 
Hamiltonian equations of motion of the oscillator. 
Consequently, corresponding to the classical solution in 
terms of the initial values Q(0) and P(0), 

(3(0 = cosco/(3(0)+co-1 sinco/P(0) 

P(t)=-o) sina)tQ(0)+cosa)tP(0), 

one can write the quantum mechanical solution10 in 
terms of the initial values of the operators £X(0) and 
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* ( 0 ) , 
O (t) = cosa>/€l (0)+0T1 sina>/$ (0) 

$ ( * ) = - a> sinco/Cl (0) + cosa>/$ (0). 

This correspondence is also valid for a system of 
coupled oscillators. Thus, the solution of the Heisenberg 
equations of motion for a harmonic crystal lattice can 
be obtained from the classical solution by a simple 
substitution 

S ^ M - ^ S f l r 1 s i n ^ S P W + M - ^ S cos(n*)jQ(0) (7) 

and 

p(t) = M1^ c o s C Q O ^ W - M ^ S G sin0CM)O(0), (8) 

where the components of the vectors %(i), p(t) and 
0 ( 0 ) , 5P(0) are the operators associated with the 
corresponding classical components of x(t)7 p(t) and 

Q(o), P(o). 
A. THE MOMENTUM AUTOCORRELATION 

FUNCTION 

Time-correlation functions play a central role in the 
theory of Brownian motion,11 in studies relating to 
irreversible behavior 2,7,8,12,13 and in the calculation of 
transport coefficients14,15 in many-body systems. In 
view of these general theoretical connections and the 
intrinsic interest in the properties of harmonic lattices 
containing defects, many different aspects of the 
calculation of correlation functions in harmonic crystals 
have appeared in the literature recently. For example, 
Klein and Prigogine,7 Mazur and Montroll,8 Hemmer,2 

and Garcia-Colin9 have investigated the time-dependent 
behavior of the momentum autocorrelation function in 
perfect crystals. These authors place particular emphasis 
on irreversible or ergodic behavior in the limit in which 
the number of lattice particles TV is infinite. Rubin,1,3,4 

Hemmer,2 and Turner5 have studied the time depend­
ence of the correlation functions of a single heavy 
isotope particle substituted in an otherwise perfect 
crystal. Kashiwamura6 has considered the behavior of 
a light mass defect in an infinite, one-dimensional 
crystal and has noted that the momentum autocorrela­
tion of the light isotope does not decay to zero, but is 
instead a periodic function of the time. In the general 
case of harmonically coupled systems, formal expres­
sions for correlation functions have been obtained by 
Turner,16 Magalinskii,17 and Kogure.18 In addition, 
there are several investigations of the time-dependent 

11 S. Chandrasekhar, Rev. Mod Phys. 15, 1 (1943). 
12 A. I. Khinchin, Mathematical Foundations of Statistical 

Mechanics (Dover Publications, Inc., New York, 1949), pp. 
66-69. See also P. Mazur, Rend. Scuola Intern. Fis. Enrico 
Fermi, 10, 283 (1959). 

13 J. Meixner, Z. Naturforsch. 16a, 721 (1961). 
14 M. S. Green, J. Chem. Phys. 22, 398 (1954). 
15 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). 
16 R. E. Turner, Physica 26, 274 (1960). 
17 V. B. Magalinskii, Zh. Eksperim. i Teor. Fiz. 36, 1942 (1959) 

[translation: Soviet Phys.—JETP 9, 381 (1959)]. 
18 Y. Kogure, J. Phys. Soc. Japan 16, 14 (1961); 17, 36 (1962). 

behavior of particle coordinates in perfect19-21 and 
imperfect22 lattices. All of these investigations are 
closely related. In this section we will study in some 
detail a formal spectral representation of the momentum 
autocorrelation function which has been obtained by 
Turner.16 This representation serves as a convenient 
starting point for all of the above-mentioned work on 
the one-defect problem. In addition, the same represen­
tation can be used in a formal investigation of the 
momentum autocorrelation function of a particle in an 
isotopically disordered crystal, i.e., a crystal in which 
the two masses M and m are distributed in an aperiodic 
manner on the lattice sites. 

Consider the general problem of calculating the 
ensemble average value of the product of p[i,f\ the 
momentum of particle i at time t and p[_j, / + r ] the 
momentum of particle j at time / + r , (p\j,QpLj> ^ + r ] ) -
The momentum of particle i expressed as a linear 
combination of initial conditions, is given by the ith 
component of p(/) in Eq. (6) 

# P , ' ] = £ y M^Sij cos(coy/)P[y,0] 
— £ / MMSiftj s i n ( ^ ) e [ i , 0 ] . 

In calculating the ensemble average (p\j>QpLj, ^+T\])> 
it is assumed that particle coordinates and momenta 
are distributed in phase space as in the canonical 
ensemble. The equivalent expression for the canonical 
distribution in the phase space of the normal coordinates 
is 

•w[P(o), Q(0)]=n(2x^r)-1/2 exP{-P2[y,o]/2^r} 
i 

XlK2irkBTa>r2)-in exp{ -o>?Q*{_j,0y2kBT). (Al) 
3 

From this expression, it is clear that 

(PUfllQ£kfli)=o, (PLj,o-]Plk,oj)=kBT8kj, 
and 

where dkj is the Kronecker delta; and the expression 
ior(p£i,Qpti,t+rJ)is2Z 

(pli,Qp[J,t+Tl) 
= MMM?l2kBT Zk ^^(cos(co^)cosCco f c(/+r)] 

+s in (o)kt) sin[co* (t+ r) ] } 
= MMM,x,*kBT £ * SikSjk cos (mr) (A2) 

= M / ' W / / 2 ^ r ( S cos(^r)S r) ,y. (A3) 

19 W. R. Hamilton, Proc. Irish Academy 1, 267 and 341 (1839); 
See also A. W. Conway and A. J. McConnell, The Mathematical 
Papers of Sir Willian Rowan Hamilton (Cambridge University 
Press, New York, 1940), Vol. 2, pp. 451-582, 599. 

20 T. H. Havelock, Phil. Mag. 19, 160 (1910). 
21 E. Schrodinger, Ann. Physik 44, 916 (1914). 
22 E. Teramoto and S. Takeno, Progr. Theoret. Phys. (Kyoto) 

24, 1349 (1960). 
23 Relations of this type have been obtained by Turner, Ref. 8. 
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The ensemble average is independent of t as it should be. 
For r = 0 , Eq. (A2) reduces to 

{plhQpUiQ-Mtm^kBTdij (A4) 

because the matrix S is orthogonal. If we define the 
momentum autocorrelation function of particle i as 

Pu(T) = (pti,tMh t+T~])/(p*ti,Q), 
then 

Pu{r) = Y.k Sik2 cosOw-) (A5) 

= [ S c o s ( a r ) S r ] ^ (A6) 

a diagonal element of the propagator matrix 

Scos (Qr)S T . 

An analogous definition of the cross correlation between 
the momenta of particles i and j is 

pdr)=(Pti,Qpu, t+T-])/(p2\j,Qyi2(p*u,Qy12 • 

Consequently, the expression for pij(r), which is 

P * ( T ) = D S C O S ( O T ) S ^ , (A7) 

is symmetric in the particle labels i and j , i.e., 

Pij(T) = Pji(r). 

Expressions for {x[i,f]x[j, t+rj) and (%[i,f\fi[j, t+rj), 
which are analogs of the cross correlations in particle 
momenta, can be obtained in an identical manner. 

A second interpretation can be given to Eq. (A5) due 
to the linearity of the equations of motion. For the 
special initial condition in which 

x(0) = 0 and p(0)=A<, (A8) 

where all components of A; are zero except the ith 
component which is equal to unity, we denote the 
solution of the equations of motion by p(<— i, r) and 
x(<— i, T) . I t follows from Eqs. (5) and (6) that for this 
special initial condition Q(0) = 0 and P(0) = S rM-1 /2A;. 
The expression for p(<—i, r ) , the set of momenta of 
the lattice particles for the special initial conditions 
Eq. (A8), is then 

p(<_ i9 T) = M1/2S costQiOS^M-^A.'. (A9) 

The ith component of p(<— i, r) is 

p[i+-i, T] = Pii(T), 

the momentum autocorrelation function of particle i. 
This identity between a dynamical and a statistical 
quantity for an arbitrary mass distribution and lattice 
structure is a generalization of a result obtained in the 
case of a simple cubic lattice containing a single isotopic 
impurity.3,4 

There is a general dynamical reciprocity relation 
which is implicitly contained in Eq. (A9) and which 
was noted in the special case of the single defect 
problem.3'4 This relation between p[_j*—i,T~] and 
p[i <— j9 r ] follows from the symmetry of the propaga­

tor S cos(iir)S' r . I t is 

Mr'PlJ <- *, r ] = Mclp\t « - j , r ] . (A10) 

Similar kinds of relations are well known in the theory 
of electric networks and the theory of acoustics.24 

The cross correlation PH{T) which measures the 
average response at lattice site i resulting from an initial 
disturbance at site j is intimately connected with the 
energy transport properties of these lattice systems 
which are discussed in Sec. B. In the remainder of this 
section we first discuss the properties of the autocor­
relation function PJJ(T) for the infinite one-defect one-
dimensional lattice. With these results as background, 
we next consider some formal properties of pj3(r) which 
are pertinent in the problem of the isotopically dis­
ordered lattice. Finally, we consider the quantum 
mechanical modification of pyy(r) and obtain some 
explicit results for the quantum mechanical momentum 
autocorrelation function of a very heavy defect particle 
in an infinite, one-dimensional crystal. 

(Al) The One-Defect Crystal: 
Classical Mechanics 

In this section the properties of the momentum 
autocorrelation function in the one-defect one-dimen­
sional crystal are discussed from the point of view of 
the spectral representation Eq. (A5) 

Pa(0 == Zfc -SV2 cos (a)**) • (A5) 

Consider a one-dimensional crystal consisting of 2N-\-1 
particles with nearest neighbor forces and periodic 
boundary conditions. The particles are labeled from 
—N to N, and particle 0 has a mass M which is different 
from the mass m of the other lattice particles. The 
equations of motion are 

[m+ (M— tn)8or~]x[r,f] 

= «{*[>+1, t]-2x[r,{]+%[?-1, t]}, 
-N^r^N (Al l ) 

with x[-N-l, Q=x[N,Q and x[A 7 +l , *]=a:[ - iV, / ] . 
Rather than determine the normal-mode frequencies 
and vectors for use in Eq. (A5), we solve the equations 
of motion (All) for the initial values in Eq. (A8) by 
introducing the Laplace transform of the particle 
displacements #[/ , / ]• This procedure, which provides a 
direct approach to the problem of calculating the 
momentum autocorrelation function pjj(t) has been 
used1'3,4 to determine poo(0, the autocorrelation of the 
defect particle. Expressions for both pjj(f), JT^O, and 
poo(t) are derived and are given in Eqs. (A20) and (A21). 
These expressions are particularly well suited to treat 
the limit in which the number of lattice particles 
approaches infinity. 

Equations (All) are solved by introducing a generat­
ing function. Multiply the equation for x\jyQ by 

24 H. F. Olson, Dynamical Analogies (D. van Nostrand Co., 
Inc., Princeton, 1943), Chap. 10. 
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(2iV+l)~1/2 exp[27risr/(2N+l)2 and sum the resulting 
set of equations to obtain 

= - 2K{ 1 - COS[2TTV (2N+ l)l)G\j,f\, (A12) 

where the generating function G[s,f\ is 

N 

G[^,/]=(27V+1)-1 / 2 E x [ r , / ] e x p [ 2 7 r ^ / ( 2 ^ + l ) ] . 

Equation (A 12) is to be solved for the special initial 
condition Eq. (A8) in which x(0) = 0 or G[>,0] = 0 
and p(0) = A,- or G[>,0] = (2N+\)~ll2Mrl exp[2irwr/ 
(2AT+1)]. Two cases must be treated separately, JT^O 
and j=0. In case jV^O, Mj=m and the Laplace trans­
form of Eq. (A12) is 

- (2N+l)~1/2m-1 exp[27rwi/(2iV+l)]+(72rC^(7] 

+ <M2i\H-l)-1/2£[0,<r] 
= -2 /cw- 1{l-cos[27rV(2A r+l)]}r[5,(7] , (A13) 

where 

and summing over all values of s, 

mzf ^ f [ - / , cr]r[./>] 
Wicrfp,<r] = — M l / - / , <r] — — — -

m{ l + ^ 2 f [ 0 , o r ] 
(A17) 

An integral representation of pU<—j, f\ for j'^0 is 
given by the standard inversion integral of the Laplace 
transform25 

pD«-j,Q 

mi/m r ( %?*$[-h o-]f [./>]] 

27ri 
da. 

(A18) 

When j=0, the corresponding expression is 

Kt*-o,tj. 
mi/m m r 

- / eat-
<tf [ - ' , * ] 

2wi J£ l+^a-2f[0,(7] 
-da. (A19) 

7o 

£ is a line parallel to the imaginary a axis and to the 
right of all singularities of the integrand. The momen­
tum autocorrelation function pjj(t) is obtained by setting 
l=j in Eq. (A18) and can be written as 

and 

{[>,*] = / e~atx\ 
Jo 

£r,t~]dt. 
Pjj(t) = = — / <?* <tf [0,(7] Ucr. 

^ + { c f [ 0 , c r ] } - i 
(A20) 

Solving Eq. (A13) for r[>,cr], 

r [ ^ ] = ( 2 ^ + i ) - 1 / 2 

w- 1 exp[27rwy/(2A r+l)]-^o-2f[0,(r] 
X-

c72+2/cw~1{ 1 - COS[2TTV (2iV+l)]} 
(A14) 

The corresponding expression for the defect particle is3 

'£, 
Poo(0 = ^ — f e"K<r+{<rf[0,<r]}-i]-^(r. (A21) 

27T '̂ J £ 

Equation (A14) is an implicit equation since £[0,(j] 
still appears on the right-hand side. However, £[0,cr] 
can be determined by multiplying both sides of Eq. 
(A14) by (2iV+l)~1/2 and summing over all values of 
s, — N ^ s ̂  N. The result is 

£[0,<r]=m- lS D > ] - ^ 2 f [0,«r]f[0,(r] 

or 

S C 0 ^ ] = ^ - 1 f D > ] { l + ^ 2 f [ 0 , o - ] } - i , (A15) 

where 

fD>]=(2iv+i)-1 

*r exp{2«X//(2i\H-l)} 

x E , _ * 0 - 2 + 2 K W - 1 { l -cos[2«-V(2iV+l)]} 
(A16) 

The Laplace transform of the momentum of particle 
/, mia^£l,a2, can now be determined from Eq. (A14) by 
multiplying by mia(2W+l)-1/2 e x p [ - 2 7 m ; / ( 2 ^ + 1 ) ] , 

The remainder of this section is devoted to (1) 
developing explicitly the relation between Eqs. (A20) 
and (A21) and the normal mode or spectral representa­
tion of the momentum autocorrelation function, Eq. 
(A5); and (2) determining the form of the spectral 
representation of poo(0 and p#(/) in the limit of an 
infinite lattice as well as the asymptotic time depend­
ence of poo(t) and pjj(t). 

(1) Relation Between the Laplace Transform Solutions in 
Eqs. (A 20) and (A 21) and the Spectral 

Representation of the Momentum 
Autocorrelation Function 

The equivalence between the expressions for poo(0 
and p3'j(t) in Eqs. (A20) and (A21) and the normal mode 
or spectral representation in Eq. (A5) is a necessary 
consequence of the uniqueness of the solutions of the 
crystal lattice equations of motion. This equivalence is 
easily exhibited in the case of the perfect crystal where 
j£=0. Equations (A20) and (A21) are then identical 

25 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1. 
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and the expression for the momentum autocorrelation 
function is 

Pii(0 = — f crf[0,<r><</<7 
2iri J £ 

N 1 r a 
- (27V+1) - 1 E / e'tdcr 

s=-N2iriJ£a
2+o)s^

2 

= (2iV+1)-!+2(2iV+1)"1 £ cos(«.<°>0 , (A22) 
s==l 

where O^°> = 2 ( K / V ) 1 / 2 sin[ir5/(22V'+l)], * = 1 , • • -N. 
Equation (A22) has the same form as Eq. (A5) and has 
been obtained by Mazur and Montroll.8 The calculation 
of pjj(t) in Eq. (A22) for the perfect crystal serves as a 
model for the calculation of pjj(t) and poo(t) for the one-
defect crystal. The integrands in Eqs. (A20) and (A21) 
have simple poles on the imaginary a axis arranged in 
symmetric pairs, a=dzia)k- The sum of the residues of 
the integrand at a pair of poles, zLiuk, constitutes the 
term Sjk2 cos(ukt) or SOJ? cosfakt) in the spectral 
respresentation. These assertions, which are based on 
the fact that Eqs. (A20) and (A21) are unique solutions 
of the equations of motion of a conservative dynamical 
system, can be verified by direct examination of the 
integrands 

i , r n ., ^2r2D>]/f[o,<r] 
and (ra_0,<7j . 

%r+ K [ ( V ] } - i %,+ {erf CO,*]}"1 

(A23) 

The problem of locating the poles of the expressions in 
Eq. (A23) is equivalent to the problem of determining 
the vibration frequencies of locally perturbed systems. 
This last problem has been discussed extensively by 
Lifschitz,26 Lax,27 Koster and Slater,28 and Montroll 
and Potts.29 In the perfect crystal, there are N doubly 
degenerate normal-mode frequencies and one zero-
frequency mode. In the case of the one-defect crystal, 
Lifschitz26 and Montroll and Potts29 have shown that 
aside from the zero-frequency mode, each pair of 
degenerate modes splits. As a result, two distinct groups 
of N normal modes are formed. In the first group of N 
normal modes, the amplitude of the defect particle in 
each mode is zero, and the associated normal-mode 
frequencies are the unperturbed perfect-crystal fre­
quencies cos

(0), s = l , • • •, N. This group of frequencies 
corresponds to the poles of o-f [0,o-] and <72f2[i,o\]/f Q),cr] 
in the integrand for pjj(t) in Eq. (A20). I t is noteworthy 
that these poles are absent in the integral representation 
for poo(t), Eq. (A21), because this group of normal 
modes is orthogonal to the special initial condition 
x(0) = 0, p (0)=A 0 . 

2 6 1 . M. Lifschitz, Suppl. Nuovo Cimento 3, 716 (1956). 
27 M. Lax, Phys. Rev. 94, 1391 (1954). 
28 G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954). 
29 E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955). 

In the second group of N normal modes, the ampli­
tude of the defect particle is different from zero. The 
associated perturbed frequencies are either all increased 
or all decreased depending upon whether the mass of 
the defect particle is, respectively, greater or less than 
the mass of the other particles.30 The maximum possible 
frequency shifts are all limited by the spacing of the 
unperturbed frequencies, except for the maximum fre­
quency in the light mass case (i£<0). These properties 
of the perturbed frequencies can be verified by compar­
ing the location of the poles of C^+{o"fC^or]}~1]~1 

with the location of the poles of erf [0,<r]. In the limit as 
the number of lattice particles approaches infinity, a 
continuous band of frequencies is formed with the same 
limiting frequency distribution g(0)(co) as that of the 
perfect crystal. In addition, in the light-mass case, the 
maximum frequency mentioned above persists as an 
isolated or discrete point whose separation from the 
band is proportional29 to 2 ( / c / w ) 1 / 2 [ ( l - ^ 2 ) - 1 / 2 - l ] . 
The normal mode of vibration associated with this 
isolated frequency is called a "localized" mode because 
the amplitudes of the motion of the lattice particles 
decrease rapidly with increasing distance from the 
light-defect particle. This behavior can be understood 
physically in terms of the band pass characteristics of 
the perfect crystal when regarded as a mechanical 
filter.31 The frequency associated with the light particle 
is greater than the band maximum. Any attempt to 
propagate waves through the crystal with a frequency 
higher than the band maximum results in a rapid 
attenuation of the impressed disturbance with increas­
ing distance from the point of application. Thus, the 
light impurity behaves very much like a self-sustaining 
high-frequency disturbance. Recalling that the weight 
of the yth normal mode in the momentum autocorrela­
tion function of the defect particle [or the special 
initial condition Eq. (A8)] is proportional to 6*0/, 
then it can be anticipated that the localized mode will 
be heavily weighted. In fact, there is a large periodic 
component in poo(0 even in the limit iV= °° .6'22 

(2) Spectral Representation and Asymptotic Time-
Dependence of poo(t) and pjj(t) in the Limit 

of an Infinite Crystal 

In the discussion of the explicit relation between the 
integral representation for p#(/) in Eq. (A20) and the 
spectral representation, the central problem is the 
location of the poles of the integrand. In the case of the 
factor C ^ + K f B V ] } - 1 ] - 1 * the problem of the location 
of the poles involves the solution of a transcendental 
equation. This difficulty can be circumvented by 

30 Lord Rayleigh, Theory of Sound (Dover Publications, Inc., 
New York, 1945), Vol. 1, pp. 119-122. Rayleigh's general inves­
tigation is applied specifically to the isotope defect problem in 
A. A. Maradudin, P. Mazur, E. W. Montroll, and G. Weiss, 
Rev. Mod. Phys. 30, 175 (1958); and in Ref. 29. 

3 1L. Brillouin, Wave Propagation in Periodic Structures (Dover 
Publications, Inc., New York, 1953), p. 19. 
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considering the physically interesting limit in which 
the number of lattice particles approaches infinity. 
The simplification, which is obtained, is due to the fact 
that the limiting density of poles (frequencies) is the 
same as for the perfect crystal. Because the momentum 
autocorrelation function describes a local property of 
the lattice, and because signals propagate with the 
speed of sound, (K/MY12, it can be expected that there 
will be a negligible difference between the autocorrela­
tion functions of the finite and infinite systems in the 
time interval 0 ^ < (2N+1)(K/M)-1/2

7 where (2N+1) 
X (K/M)~1/2 is the time required for a signal to travel 
completely around the finite system.32 Thus, information 
about the relaxation behavior of the momentum auto­
correlation in a large finite system can be obtained from 
the behavior of the infinite system. I t should be 
emphasized that the expressions for p0o(0 and pjj(t), 
which will be derived for the infinite crystal limit, 
follow directly from Eqs. (A20) and (A21). The purpose 
of the preceding discussion of the connection between 
the Laplace transform and spectral representations of 
the momentum autocorrelation function was to remove 
some of the mystery associated with this limit. 

In the limit N —» °° ? the summation in the definition 
of rL/V J? Eq- (A16), can be replaced by an integration, 

lim f Q > ] 
N—>oo 

exp(2xiy6>){o-2+2/cw-1(l-cos<9)}-1^ 

2(*m-1)1/2 l 2 i y | 
2TT 

--(j-l((72+AKnr1)-112 

and 
<r+ (o-2+4/cw-1) - m / 2 

lim f[0,(r] = o-1(cr2+4KW-1)-1/2. 

(A24) 

(A25) 

Using this limiting expression for f[0,cr] in Eq. (A21), 
the autocorrelation function of the defect particle in 
an infinite crystal is 

Poo 00 = 
£+1 

-dor, 
2iri 7 £ ^+((7 2 +coo 2 ) 1 / 2 

(A26) 

obtained by using Cauchy's formula for the closed 
contour shown in Fig. 1. I t follows from Cauchy's 
formula that the line integral along <£ is equal to the 
line integral 6 around the cut joining +icoo to —iooo 
plus the sum of the residues at the poles dbia/ corre­
sponding to the localized mode frequency co' in the 
light defect case (J£<0). The value of co' is determined 
from the condition 

<^+(<72+co0
2)1/2 = 0. (A27) 

I t is easily verified that in case i£<0 there are two roots 
of Eq. (A27), one at a=io>'=io)0(l-Q

2)-112 and one at 
o-= - i o / = - i co 0 ( l -^ 2 )~ 1 / 2 . The final result is 

poo (0 = 2 i r - 1 («+ l ) 

where COO=2(KW~1)1/2, the maximum frequency of the 
perfect crystal. In the limit N —» °°, the poles along 
the imaginary axis, which correspond to the in-band 
vibration frequencies of the crystal, have merged. In 
their place, the integrand in Eq. (A26) contains two 
branch-point singularities, one at either end of the line 
segment of the imaginary a axis over which the poles 
were densely distributed. If the branch-point singular­
ities at +icoo and — iooo are connected by a cut along 
the imaginary axis, then the integrand in Eq. (A26) is 
analytic everywhere in the a plane; and the spectral 
representation of the autocorrelation function can be 

32 J. C. Slater and N. H. Frank, Mechanics (McGraw-Hill 
Book Company, Inc., 1947), p. 167. 

(co0
2-co2)1/2 cos(co/) 

(j£2-l)co2+co0
2 

2 | « ' 

-do) 

+ €($> 
1+ISI 

cos (a//), (A28) 

where e(i^) is a discontinuous factor which equals one 
if £ < 0 and zero if ^ 0 . 

The spectral representation of poo(0 in Eq. (A28) is 
a special case of Eq. (A5) in the limit of an infinite 
one-dimensional crystal. The summation over normal 
modes in Eq. (A5) has been replaced by a weighted 
integral over normal-mode frequencies in Eq. (A28). 
For example, in case all masses are the same ( ^ = 0 ) , 
poo(0 becomes 

PQo(t) = 2ir (coo2" co2)~1/2 cos (ut)d<a. (A29) 

In this expression the quantity 27r-1(coo2—co2)~1/2 is the 
density of normal-mode frequencies g(0)(u) for the 
perfect one-dimensional crystal. In the general case 
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^ 0 , Eq. (A28) can be written as 

(i£+l)(coo2-a>2) 
Poo(t)z 

• /0 

-g(0)(co) cos(o)t)do) 

+ « ( S ) COS (a//) . (A30) 

1+| $1 
Equation (A28), (A29), or (A30) has the general 
structure of a Wiener-Khinchin relation33 between an 
autocorrelation function and its spectral density. In 
the present example the spectral density is 

i w M + f ( ^ ) - ^ ( « - « ' ) ; (A3D 
coo 2 +(S 2 - l )o> 2 1+1 SI 

and in the special case i£=0, the spectral density is 
g(0)(w). The coefficient of g(0)(") in Eq. (A31) is the 
limiting form of SQk

2 as N —> <*> for frequencies in the 
band. 

I t is clear that the cosine transform in Eq. (A28) 
approaches zero as t —» «>. Therefore, the autocorrela­
tion poo(t) approaches zero if M^m and it approaches 
[21 £ | / ( 1 + | £ | ) ] cos (a//), if M<m. Thus the localized 
mode gives rise to a persistent periodic component in 
the momentum autocorrelation function of the defect 
particle. A complete investigation of the time depend­
ence of poo 00 has been carried out by Mazur and 
Montroll8 ( £ = 0 ) , Hemmer2 ( £ = 0 , £ » 1 ) , Rubin3 '4 

( £ = 0 , £ = 1 , £ » 1 ) , and Kashiwamura6 ( £ < 0 ) . Since 
poo(0 is related to a special initial value problem, there 
are a number of dynamical investigations which are 
also pertinent: Teramoto and Takeno22 ( £ < 0 ) , and 
Hamilton,19 Havelock,20 and Schrodinger21 ( £ = 0 ) . The 
latter two authors rediscovered the results obtained by 
Hamilton in 1839. There are only two values of j£, 
4>=0 and £ = 1 , for which p00(0 and Pjj(t), Eqs. (A20) 
and (A21), can be evaluated in closed form. The results 
for £ = 0 are34 

Poo (0 = Pii 00 ==^o(coo0 , 

and for j£= 1 are3 

and 
poo(t) = 2(o)0t) ViCcooO 

(A32) 

(A33) 

Pjj (0 = ^o (coo*)—coo x—/4y+i (woO , (A34) 
dt 

where Jn( ) denotes the Bessel function of the first 
kind of order n. The asymptotic time dependence in 
these cases is different. In the perfect crystal for t —» <*> 

Poo(0~ (2/7ra)0/)
1/2 cos(coo*-7r/4). (A35) 

However, in the single defect crystal (with £ = 1 ) , the 

33 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 
(1945). 

34 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 
Tables of Integral Transforms (McGraw-Hill Book Company, Inc., 
New York, 1954) Vol. 1, p. 240. 

asymptotic formula for poo(0 is 

Poo(0~ir(2/™o08/2 s in (a^-7r /4 ) . (A36) 

There are two different possible asymptotic formulas 
for pjj(t) when particle j is far from the defect particle 
0, i.e., j ^ > l . The two possibilities are 

PjjW~ (2/TTCOO01/2 COS(wrf-TT/4) , y»co0£»l (A37) 

and 

p y y W - 2 - V [ 2 ( 4 i + l ) 2 - l ] ( 2 / 7 r ^ ) 3 / 2 

X sin (corf- TT/4) , «oC$>y. (A38) 

In the former case, Eq. (A37), the decay of pjj(t) is 
characteristic of a perfect crystal. However, after 
sufficient time has elapsed for the defect particle to 
interact with particle j , the decay law is altered to 
r 3 / 2 as in Eq. (A38). 

For any value of ^ > —1 (0<w_1Jkf) in the limit of 
an infinite system, p0o(0 in Eq. (A28) always contains 
a decaying component. Only in the case of a light 
defect — l < j £ < 0 , is there a periodic component as 
well. The asymptotic time dependence of the decaying 
component, the cosine transform in Eq. (A28), can be 
obtained in a straightforward manner.35 The result is 

2n-1($+l) 
J 0 

•«° (wo2-^2)1/2 

o ( £ 2 - l V + c o o 2 
cos(ooi)doo 

-2-17r^-2(^+l)(2/7rcoo03 /2 sin(co0/-7r/4). (A39) 

Equation (A39) agrees with the result obtained by 
Rubin4 in the case i ^ > l , and / —» oo. 

This variety of asymptotic decay formulas for p#(/) 
in the one-dimensional one-defect lattice serves to 
emphasize the significant changes in time-dependent 
behavior accompanying the loss of the translational 
symmetry of the perfect crystal. 

(A2) The Many-Defect Crystal: 
Classical Mechanics 

We now consider the momentum autocorrelation 
function in a lattice with an arbitrary number of 
defects. According to Eq. (A5), we require a knowledge 
of the normal-mode amplitudes and frequencies in the 
limit as the number of particles $1 approaches infinity. 
This problem can be simplified formally by introducing 
the average value of the momentum autocorrelation 
functions of all lattice particles at time /, p(t), 

p(/) = 9 T 1 E < P « ( 0 
= 3l-1£ycos(o)y/). (A40) 

The simpler structure of Eq. (A40) which is due to the 
orthogonal property of S, has been obtained at the 
expense of introducing a second average. The average 

35 A. Erdelyi, Asymptotic Expansions (Dover Publications, Inc., 
New York, 1956), pp. 49-50. 
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autocorrelation p{t) no longer corresponds to a partic­
ular solution of the equations of motion. However, in 
the limit as 91 - ^ oo, when the normal-mode frequencies 
form a continuum (plus possible discrete points), 
Eq. (A40) can be written as 

H p(t) = j g(o)) cos(o)t)do), (A41) 

where g(co) is the limiting form of the frequency distribu­
tion for an arbitrary mass distribution.36 Eq. (A41) 
has the Wiener-Khinchin form, and the spectral density 
of p(t) is g(co). The only detailed information concerning 
g(o)) for a disordered crystal is provided in the numerical 
calculations of Dean37 for one-dimensional crystals 
containing as many as 32 000 particles. The fine struc­
ture (numerous peaks) which he observes in g(co) near 
the high frequency end of the spectrum should give rise 
to a complex behavior of p(t) [assuming that the 
observed form of g(o>) is maintained as 91 —> <x> ] . 

(A3) The One-Defect Crysta l : 
Quantum Mechanics 

The time-dependent behavior of the quantum-
mechanical momentum autocorrelation function of a 
defect particle in a one-dimensional crystal in thermal 
equilibrium is treated in this section. The outline of the 
calculation is identical with that of the classical calcula­
tion. There is, however, a difference in detail due to 
the noncommutativity of $ [ j , 0 3 and O Q ' , 0 ] . Our 
primary interest is in the case in which the defect 
particle is very heavy (££$>!) because it has been 
shown1-4 that in the classical limit the heavy particle in 
a one-dimensional crystal behaves like a free Brownian 
particle.11 That is, all moments of the joint position-
momentum distribution function for the heavy particle, 
except for additive corrections of order ^~1, have the 
same time dependence as the corresponding moments of 
the distribution function for a free Brownian particle. 
I t is shown in this section that the classical exponential 
form of the momentum autocorrelation function of the 
heavy defect persists down to temperatures far below 
the Debye temperature of the crystal. Eventually, 
however, as the temperature decreases toward zero, 
there is a change in the behavior of the autocorrelation 
function. The change becomes significant when the 
mean-square thermal momentum of the heavy particle 
ceases to be large compared to the mean square zero-
point momenta of the perfect lattice normal-mode 
oscillators to which the heavy particle is coupled. The 
precise condition for Brownian-like behavior of the 

heavy particle is ^>1 and 

or 

<E»|0/r, 
where 0 — fio}0/kB is the Debye temperature. In this 
section, the limiting zero-temperature form of the 
momentum autocorrelation function of a heavy defect 
particle is also derived,38 i.e., when $2>1, but ^ « | @ / 7 \ 

The momentum of particle j , expressed as a linear 
combination of initial independent normal-mode co­
ordinate and momentum operators is given by the 
yth component of Eq. (8) 

PU,0=Zk{M^Sjk cos(«*fl$[*,0] 

-MP*S&ak sm(»*OQ[*,0]} . 

In order to determine the quantum mechanical analog 
of the momentum autocorrelation function, we first 
form the operator corresponding to the classical 
quantity pWlPU, t'+Q- I t is39 

ift[i/]PD\ t'+Q+plj, f+Q\>\j,a}. 

We then define the momentum autocorrelation function 
of particle j as 

where 

(PWMj, *'+*]>= t r a c e { p [ / , ^ [ / , ?+(]&} 

and (P is the density matrix 

(P=exp(~^/kBT)/tmco{exp(^/kBT)}. 

# is the Hamiltonian operator for the system. In the 
S£, O variables, § is a sum of independent oscillator 
Hamiltonians, and <P is a product of independent factors 

<P=II e x p ( ^ / 2 ^ r ) [ l - e x p ( - ^ y / ^ r ) ] - 1 

3 

xexP{ - (re,o]+co/o2[i,o])/2*B:r} 
=n>>. 

3 

Consequently, the average ( p [ y / ] p [ y , / ' + * ] ) can be 
simplified with the aid of the relations10: 

t r {^ [ / , 0M£ ,0 ] (P} = 8,-kZh»h coth(tia,k/2kBT), 

t r{O[i ,0]Q[^,0](P} = ^ | ^ - 1 coth(*co*/2*f lr), 

36 This general result is stated in J. Hori, J. Math. Phys. 3, 
382 (1962). Hori attributes the result to Teramoto and Takeno, 
Ref. 22; but these latter authors treat one- and two-defect lattices 
only. 

37 P. Dean, Proc. Roy. Soc. (London) 254, 507 (1960). 

38 A preliminary account of this calculation was given in R T 
Rubin, Bull. Am. Phys. Soc. 7, 16 (1962). 

39 There have been a number of investigations of the uniqueness 
properties of different prescriptions for associating operators with 
classical dynamical variables, see J. R. Shewell, Am. J. Phys. 
27, 16 (1959). Since the operator associated with pU/lpLJ t'+ti 
only involves;products of the form 9\JflJ$Zkfll, ^Q/,0]Q[>,0] 
and Qlj,0j£ilkfij and since the prescriptions are unique for 
these simple products, we will not consider this question any 
further. 
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and 

tr{O£i,0M&,0](P} = Bjtiih 

= - t r { ^ [ * , 0 ] O D ' , 0 » . 

The expression for ($U/1PU/+Q i s 

(PZU'Mti'+Q) 
= Efe MjSjk

2{ [cos («kOcos{co*(*'+0}+sin («**') 
X sin{COA;(/'+/)} ]i^cofc coth (foaic/lksT) 
— §iftcofc[sin (co//) cos {oik {tf+t)} 

~cos(cofcOsin{cofc(/'+0}]} 
= Mj J^k \ho)kSji?{coth.{fioik/2kkBT) 

Xcos(«*0+i sin («*/)}. (A42) 

This expression, Eq. (A42), is independent of t* \ and 
the imaginary part of <p[ i / ]pD' /+*]) i s a n 0( i ( i 

function of the time displacement L Thus, a similar 
calculation of the trace of <p[i, * 7 + 0 O / ] > l e a d s 

to the result 

where * denotes the complex conjugate. Consequently, 
the quantum mechanical momentum autocorrelation 
function of particle j is 

r ^ ) = R e « p [ / / ] p D \ < ' + < ] » / W / ] > , (A43) 

where Re{ } denotes the real part. The result for rjj(t) 
in Eqs. (A42) and (A43) is a generalization of the 
perfect lattice result of Mazur and Montroll.8 

The discussion of the time dependence of the quantum 
mechanical momentum autocorrelation function r#(/) 
will be limited to the system studied classically in 
Sec. Al, namely, a one-dimensional lattice [with 
periodic boundary conditions] containing a single 
isotope defect at lattice site zero. As a further restric­

tion, we consider only the momentum autocorrelation 
function of the defect particle, 

rooW = Re{<p[0,^]p[0, *'+(]>}/<pW]> 
= Lfc i^kSok2 coth(*«fc/'2kBT) 

Xcos(a>kt)/Zk tymSok2 cotMW2A*r) . (A44) 

In the classical limit where fiaik/2kBT approaches 
zero [and \fiuk coth(iiG)k/2k BT) approaches &#r], r0o(0 
approaches poo(0- I*1 this limit an explicit integral 
representation has already been obtained for poo(0; it 
is given in Eq. (A21) as 

POO (t) = £ f c Sok2 COS (wjfcO 

€ + 1 

i J£ 2wi yjB*r+{crf[0,cr]}-
(A21) 

By suitably modifying the path of integration and the 
integrand in Eq. (A21), an integral representation can 
be obtained for the more complicated sum, ]£*• \fimS^ 
X coth (fefc/2&5r) cos (o>/c0, appearing in Eq. (A44). 
Deform £ into a closed curve G, which encloses all 
the zeros of ^+{o"f[0,crl}~1 but excludes all poles of 
yhcr cot (ha/ 2kB T). Then we have the identity ^ 

Re{<p[0/]p[0/+*]>} 

= J2k M^fioikSok2 coth(fi^k/2kBT)cos(cokO 

9+1 r \ha cot(tia/2kBT) 
= M / f'd*. (A45) 

2vi Je $<r+{*{[0,(T~]}-1 

In the limit in which the number of lattice particles 
approaches infinity, the procedure used to transform 
Eq. (A21) to (A26) and then to (A28) can be used for 
the integral in Eq. (A45). The limiting forms of Eq. 
(A4S) for N -» oo are 

Re«p[0,^]p[0,^+/])}=M-

and 

£ + 1 r \h<j cot(fKr/2kBT) 

2iri Je $a+ O2+co0
2)1/2 

•e^da (A46) 

2 r 
=-J f ($+ l ) / 

7T JQ 

(w0
2-a>2)1/23*« coth(*co/2fesr)cos(«0 M\9\ 

da>+e($) fco' coth(tia>'/2kBT)cos(«'*). (A47) 

w - i y w 1+1*1 
In addition to the parameter j£ which appears in the 
classical momentum autocorrelation function poo(0> the 
quantum mechanical momentum autocorrelation func­
tion r00(t) depends upon a second parameter as well, 
fluo/2kBT. The mean-square dispersion in the momen­
tum is given by 

--MT-%(%+1) f 
Jo 

»o (w0
2-<o2)1/!!w cot]i(fto/2kBT) 

(£ 2 - lV+coo 2 

M\%\ 
+ e($) — * « ' 

1+ $ 

-do) 

(A48) 

This result has been obtained recently by Maradudin, 
Flinn, and Ruby40 and by Rubin.38 We list for later use 
the value of trace {p2[0/](P} in the case <£»! when 
r = 0 : 

(PWl>=Mirfy(%+l) f 
Jo 

w° w ( c o o 2 - c o 2 ) 1 / 2 

(^2- lV+coo2 
dco 

Cln(2^)- l ]^7r- 1w 0 ; (A49) 

and note that the corresponding classical value [when 
W 2 * S T < < 1 ] is <£2[0/]>= (%+l)mkBT. 

40 A. A. Maradudin, P. A. Flinn, and S. Ruby, Phys. Rev. 
126, 9 (1962). 

file:///fiuk
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The asymptotic time dependence of R e ( ( p [ 0 / ] 
Xp[0, t'+f})} in Eq. (A46) is similar to the asymptotic 
time dependence of < # [ 0 / > [ 0 , t'+f}) i n Eq. ( A 2 6 ) -
Rather than embark on a complete discussion of the 
time dependence of Re{(p[0/ ]p[0 , t'+f\)} for all 
combinations of values of i£ and iia>o/2kBT, we will 
confine our remarks to the case of a very heavy particle 
£ » 1 and either ^ » J © / T or Q«h®/T. 

£»1 and ^» |©/r . 

First, consider the case where the crystalline medium 
with which the heavy particle interacts is not too far 
below its Debye temperature (T<® but £0/ZV££, 
for example, ^ = 1 0 4 and T = (0 /20) . The time-
dependence of the momentum autocorrelation function 
fooOO can be estimated using the integral representation 
for Re{(p[0/]p[0 , *'+/]>}, Eq. (A46). The expression 
for r0o(0 is 

9+1 r <j)Z cot((j>z) 

2vi Je $z+(z*+iyi* 

Xexp(o>0te)<fe, (A50) 

where 4>=h^/2kBT=^/T. In Eq. (A50) the closed 
path of integration includes the cut extending along 
the imaginary z axis between +i and — i but excludes 
all poles of cf>z cot{<j>z). The method used in estimating 
the integral in Eq. (A50) is essentially the same as the 
method used in treating the classical limit (</>=0). 
Details of the analysis are given in Appendix I. The 
final result [Eq. (1.11) in Appendix I ] , which is identical 
in form with the classical result, is 

roo(0 = e x p ( - e " W ) + 5 ( 0 , (A51) 

where \b(t)\<c(4> ln^)^"-1 and c is of order unity. This 
upper-bound estimate of the deviation of the autocorre­
lation function from exp(— «g~W) in Eq. (A51) is 
valid for values of <j> which are greater than 7r/2 but 
still small compared to ^ . For values of <£<7r/2, the 
corresponding estimate of \8(i)\ is \8(t)\ < ^ _ 1 ; and in 
the classical limit, $ = 0 , the value of c is3 21/2. Thus, we 
have the result that the exponential behavior of the 
momentum autocorrelation function of the heavy 
particle persists, in the approximate sense of Eq. (A51), 
down to temperatures appreciably below the Debye 
temperature of the crystal. 

The classical exponential behavior of the integral in 
Eq. (A50) is associated with a zero of the denominator 
%z+ (s2+l)1 / 2 at 2= - (6)2-1)~1/2, which is close to the 
origin, but on a different sheet of the Riemann surface. 
As the temperature decreases, the poles of the function 
<j)Z cot(02) at 2= ±7T0_1, ±27T0~1, • • • move in along the 
real axis toward the origin. At a sufficiently low tem­
perature, the contribution to the integral from these 
poles overwhelms the contribution from the pole at 
2= — (i£2—1)_1/2. The significant parameter which is 

involved is (j)<£~1. This parameter is the dominant factor 
in the estimate of |5(/)| in Eq. (A51). So long as 0 ^ _ 1 

satisfies the condition ^ j ^ ^ C l , the exponential in 
Eq. (A51) is a precise approximation for foo(t). The 
physical parameters which make up the ratio 0J£-1 can 
be rearranged as follows: 

4>^ = . (A52) 
MkBT 

I t is seen from Eq. (A52) that the condition ^ j g - ^ l 
for the persistence of the exponential form of the 
autocorrelation function is equivalent to the condition 
that the mean square zero-point momenta of all lattice 
normal-mode oscillators, Jm^co, are small compared to 
the mean-square momentum of the heavy particle, 
MkBT. 

I t should be pointed out that the system consisting of 
a heavy isotope defect in a three-dimensional crystal 
can be analyzed in an identical manner. The classical 
result4 that the heavy particle behaves like a Brownian 
oscillator holds true in the quantum mechanical case 
down to temperatures well below the Debye tempera­
ture. The condition which must be satisfied is 

%tnficc0
(*D)/MkBT«l, 

where w0
(3X)) is the maximum frequency of the three-

dimensional crystal. 

6>»1 and Q«h@/T 

Next consider the zero-temperature limit of the 
momentum autocorrelation function in which 0 ^ ~ 1 ^ 1 . 
The expression for rQ0(t) is obtained by combining 
Eqs. (A47) and (A49) in the limiting case ^ » 1 and 
T=0 (or<£=oo) 

rly(\-y2)112 

roo(0 = D n ( 2 ^ ) - l ] - 1 / cos(uQty)dy. (A53) 
Jo y2+<t2 

In Eq. (A53), the factor y in the numerator of the 
integrand, which is the limiting zero-temperature form 
of y cot(^y), significantly alters the classical exponential 
behavior of the integral. The details of the complete 
determination of the time dependence of the integral 
in Eq. (A53) are given in Appendix I I . The principal 
unit of time which appears in the zero-temperature 
momentum autocorrelation function is igwo"1, the same 
as in the classical autocorrelation function. The 
expression for r0o(t) in the time interval O.Oligcoo-1^ 
< lOOigwo-1, which is obtained in Eq. (11.11) in Appen­
dix II , is 

foo( / )^Cln(2^) - l ] - i [exp(^a ;o0^ i (^ - 1 a 'oO 
+exp(-^-1cooORe{£i(^-1co0^-^)}], (A54) 

where Ex(z) = f ^u~xe~udu is defined as real for real 
3>0 . The function r0o(*).in Eq. (A54) is plotted as a 
function of ^>~W in Fig. 2 for the case I£= 104. I t is 
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I.Ol 
FIG. 2. The zero-tempera- \ 

ture quantum-mechanical gl \ 
momentum autocorrelation ' \ 
function r0o(t) is plotted as a J \ 
function oi |>~W for the ' b | \ 
case ^ = 104, and is denoted \ 
by the dashed line. The -4I N. 
classical momentum auto- p N. 
correlation|function .2} \ ^ v ^ ^ 

exp(- £~W) J ^ ^ ^ ^ ^ — 
is denoted by the solid line. _-i ' , 2 3 

1 ^C0ot 

represented by the dashed line. The initial value of 
r0o(t) is one, by definition. The function r0o(0 goes 
through the value zero in the vicinity of t=0,S75^~1o)^J 

assumes a minimum value, which is —0.1558[ln(2j£) 
— I ] - 1 , in the vicinity of /=1.85^a>o"1, and then 
approaches zero from below as — Qn(2^) — l ] ~ x 

X (o)o^~H)~2. In the transition region, where C^wo"-1 

but fcKQoxr1, roo(t) is given by [see Eqs. (11.10) and 
(11.17) in Appendix I I ] 

r o o W ^ C l n ( 2 ^ ) - l ] - 1 [ ~ 7 - l n ( r W ) ] . 

As can be seen in Fig. 2, rOo00 rises very rapidly toward 
the value one in this range. The approximate expression 
for roo(0 in the time interval O . I C O O - ^ ^ I O O J O - 1 is 
obtained by combining Eqs. (II.9) and (11.14). For 
purposes of comparison, the classical momentum auto­
correlation function exp(—J^-1cooO> is plotted as a solid 
line in Fig. 2. 

B. ENERGY TRANSPORT 

In this section we first formulate an energy transport 
problem for a harmonic crystal, and then obtain 
explicit solutions in the case of three one-dimensional 
crystals: (1) a perfect crystal, (2) a crystal containing 
one isotopic defect, and (3) an isotopically disordered 
crystal. The particular energy transport problem which 
we consider 41>42 has been tailored to resemble a standard 
initial value problem for the partial differential equation 
of heat conduction, i.e., a conducting medium divided 
into two regions with different uniform temperatures. 
The solution of the partial differential equation yields 
the temperature distribution as a function of time with 
the thermal conductivity of the medium as a scaling 
parameter for the time. In our investigation, the energy 
transport property is defined for a spatially nonuniform 
ensemble, which is prepared by dividing the crystal into 
two noninteracting regions. This division is accom­
plished by clamping the particles in the surface layer 
between the two regions in their equilibrium positions 
so that a disturbance in one region cannot be com-

41 A preliminary account of the work in this section was given 
in R. J. Rubin, Bull. Am. Phys. Soc. 5, 422 (1960). 

42 E. Teramoto, Progr. Theoret. Phys. (Kyoto) 28, 1059 (1962). 
Professor Teramoto considers some aspects of the perfect one-
dimensional crystal energy transport problem treated in this 
section. 

municated to the other. If there are only nearest 
neighbor interactions, the layer of surface particles is 
one particle thick. I t is assumed that the coordinates 
and momenta of the lattice particles in the two 
regions are characterized initially by independent 
canonical distributions with different temperatures. We 
consider the set of all possible initial conditions weighted 
according to their probability in the nonuniform 
ensemble. When the surface particles are released, there 
is, on the average, a net flow of energy from the warmer 
to the cooler region. Since the momentum of lattice 
particle j at subsequent times is a time-dependent 
linear combination of two independent sets of normally 
distributed variables (the initial particle coordinates 
and momenta), the probability distribution for the 
momentum of particle j is a normal distribution for 
all values of the time.43 Taking advantage of this 
Gaussian property of the momentum distribution of 
particle j , we complete the analogy with the heat 
conduction problem by defining a local temperature 
T[_jj2 at lattice site j as 

TLUXkBM^ifUtl), (Bl) 

where {p2\_j,tJ)^MjkBT[_j,f\ is the ensemble average 
dispersion of the Gaussian momentum distribution of 
particle j at time L 

The ensemble average (p2[_j,tj) for the spatially 
nonuniform ensemble is determined in a straightforward 
manner. The final result, Eq. (B18), is similar to the 
result obtained for the momentum autocorrelation 
function in that (p2[.j,i]) is related to the particular 
initial value problem for the lattice equations of 
motion Eq. (A8). In the case of the perfect crystal 
Sec. Bl , and the almost perfect crystal (single impurity) 
Sec. B2, explicit expressions for the time dependence of 
(p2[.j,t]) are obtained. In the case of the disordered 
crystal Sec. B3, we have calculated (p2£j}tj) by integrat­
ing the equations of motion numerically for a one-
dimensional system of 100 particles for the particular 
initial condition. The numerical results are qualitative 
in nature since we compare (p^jjj) for a perfect 
monatomic crystal with (p2£j,tj) for several isotopically 
disordered crystals. However, a pronounced difference 
in behavior between the ordered and the disordered 
systems is observed. 

According to Eqs. (5) and (6), the initial positions 
and momenta are, respectively, 

x(0) = M-1/2SQ(0) 
and 

p(0) = M1/2SP(0). 

Consequently, the momenta at time t can be expressed 
in terms of x(0) and p(0) as 

p(0 = M^S cos(Q/)SrM"1/2p(0) 

- M ^ S O sin(Q/)S7,M1/2x(0). (B2) 

43 T. W. Anderson, An Introduction to Multivariate Statistical 
Analysis (John Wiley & Sons, Inc., New York, 1958), Chap. 2. 
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Now separate the components of x(0) into three 
groups. The first group includes the coordinates of all 
particles in the hot region, the second group includes 
the coordinates of all particles in the clamped surface 
layer, and the third group includes the coordinates of all 
particles in the cold region. For an arbitrary initial state 
in the nonuniform ensemble, we then have 

where 

x(0)= 
x*(0) 

0 
x«(0) 

(B3) 

where the subscripts h and c label the coordinates of 
the particles in the hot and cold regions, respectively. 
There is a similar expression for the momenta, namely, 

p(0) = 
P*(0) 

0 
Pc(0) 

(B4) 

These expressions for x(0) and p(0) can be written in 
terms of the normal coordinates Qc(0), QA(0) and 
Pc(0), Pft(O) for the two isolated regions with clamped 
boundaries, 

fMAfc-
1/2SttQ*(0)l 

x(0)= I 0 (B5) 
Mec-^SccQ^O) 

and 

P(0) = 
M*»wS*»P»(0) 

0 
MJi>SccPc(0) 

(B6) 

where S^ is an orthogonal matrix whose yth column is 
the yth normalized eigenvector of the symmetric 
matrix Whh^MhjT11^ hhMhh-

112. The matrices Mhh and 
\hh are, respectively, the mass matrix and the potential 
energy matrix for the hot region whose surface particles 
are held fixed in their equilibrium positions. The jth 
normalized eigenvector of Whh is associated with the 
frequency m(j)- Thus, we have the relation S / ^ W ^ S M 
= £lh}?, where Qh\2 is a diagonal matrix whose (j,j)~ 
element is o>h2(j), the square of the jth normal-mode 
frequency of region h when the surface particles are 
held fixed. There is a similar definition of Scc involving 
Mcc, Ycc and Qcc

2. 
As already indicated, the normal coordinates and 

momenta for the hot region and the cold region are 
canonically distributed with temperatures 2 \ and Tc 

[see Eq. (Al)], respectively. The mean values are 
<i>*D",o]e*C*,o]>=o, <p*D-,o]p»Cft,o]>=*2,rAy and 
(QhLjfilQhLkfiJ)==<*>h~2(j)kBThfaj in the classical limit, 
with similar relations for QcZjfil and PCD,0]. Clearly, 
there is no correlation between the h and c components. 
Combining Eqs. (B2), (B5), and (B6), we can express 
the momentum of particle j as 

fUJ>*Mr(t) 
'P»(0)' 

0 
P.(0) 

+t(0 
fQ»(0) 

o 
Qo(o)J 

[Qt)ST 

= M1'2 

' S M 0 1 
0 0 1 
0 0 S 

cosCW1^) 

9 

c 
C 

w 0 0 " 
1 0 0 
1 0 SCJ 

(B7) 

The matrix y(t) is a propagator matrix which governs 
the development in the crystal of normal-mode excita­
tions in the hot and/or cold regions. The ensemble 
average (f\j,i]> is 

'kBTd»k 0 0 
0 0 0 
0 0 kBTcl 

kBThahh-
2 o o 

0 . 0 0 
0 0 kBTcacc-

2 

In Eq. (B8), we can set Tc equal to zero with no loss 
in generality and obtain 

= J f^ r»A^cos(WW/) 

+sin(W1'2*)W1'2 

1»* 0 0 
o o o;cos(w»«) 

[0 0 0J 
WwT1 0 0 

0 0 0 
0 0 0 

W^sinCW^OUy. 

(B9) 

In order to develop the connection between Eq. (B9) 
and a special initial state of the lattice, we rewrite the 
matrix product appearing in the second term of Eq. (B9) 

W1'2 
WM- 1 .0 0 

0 0 0 
0 0 0 

\yi/2 

=W-1'2W 
M ^ V M - W ^ ' 2 0 0 

0 0 0 
0 0 0 

WW-1'2 

Vur1 0 0 
0 0 0 
0 0 0 

= W_1/2M~1/2 V 

The matrix V has the form 

V 

VM-wW-w. (BIO) 

V*» V„s 0 
v.* v.. v„ 
0 Yos \cc 

where V̂ ^ and Vcc are the potential energy matrices for 
the two regions h and c when the surface particles are 
held fixed in their equilibrium positions. The other 
elements of V represent interactions involving the 
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surface laver. The combination 

V,ur* 0 0 

in Eq. (BIO) reduces to 

0 0 0 
0 0 0 

v*,-1 

0 
0 

o o1 

0 0 
0 0 

v= 
I 

VkK Vhs 0 
V8ft V . A V W - ' V * . 0 

0 0 0 
(BH) 

Combining Eqs. (Bl) and (B9) and using Eqs. (BIO) and (Bll), the expression for T[_j,f\ is 

fWu 0 0 
0 0 0 
0 0 0 

0 
+A/ - ! W-1'2 sin(W1'20M-1'2' 

Th-+T\j,f\=A.J
Ticosi(W1i*t) 

1»* 0 0 
0 0 0 
0 0 0 

cos(W1'2/)+W-1'2 sin(W1'20 

Now consider the special initial condition in which 

p(0) = M/'2A,- and x(0) = 0. (B13) 

From Eqs. (5) and (6) it is seen that Q(0) = 0 and 
P(0) = M/'2STM-1'2A,-; and the coordinates and mo­
menta at time / are 

x{t) = M]UH(*-j, 0 = M/'2M-1'2W-1'2 sin(W1'20M-1'2Ay 

= M - i / 2 W - i / 2 s i n ( W i / 2 ^ A j . ( B 1 4 ) 

and 

p(/) = M/'2p(<-;,0=M"2cos(W1'20Ai. (B15) 

It is readily seen that if we compute the energy in 
region h at time t, 8[h *— j t t] using Eqs. (B14) and 
(B15) assuming that the boundary particles are 
clamped in their equilibrium configuration, then the 
result is 

SUA <-/,<] 

= |A/Jcos(W1/20 
UH 0 
0 0 
0 0 

0M-W 

0 
0 
0 

0 
0 

cos(W1 

0 0 
0 0 
0 0 

X M - 1 ' 2 W - 1 ' 2 s i n ( W 1 ' 2 / ) l A y . (B16) 

Upon compar ing E q s . (B16) and (B12), i t is seen t h a t 

o v*. ol 

0 0 0 
X M-i/2x(<-y, t). (B17) 

In the present model, we assume that region h is 
convex, that the number of particles inside region h is 
large compared to the number of surface particles, and 
that particle j is located in the interior of h and far 
from the surface. In this case, the last term in Eq. 
(B17) involving surface layer particles can be neglected 
in comparison with 2&\_k <—j,t] provided that the 

0 Vk. 
V.» V.»V»»-1Vk. 0 
0 0 0 

W~1'2 sin(W1'2/) I A, 

M-1'2W-1/2sin(W1'2oUy. (B12) 

elements of the matrix 

Ms-iM-1'2 
0 

Vsk 

0 

V*. 0 
V.fcV^V*. 0 

0 0 
M-i/2 

are of order un i ty or less. Here M is the average mass 
and R is the average force cons tan t . T h a t these ma t r ix 
elements are of order un i ty follows from the facts t h a t 
(1) the elements of V ^ a n d Yhs are of order R; (2) t he 
diagonal elements of M~1 /2 are of order M~1'2; and (3) 
the elements of YhiT1 which have been obta ined b y 
Montro l l and Po t t s 4 4 for a simple cubic la t t ice in the 
form of a cube, are of order R~l. T h e Mont ro l l -Po t t s 
result is 

(Vm-1) 

J- 2 \ n N 

N+lJ v-i ~\N+ 
• £ I I s i n sin-
. . - u - i I N+l N+l ) / 

7=1 \ 
1 — cos-

s?ir 

N+l 
• ) -

where N is the number of particles in a cube edge and 
n is the dimensionality of the lattice. 

Thus, the final result for Th~lT[j,f\, the reduced 
local temperature at lattice site j , when region h is 
initially at temperature Th and region c is initially at 
temperature Tc=0, is 

Tk*TZj,t>18U*<-J,tl, (B18) 

where S[h*—j,f] is simply the energy content of 
region h in the case of the special initial condition 
x(0) = 0 and p(0) = lf/ / 2A i . The relation between 
7\-1?Ti,G and 2 <§[&<— j,Q was derived under the as­
sumptions that the number of particles in the convex 
region h is large compared to the number of surface 
particles and that particle j is far from the surface. 
Clearly, under the above assumptions, the energy con­
tent of region h is insensitive to the boundary conditions 

1 E. W. Montroll and R. B. Potts, Phys. Rev. 102, 72 (1956). 
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assumed in its calculation. The fixed boundary condition 
used in obtaining Eq. (B9) for (p2Zj,tJ) was introduced 
only in order to treat the matrix VM" 1 . 

In the remainder of this section the application of 
Eq. (B18) to the classical mechanical energy transport 
problem in several one-dimensional crystals is con­
sidered : a perfect crystal, a one-defect crystal, and an 
isotopically disordered crystal. The quantum-mechan­
ical analog of Eq. (B18) can be obtained by replacing 
kBThlhh and kBTclcc by %ftQhh coth(^fiahh/kBTh) and 
ffiQcccoth(ffiQcc/kBTc), respectively. However, we 
will not treat these modifications in this paper. We 
merely observe in this case that (1) there is no simple 
relation between (p2Zj,Q) and an initial value problem; 
and (2) there will be a dependence of the cooling curve 
on the initial temperature difference Th—Tc when 
ftwo/kBTh is of the order of magnitude of unity, or less. 

(Bl) The Perfect One-Dimensional Crystal 

To illustrate the general result which has been 
obtained for the reduced time-dependent local tempera­
ture, we will treat a perfect infinite one-dimensional 
crystal for which particles — L—l and L+l are held 
initially in their equilibrium positions. The portion of 
the crystal between —L—l and L+l is characterized 
by a canonical distribution (temperature Th). The rest 
of the crystal is at Tc=0. In this case, as well as for the 
one-defect one-dimensional crystal, we obtain an 
explicit expression for the ensemble average dispersion 
of the momentum of the particle in the middle of the 
hot region. This dispersion, which is related to a reduced 
local temperature, can be determined from S[h <— 0, t], 
the energy contained between particles —L—l and 
L+l at time / for the special initial condition in the 
infinite lattice, x(0) = 0 and p(0) = AT0

1/2A0. The position 
%[l,Q and momentum p[l,t} of particle / at time t, which 
are associated with the above special initial condition, 
were first determined by Hamilton19 and subsequently 
by Havelock20 and Schrodinger.21 The momentum 
p\J,f\ is also obtained as a special case of Eq. (A18) 

inverting the Laplace transform, one obtains 

m112 r 
pD,f\ = —7 / < r r [ - f , e r > « A r , (A18) 

2iri J & 

where in the present case Mo=Mj=m. In the limit 
TV-*©©, the expression for f|[—./,(/], Eq. (A16), 
becomes 

1 r 
f[-Z,cr] = — / e-ildZ^+2Km-1(l-cosd)']-lde (B19) 

2ir J-* 

/

ir/2 

e-2il*[a2+a>o2 s i n f y ] - 1 ^ . 
-TT/2 

Substituting this last expression in Eq. (A18) and 

#[ / , / ] = w^V-
/

7T/2 

e—2iU 

-7T/2 

cos(o)0t sin<£)d$ 

= W1/2Jr2|I|(<OoO. 

The position of particle I at time / is 

x&Q^mr1 p[l,s~]ds 
Jo 

(B20) 

= wtr1!2 
'•[ Jm (o)os)ds. (B21) 

The expression for the energy S[h <— 0,Q is 

L 
= i Z) J2\l\2(0)Qt) 

l=-L 

ft -j 2 

~1/2 ' U2\i\(uos)-J2n-i\(caos)]ds| 

+ KM~ V 
J2L(o00s)ds\ 

2L 1 ( r<>>Qt -[ 2 

= iJo2(o>ot)+Z Ji2(uot)+- / JiL(s)ds . (B22) 

The last term in Eq. (B22), which is a surface energy 
term, is negligible in comparison with S[h <— Q,f\. I t 
follows directly from the properties of Bessel functions 
that the initial and final values of the reduced local 
temperature are 1 and 0, respectively. Furthermore, if 
the hot region consists of the entire crystal (Z,= oo), 
the constant value of the temperature follows from a 
special case of a well-known addition formula for 
Bessel functions,45 

/ o 8 ( « o O + 2 E Jri2(«oO = L (B23) 

Our principal concern in this example is to determine 
the time dependence of the reduced local temperature 
(the cooling curve) at particle 0 for the case in which 
L is large, but finite. I t is convenient to introduce a new 
dimensionless time variable TL which is measured in 
units of 2JLCO0"1, the time taken by a signal moving at 
the group velocity of very long waves to go from lattice 
site 0 to L, 

TL—t/2La><Tl. 

In terms of this new time variable, the expression for 

45 W. Magnus and F. Oberhettinger, Formulas and Theorems for 
the Special Functions of Mathematical Physics (Chelsea Publishing 
Company, New York, 1949), p. 19. 
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the reduced local temperature can be written as 

2L 
Th-

lT[0JrL] = Jo2(2LrL)+2 
2L / 2L \ 

£"VT4 (B24) 

In evaluating the sum in Eq. (B24), we utilize a uniform 
asymptotic expansion of Bessel functions (with error 
estimates) which has been developed by Olver.46-47 

The expansion, although expressed in a complicated 
parametric form, ultimately leads to a remarkably 
simple result for the sum in Eq. (B24). Details of the 
analysis are given in Appendix I I I . The expression 
obtained for the reduced local temperature, which is 
exact except for correction terms of order (2L)_1, is 

Th-iTZ0,TLl* 
r i , i f r L < l - ( 2 L ) - 1 / 3 

J2/ 7 r )s in- 1 ( l / rL) , if rL> 1 + (2L)~^. 
(B25) 

In Eq. (B25) the reduced local temperature or mean 
local kinetic energy drops abruptly from its initial 
value as soon as signals, which originate when the 
boundary particles — L— 1 and L + l are released, reach 
the middle of the hot region. For large values of TL the 
asymptotic formula for T^T^^TL] is 

n-lr[o,rj-27r-1TL-1. (B26) 

I t will be seen in the next section that the time depend­
ence of the result in Eq. (B26) is determined only in 
part by the dispersion relation between normal-mode 
frequency and wavelength. The time dependence of the 
reduced local temperature for TL^>1 should be compared 
with the analogous result in the classical heat conduc­
tion problem48 for the case of an infinite one-dimensional 
rod with the initial temperature distribution 

ro, %<-L 
r(*,o)=jrA, -L^X^L 

lO, L<%. 

The reduced local temperature in the middle of the 
hot region in this latter case is 

/

L(2D*)~ 1 / 2 

e x p ( - h ^ , 
-L(2D*)~ 1 / 2 

where D is proportional to the thermal conductivity. For 
large values of the time, the expression for Th^Tfij) 
reduces to 

r,r1r(o,o-7r-1L(2^)"1/2, 
a result which is entirely different from Eq. (B26). 

46 F. W. J. Olver, Phil. Trans. Roy. Soc. 247,307 and 328 (1954). 
47 Explicit error estimates of the asymptotic series derived in 

Ref. 46 are given in F. W. J. Olver, Tables for Bessel Functions of 
Moderate or Large Order, Mathematical Tables, National Physical 
Laboratory (Her Majesty's Stationery Office, London, 1962), 
Vol. 6. 

48 A. Sommerfeld, Partial Differential Equations in Physics 
(Academic Press Inc., New York, 1949), p. 58. 

(B2) The Single Defect One-Dimensional 
Crystal 

In this section we treat the energy transport problem 
for the single defect, infinite, one-dimensional crystal 
lattice. Although the introduction of a single defect 
particle cannot be expected to alter the sound speed 
in the crystal, we find that the time dependence of the 
reduced local temperature can be profoundly altered 
for T L > 1 . For purposes of illustration, we will treat 
two cases in which the defect particle is located at 
lattice site zero: the mass M of the defect particle is 
either M— 2m or M<m. 

Case L The Mass of the Defect Particle at Lattice 
Site Zero is M— 2m 

When the mass of the defect particle is 2m, the 
particle positions and momenta for the special initial 
condition, x(0) = 0 and p(0)= (2m)1/2A0, can be ex­
pressed in terms of Bessel functions of the first kind; 
and consequently, the analysis of the last section can 
be utilized. 

The momentum of particle I corresponding to the 
initial condition x(0) = 0 and p(0)= (2w)1/2A0 is, accord­
ing to Eq. (A19), 

p[l1t~]={2m)^—~ J jf*d*. (B27) 
2wi J£ l+o-2f[0,(7] 

The value of f[— l,a~] can be obtained from Eq. (B19) 
as follows: 

1 rT 

= — I e~iiel(T2+2Km-1(l-cosd)']-1dd 
2w J-r 

exp(—2Km~lu— a2u) 

X | (27T)-1 / exp(-ild+2uKm-1 cosd)dd\du 

ex-p(—2KM~1u—a2u)I\i\ (2Km~1u)du 

= (2/cw-1)lzl[(2/cw-1+o-2)2-4/c2m-2]-1/2 

X{2/cw-1+(72+[(2/cw-1+(72)2-4/c2m-2]1/2}-lJl 

= co0
2 'I 'c^H^2+«o2)-1/H^+(^+coo2)1/2}--2111, (B28) 

where 7n( ) is a modified Bessel function of order n 
of the first kind. The result of substituting this expres-
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sion in Eq. (B27) for p£l,Q is 

p[l,t]^{2rnyi*-
mi/m 

L 
<o0

2|i| exp(<7<) 

2 « J£[<r+(<r2+'0o2)1/2]2|< l+1 

= (2w)1/2(w!/w)(co0<)-1(2 \l\ + 1 ) / , , ,|+i(«o<) • (B29) 

The corresponding position of particle / a t time / is 

J 0 
xll,q=(2/m)^(2\l\+l) (wo^-^m+ifoo*)*. ( B 3 ° ) 

./o 

The energy &[h <- 0,/] is 

8[h <- 0, / ] 

= E 
L ml(2\l\+l)\ 

-L m OOQH2 

-J2\l\ + l2(o)ot) 

2 1 / 1 - 1 

I—L[JO L 

21/1+1 
-J2\I\+I(O)QS) 

co05 

- J 2 |Z | -1 (0)QS) 

UQS >}' 
+ 2KM" if. 

2L+1 ] 2 

0 0)QS 

2L+1 

= 2 « 0 - 2 r 8 £ P / , 2 ( c o 0 0 

+ - / (2L+l)s-lJ2L+l(s)ds . (B31) 

For L)>>1, the expression for the reduced local tempera­
ture is 

2t / 2L \ 

r*- lr[o,Ti]=4Ti-
2 E Q/2L)uA i—TL . (B32) 

With trivial changes, the analysis of the last section can 
be used to obtain the following result in the limit Ly>\, 

r*-1r[o,rj 
' l , i f r i < l - ( 2 £ ) - 1 / 3 

y2d;y 

Jo 
MTL>\+{2L)-U* 

(rL
2-y2yn 

r » - 1 2 1 0 , r j 

f l , i f r i < l - ( 2 Z , ) - 1 / 3 

j 2,r-1[sin-1 ( 1 / T L ) - TL'1 (1 - T L - 2 ) 1 / 2 ] , 

i f r i > l + ( 2 Z ) - ^ . (B33) 

The reduced local temperature in the present case is 
plotted as a function of TL (solid curve) in Fig. 3 along 

1.0 

.8 

h* ,6 
o 
H ,. 7 .* .4 H 

.2 

1 
1\ 
1 \ 
\ \ \ \ \ s 
\ ^ \ -̂  

V _ ^ 
1 x 2 

FIG. 3. The reduced 
local temperature in the 
middle of a hot region is 
plotted as a function of 
TL for two cases. The 
dashed curve corre­
sponds to the case of the 
perfect crystal. The solid 
curve corresponds to the 
case in which the mass 
of the central particle is 
twice the mass of the 
other particles. 

with the reduced local temperature in the perfect 
crystal case (dashed curve). The asymptotic value of 
Th^T^OjTLj when Mo= 2m is 

Th-iTtO,TL]~(4/3T)TL-3, for T L » 1 . 

The TI7* dependence of 7 \ _ 1 7 " [ 0 , T J should be expected 
whenever the mass of the defect particle is greater than 
the normal value; it is associated with the r~3/2 

dependence of the momentum found in Eqs. (A36), 
(A3 8), and (A39). Of course, if the defect particle is 
located far enough away from lattice site zero, perfect 
crystal behavior, Eq. (B25), should be observed. We 
next consider the case of a light defect particle in 
which a different type of behavior is found. 

Case 2. The Mass of the Defect Particle at Lattice 
Site Zero is M^<m 

When the mass of particle zero is less than w, a 
localized mode is present. Consequently, in the cal­
culation of the mean local temperature at lattice site 
zero, the position of the defect, it can be anticipated 
that the partial energy S[h <— 0, Q, and therefore 
Th~lT[Q,f\, will not decay to zero. This behavior 
results from the large localized mode component 
contained in the initial condition x(0) = 0 and p(0) 
= Mo1/2Ao. The energy associated with the localized 
mode, which is a constant of the motion as for the 
other normal modes, is concentrated permanently in 
the vicinity of particle zero. In this section we will 
calculate the energy of the localized mode in the energy-
transport problem when the light particle is at lattice 
site zero. 

The momentum of particle / corresponding to the 
initial condition Eq. (B13) is, according to Eqs. (A19) 
and (B28) 

Mi/m r 
pllyQ = Mo1/2 / coo 

"i J £ 2iri 
^ ' [ ^H-O^+coo 2 ) 1 ' 2 ] - 1 

X [ > + ((r2+co0
2)1/2]-21 VWer. 

In the present case, with Q= m~lM— 1 < 0 , the localized 
mode component of p[l,t] which comes from the isolated 
poles at cr= ±^coo(l-^2)-1 / 2= ±io>' is 

2{Mi/m) 
2 ( -1 ) ' 

/i-liEK1 

cos («'/). (B34) 
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The coefficient of cos(a>V) in Eq. (B34) is proportional 
to the displacement of the Ith. particle in the localized 
mode and exhibits the known properties of alternation 
in sign and decrease with increasing \l\. The localized 
mode component in the position of particle / is 

Mom(2/m) / l - \9\\W sm(co'/) 
_ _ ( - l ) i ( _ _ ) . (B35) 

If we calculate the energy 8r[h <— 0,/] associated with 
these periodic components when L2>1, we obtain the 
result 

«T*<-0,0=1^1/(1+1^1), for - 1 < ^ 0 . (B36) 

Consequently, the mean local temperature at the site 
of the defect particle, which is denned in Eq. (Bl), 
approaches a limiting value greater than zero as 
/ -> oo, namely, 2S'[h <- 0, *] , 

r ^ r p , oo]= 2 | ^ | / ( 1 + | ^ | ) , for - K ^ O . (B37) 

(B3) Energy Transport in an Isotopically 
Disordered Crystal 

We have shown in the preceding sections that the 
introduction of single isotopic defects into a harmonic 
crystal lattice can alter greatly the time dependence of 
the local temperature defined in Eq. (Bl) . The cases 
considered were extreme. Clearly, the behavior of the 
local temperature at a point far removed from an 
isotope defect will resemble that of the perfect crystal. 
However, an interesting question which still remains 
is how this local temperature will vary in a completely 
disordered crystal composed of equal numbers of 
particles of mass mi and mi. In attempting to answer 
this question, we have resorted to a direct numerical 
evaluation of §[h*—Oyf\ in Eq. (B16). Using the 
IBM 7090, we have solved the initial value problem, 

M x « = - V x (1) 

with x(0) = 0 and p(0) = M0
1/2A0 and periodic boundary 

conditions, in a series of one-dimensional isotopically 
disordered 100-particle crystals in which there are 50 
particles of mass mh and 50 particles of mass mi. The 
only differences in the series of calculations lie in the 
order of the mi's and mi's along the diagonal of M and 
in the numerical value of the ratio of the particle 
masses mi/mi. Having calculated x(t) and p(/) for 
each of several different mass distributions, we then 
determined reduced local temperatures from Eq. (B18) 
and compared them with the corresponding reduced 
local temperature computed for the perfect monatomic 
crystal composed of particles with the harmonic mean 
mass m= 2(mi~1-\-mf1)~1. 

The method used for generating the solution of the 
equations of motion Eq. (1) from the initial condition 
x(0) = 0 and p(0) = Mo1/2A0 is an iterative one which is 

based on the general solution Eqs. (5) and (6), 

x(/0) = M-1/2Sa-1sin(Q/o)S rM-1/2p(0) 

+M- 1 ' 2 S cos(ii/0)STM1/2x(0) 

+ M - 1 ' 2 cos(W1/2/0)M1/2x(0) (5) 
and 

p(/o) = M1'2 cos(W1/2/0)M-1/2p(0) 
- M ^ W 1 ' 2 sin(W1/2/0)M1%(0), (6) 

where W=M~1/2VM~1/2. The series expansions of the 
matrices cos(W1/2/0) and W*1'2 sin(W1/2/0) in Eqs. (5) 
and (6) involve only integer powers of the matrix W, e.g., 

cos(W1/2/0)= £ ( - l ) m W". 
w=o (2m) I 

For values of h of the order of [i/c(wr1+w2~1)]~1/2> 
which is the time required for a long-wavelength 
disturbance to travel one lattice spacing, the first 
eight terms in the series expansions of the matrices 
cos(W1/2/0) and W±1/2 sin(W1/2/0) are sufficient to give 
values of their elements correct to eight significant 
figures. Thus, for a given arrangement of the masses m\ 
and ra2, it is possible with the aid of the IBM 7090 
to calculate the elements of the propagator matrices in 
Eqs. (5) and (6). Values of x(to) and p(/o) can then be 
computed from the initial conditions. This process, when 
repeated n times, produces the values of x(nto) and 
p(nto) from which S[h<— 0,nto] can be calculated. 
Provision was made in the computing program for 
generating random mass distributions49 consisting of 
equal numbers of mi's and mis. 

The results of the calculations for a series of five 
different isotopically disordered 100-particle crystals 
are presented in Fig. 4 for the case in which the mass 
ratio is mi/mi= 5/4. The reduced mean local tempera­
ture at the middle of the initially hot region is plotted 
as a function of the time TL which is measured in units 
of the time required for sound to travel from the middle 
to the boundary of the hot region. The partial energies 
were computed for hot regions consisting of a total of 
21, 31, and 51 particles (L=10, 15, and 25, respec­
tively); and the curves shown in Fig. 4 are those 
pertaining to the case of 31 particles. For purposes of 
comparison we have also plotted (open circles) the 
corresponding cooling curve for a perfect monatomic 
100-particle crystal in which the sound speed is the same 
as in the regular diatomic crystal composed of particles 
of mass m\ and m2, namely, one in which the force 
constant to mass ratio is ic/m, where m is the harmonic 
mean of m\ and mi, 7h=2(mi~l+mi~1)~1. All of the 
disordered crystal cooling curves lie above the one for 

49 O. Taussky and J. Todd, in Symposium on Monte Carlo 
Methods, edited by H. A. Meyer (John Wiley & Sons, Inc., New 
York, 1956). These authors describe the congruential multiplica­
tive method used in our calculations. 
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FIG. 4. The reduced local temperature in the middle of a hot 
region is plotted as a function of TL for five different isotopically 
disordered 100-particle crystals containing 50 particles of mass mi 
and 50 of mass (5/4)mi. Different isotope arrangements are 
denoted by the number used in their generation, e.g., 11, 12, • • •, 
15. For the cases shown, L is 15. The corresponding reduced local 
temperature is plotted for a perfect crystal (open circles) consisting 
of 100 particles with the harmonic mean mass m= (10/9)wi. The 
solid curve represents the analytic result for the perfect crystal, 
Eq. (B25). 

the perfect crystal. The cooling curve for the perfect 
crystal for L » l , Eq. (B25), is shown as a solid curve in 
Fig. 4, and is remarkably close to the computed values 
in the present case, L=1S (open circles). I t should be 
emphasized that for the range of TL covered in Fig. 4 
the shapes of all the cooling curves are independent of 
the nature of the crystal boundary conditions, or, what 
is equivalent, independent of the finite size of the 
system. This statement is based on the fact that the 
minimum time required for a sound signal originating in 
the center of a 31-particle hot region of a 100-particle 
crystal and traveling through one side of the hot 
region to reach the other side (or be reflected back 
from particle number 50) is T L = 5 § , and the maximum 
TL in Fig. 4 is less than 4. We have tested the accuracy 
of the procedure used for integrating the equations of 
motion by reversing all particle velocities at T L = 2 . I t 
was found that at T L = 4 , the initial condition Eq. (B13) 
was reproduced with an accuracy of 1 part in 106. 
This accuracy was obtained using truncated matrix 
representations of cos(W1/2/0) and W±1/2 sin(W1/2/0) 
which were accurate to one part in 108. The total 
number of iterations with these matrices was 60. 

Plots of the reduced local temperature vs TL for the 
cases L = 1 0 and L—25 for the same crystals show the 
same general features. There is an abrupt fall-off at 
rz,= l, and there is a considerable spread among the 
cooling curves for T L > 1 . However, one noteworthy 
difference between the cooling curves for the perfect 
and disordered crystals is apparent when the cooling 
curves for the cases L= 10, 15, and 25 are compared on 
the TL time scale. The cooling curves for the perfect 
crystal practically coincide in the three cases, Z = 1 0 , 

15, and 25, whereas the cooling curves for any one of 
the disordered crystals do not. The magnitude of the 
differences is illustrated in Fig. 5, where the three 
cooling curves for the perfect crystals and the three for 
disordered crystal # 14 are plotted. Disordered crystal 
# 1 4 is typical in the sense that similar plots for the 
other disordered lattices show both larger and smaller 
differences. 

The calculations for the same mass distributions 
considered in Fig. 4 with a mass ratio m%/m\-=- 5/4 have 
been repeated for the mass ratio m^/m\—2. The results 
for the reduced local temperature in the middle of the 
hot region, with Z = 1 5 are plotted as a function of TL 
in Fig. 6. As in the previous case, the cooling curve for 
the perfect monatomic crystal composed of particles 
with the harmonic mean mass m is indicated by open 
circles. The increase in the mass ratio from 5/4 to 2 
has the effect of enhancing the differences among the 
disordered crystal cooling curves and between the 
disordered crystal and monatomic crystal cooling curves 
noted in the m<i/m\— 5/4 case. I t is to be expected that 
in the limit in which the number of particles in the 
crystal and in the hot region are very large, differences 
between cooling curves for different random isotope 
arrangements will be negligible. Even though the time 
required for the generation of a random mass distribu­
tion and the calculation of the cooling curves for L— 10, 
15, and 25 is only 2 minutes in the case of a 100-particle 
crystal, it is not now feasible to verify this expectation. 

The principal conclusions which can be drawn from 
these numerical experiments are that a significant 
fraction of the energy in the hot region propagates 
away at the speed of sound of the regular diatomic 
crystal and that the tail of the temperature-time curve 
for a disordered crystal decreases more slowly than that 
for the perfect crystal in which the sound speed is the 

FIG. 5. The reduced local temperature denoted by crosses is 
plotted as a function of TL in the case of random mass distribution 
# 14 for a hot region consisting of 21, 31, and 51 particles (L= 10, 
15, and 25) when m<i= (5/4) Wi. The corresponding reduced local 
temperature denoted by dots is plotted as a function of TL in the 
case of the 100-particle monatomic crystal with ra= (10/9)wi. 
The solid curve represents the analytic result, Eq. (B25). 
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FIG. 6. The reduced local temperature in the middle of a hot 
region is plotted as a function of TL for the five isotopically dis­
ordered 100-particle crystals considered in Fig. 4. In the present 
case W2 = 2wi and L=15. The corresponding reduced local 
temperature is plotted for a perfect crystal (open circles) consisting 
of 100 particles with the harmonic mean mass m— (4/3) wi. The 
solid curve represents the analytic result for the perfect crystal, 
Eq. (B25). 

same. The precise nature of the decay law for 7 \ _ 1 

X T{X),TL] in an isotopically disordered infinite crystal 
when L^>1 is of particular interest, but remains to be 
determined. 

SUMMARY 

In Sec. A we treated the problem of obtaining the 
momentum autocorrelation function of a lattice particle 
in a system in thermal equilibrium; and in Sec. B we 
treated an energy transport problem in terms of the 
time dependence of the ensemble average kinetic 
energy of a lattice particle in a spatially nonuniform 
ensemble. As a consequence of the linearity of the 
equations of motion, it was possible in each case to 
solve the problem formally for an arbitrary mass 
distribution and lattice structure. Furthermore, a 
relation was established in each case between the 
statistical property of interest and the solution of the 
same initial value problem of the lattice equations of 
motion, Eq. (A8) or Eq. (B13). The formal solutions 
were studied in detail for a series of infinite, one-
dimensional crystals with nearest neighbor interactions: 
(1) the perfect crystal, (2) the one-defect crystal, and 
(3) the isotopically disordered crystal. 

In Sec. A, explicit analytic expressions were obtained 
for the momentum autocorrelation function of particles 
in a perfect and a one-defect crystal. In addition, in the 
one-defect crystal, the quantum-mechanical momentum 
autocorrelation function of a very heavy defect particle 
was studied. In the case of the isotopically disordered 
crystal, an identity was established between the 
average momentum autocorrelation function of all the 
lattice particles and the frequency spectrum of the 
crystal. 

In Sec. B, explicit analytic solutions of the energy-

transport problem were obtained for the perfect and the 
one-defect crystal. Numerical solutions were presented 
for a set of five different isotopically disordered 100-
particle crystals. 

ACKNOWLEDGMENTS 

I wish to thank the following persons: Dr. H. Oser 
for suggesting the particular method of calculation 
used in determining the cooling curves for the disordered 
crystals and for supervising the calculations; Dr. F. W. 
J. Olver for an advance copy of his manuscript which 
proved to be extremely useful in the calculations in 
Sec. Bl and B2; and Professor E. Teramoto for a 
preprint describing his work on the energy transport 
problem. 

APPENDIX I: DETERMINATION OF THE TIME 
DEPENDENCE OF THE MOMENTUM 

AUTOCORRELATION FUNCTION 
WHEN <p>0 

The expression for the quantum-mechanical momen­
tum autocorrelation function is 

roo(t) = Re{(plO,t'MO,t'+tJ)}/(*WJ) 

^,+ 1 r (j>z cot(<t>z) X-
•I J<E 2iri Je %z+(z2+l) 1/2 

exp(a>otz)dz. (1.1) 

In estimating the time dependence of r0o(t) when ££$><!> 
and i?£>>l, we distinguish two cases: 0^<£^7r/2 and 
7r/2<0<C^>. In the first case 0^<£^7r/2, the method 
used in estimating the classical momentum autocorrela­
tion function3 can be used directly; and in the second 
case 7r/2<<£<<Cî , a slight modification is necessary. 

First Case : 0 ^ <j> ^ n/2 

This case includes the classical limit 0 = 0 where the 
factor <j>z cot (0s) is equal to unity and Eq. (1.1) for 
roo(0 is identical with the expression for poo(0 in 
Eq. (A26) 

4>+l r exp(co0te) 
Poo(0 = <P2[0/]>-1**Z1M - / -dz. (1.2) 

2wi Je%z+(z2+l)1/2 

In this classical limit, the integral appearing in Eq. (1.2) 
is transformed by replacing the vertical cut connecting 
+i and — i by a semicircular cut in the left half plane 
connecting +i and — i (see Fig. 7a). In the process, a 
pole of {.$s+ (22+l)1/2}"1 at z= - ( £ 2 - 1 ) - 1 ' 2 ^ - £ - 1 is 
uncovered. The integral in Eq. (1.2) can then be 
expressed as the sum of two quantities: the residue of 
the integrand at the pole z— — (£P—1)~1/2 and the line 
integral around the semicircular cut. In the classical 
limit when Q2>1, it is easy to show3 that the magnitude 
of the integral around the cut is less than A/2^"1 . Con­
sequently, a very precise estimate of the classical mo-
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•Of -*fVJ 
-X' 

(b) 
FIG. 7. (a) The form of the cut used in estimating the classical 

momentum autocorrelation function POOM- (b) The form of the 
cut used in estimating the quantum-mechanical autocorrelation 
function r0oW for 0 in the interval w/2 <<£<<Ĉ >. 

mentum autocorrelation function is obtained, namely, 

Poo(/) = e x p ( - £ - W ) + * ( 0 , (L3) 

where |S(*)| ^ v l ^ 1 . 
For all values of <j> in the range 0 ̂  </> ̂  TT/2, the same 

arguments used in evaluating the integral in Eq. (1.2) 
can be used for r^(t) in Eq. (1.1). The residue of the 
integrand in Eq. (1.1) at z— — (§£—1)~1/2 can be 
expressed as exp(—j£~W)+5i(0> where \h(f)\ <c^~1; 
and an upper bound of the integral around the cut, 
52(t), is |52(0| <V2(<£ cothcjf))̂ ,-1. Therefore, in the case 

roo(0 = e x p ( - ^ - W ) + 5 ( 0 , 

where \d(t)\<c$-\ 

Second Case: TZ/2 <<K<^> 

The function $z cot (</>£) has poles at £=zb7r</>-1, 
±27r0~1- • • •; and for values of <£ in the range 7r<<£<<Cj£, 
there is at least one of these poles inside the semicircular 
cut shown in Fig. 7(a). To avoid this complication, we 
use the cut shown in Fig. 7(b). This cut consists of a 
semicircular portion whose radius is %Tr<jrl and two 
vertical segments connecting + i and —i. The trans­
formed expression for the quantum-mechanical auto­
correlation function of the heavy particle is the sum of 
two quantities 

f £+1 
roo(/) = < P 2 [ 0 / ] > - ^ ™ —<£(i£2-l)-1/2 

Xcot [>(£ 2 -1 )~ 1 / 2 ] exp[-a;oO£2-1)~1 /2Q 

£ + 1 f <j>z cot (<t>z) 

2wi X &+(**+i)irt exp(cti0tz)dz (1.5) 

The first term in braces in Eq. (1.5) is the residue of the 
integrand at z= — (i£2—1)~1/2 and the second term is 
the line integral around the cut shown in Fig. 7(b). In 
the present case where <£2><fi>7r/2, the residue can be 

expressed as 

4>(£2-l)-1/2 

Xcot[>(£2-1)-1 /2] exp[-w0(^2-1)~1/2/] 

= exp[ -< rW]+Si ( / ) , (1.6) 

where \8i(t) | <cx<j>^~1 and d is of order unity. 
Next, consider the problem of estimating the contour 

integral in Eq. (1.5). It splits into two parts; and each 
part is equal to the difference of two line integrals 
along opposite sides of a portion of the cut 

S+l -i 
i Je' 

4>z cot(<t>z) 

2« Je' £z+(s2+l)1/2 
exp(«ote)<fe 

;+l r1 <j>y cc 

- / 
7T J 3 

0^COth(0j) 

'w-(£2-l);y2+l 

£ + 1 /•'« fcr cot(|7rew) 

(l-;y2)1/2cos(<»o^My 

[ l + i x V - V i 9 ] l / 2 

X e x p p ^ + W ' W e * ' ] W"" 1 ^. (1.7) 

The first integral on the right in Eq. (1.7) $i{t), which 
represents the contribution from the vertical portions 
of the cut, satisfies the following inequality 

( L 4 ) |rfi(01 < 2 * - 1 ( $ + 1 ) 0 c o t h ( T / 2 ) [ 1 - i ; r V 2 ] 1 ' 2 

X /" ? [ ( £ 2 -
J \%$ l 

lW+lJ-Wy 

<T~ 

€ - 1 
• c o t h ( x / 2 ) [ l - i 7 r V - 2 ] 1 

40V- 2 - ! -f /40*\ T 4«£V-2- l-] l 
(1.8) 

In the present case where î ><£, a simpler (and weaker) 
version of the inequality in Eq. (1.8) is 

r-20 20-1 
| ^i(01 < coth (TT/2) — In— 371. 

L 7T 7T J 
(1.9) 

The second integral on the right in Eq. (1.9), $2(t), 
which represents the contribution from the semicircular 
portion of the cut, satisfies the inequality 

7T2 

I **(0 I < ( € + D — [ l + i 7 r 2 < r 2 ] 1 / 2 coth(7r/2) 
40 

xCK^- iV 2 ^ 2 - ! ] - 1 

< [ l + i 7 r 2 0 - 2 ] 1 / 2 c o t h ( 7 r / 2 ) ^ - 1 . F o r j £ » 0 (1.10) 
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We now combine the estimates in Eqs. (1.6), (1.9), The function Ei(z) is denned so that Ei(z) is real on 
and (1.10), substitute them in Eq. (1.5), and obtain the positive real z axis, and a cut extends from 2 = 0 to 
the following estimate of the quantum-mechanical z— — oo on the negative real axis. 
momentum autocorrelation function for <j> in the 
range Q»<t>>ir/2: 

rooW = e x p ( - ^ - W ) + 5 ( / ) , 

where \8(t)\ <c(<j> ln^)^"1 . 

APPENDIX II: DETERMINATION OF THE TIME DE­
PENDENCE OF THE ZERO-TEMPERATURE 
MOMENTUM AUTOCORRELATION FUNC­

TION FOR £ » 1 

Jo 

The integral in Eq. (A53) can be written as 

3,(1^3,2)1/2 

o y2+$T2 

The integral 12(f) is equal to 50 

(1.11) J 2 ( 0 = f y-1Z(l-y2)1/2-l~] cos(o>0ty)dy 
Jo 

= / y-l[{l-y2)m-l~]dy 
Jo 

\ \ t(l-y2)m-l]sm(y<r)dy\d<r 

p /»coo< 

• cos(o)oty)dy = l n 2 - l -

- / . 

1 y cos(o>oty) 

0 y2+$r2 
dy+ 

Xcos(oi0ty)dy+ 

f r l Q l _ y « ) l / « _ l ] 
J 0 

£_2;ycos(coo^y) 

0 ( / + i r 2 ) [ i + a - ? 2 ) l / 2 ] 

/

coot —I 

Ho(a)da— Hi(co00 
r>mt fa 

~ [cosa—1]—, 
Jo o" 

(II.3) 

dy. 
where H n ( ) is a Struve function. Although we have 
succeeded in evaluating the integrals Ii(i) and Iiit), 
Eqs. (II.2) and (II.3), their explicit dependence upon 

(II-1) the time is not obvious. There are two time scales 
, evident in Eq. (II.2) for Ii(f), t=coo-1 and t— $ao~x ; and 

. , . ^ , . , , ° ^? there are different approximate expressions for I At) 
sum of three integrals is advantageous when £ » 1 a n d (<) d d i t h e v a l u e o f t h e t i m e r d a t i v e 

because the last m egral J , 0, is negligible compared t Q t h e s e t w Q t i m e s c a l e s_ I n ^ r e m a i n d e r o f m 
to the 
time 
An upper 

|/3«i= 
/ . 

^2y cos(o)0yt) 
-dy 

0 ( /+^- 2)[ l+(l-J 2) 1 / 2] 

<$72[ y(y2+$r2)-1dy<%-2\n($?+l). 
Jo 

Therefore, Eq. (II. 1) is equivalent to 
L 

y ( 1 _ ; y . ) i f t (y i + ^-» ) - 1 cos(o1oty)dy=I1(t)+I2(t). 
Jo 

O.Ol^o - 1 ^ / ̂  lOO^o - 1 ; and t> lOO^oxr1. 

Approximate Expressions for Ii(t) 

The integral Ii(t) has been expressed in terms of the 
exponential integral E\(z) in Eq. (II.2). The following 
convergent series expansion and asymptotic series for 
Ei(z) will be used51: 

00 ( — z)n 

Ei(z)=-y-lnz- £ (II.4) 

The integral Ii(i) can be expressed in terms of the 
exponential integral E\ (z) — f ™u~xe~udu as 

Ei(z)^z~1e~z'^2ml(—z)~m. (II.5) 

Jo 
/ i ( 0 = / yty+Q-2)-1 cm(ady)dy 

Jo 

= J exp(£-WXEiG|"W)+l exp(-^-W) 

X [£1 ( i f W * - * ) + £ 1 (^7 W e i i r ) ] 
m=0 

- i e x p ( - £ - W ) [ £ i ( - ^ - ^ W ) — 
_i_ z? c * rt)-i A l 1 /T>—1 A 50 Ref. 34, p. 69. 
- t - i i i t«o0*— i£ corf J J— 4 exp(j£ a>0*J si A> Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 

_ . , , N_ Higher Transcendental Functions (McGraw-Hill Book Company, 
X [ £ i ( - ^ o * + £ ~ W ) + £ i ( * W + £ ~ W ) ] . (H.2) Inc., New York, 1953), Vol. 2, Sec. 9,7. 

On the negative real z axis, the above series take the 
form 

00 Xn 

Ei{xe±iri)=^Fiir-y-\nx- £ , x>0 (II.6) 
n=\n\n 

and 
E i ( x e ± T 0 ~ ^ V - a r V - * L m\x~m, x>0. (11.7) 
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When t<^wa~1, the expression for I\(i) reduces to 

Ii(t)£$n%+---. (H.8) 

When <~wo-1, the expression for I\(i) is 

/ i ( / ) ^ - 7 - l n ( ^ - , « r f ) - R e { £ i ( - « o r f ) } . (II.9) 
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original form of Ii(t), one can obtain 

h{t)= f y-^il-ytyt-llcosiwoty) dy 
Jo 

Values of Re{Ei(—iw0t)} can be obtained from tables.52 

When /»wo - 1 but K < ^ 0 ~ 1 ( ^ " W is still small 
compared to one), the approximate expression for Ii(t) 
obtained from Eq. (II.9) is 

/ i W ^ - 7 - m ( < r W ) + Oo/)-1 sin(co0/) . (11.10) 

In the range 0.01 j£w0~
1</<100iga)o~1, the expression 

for Ii(t) is 

h ( /)=£ exp (<T W ) £ i ( £ ~ W ) + i e x p ( - <T W ) 
XRe{£i(^~1co0^-^)}+(cooO~1 sincoo/. (11.11) 

Useful numerical tables of the combination of exponen­
tials and exponential integrals in Eq. (11.11) are given 
by Miller and Hurst.53 The last term in Eq. (11.11) is 
very small compared to the first two terms in our 
application, 0£2>l. 

Finally, when /^>^co0
_1, the expression for 7i(/) is 

/i(o^-orw)-2. (ii.i2) 
Approximate Expressions for I2(t) 

When /<<Ccoo_1, the expression for I<z(t), Eq. (II.3), 
reduces to 

7 2 ( 0 = l n 2 - l . 

In the interval O.lcoo-1^ / ^ 10co0
-1, a more convenient 

expression for I2(t) can be obtained by replacing 

7+ln(«r f )+Re{£i ( -*wrf )} . (11.13) 

Upon substituting Eq. (11.13) in Eq. (II.3), one obtains 

/2(/) = l n 2 - l + 7 + l n ( c o 0 / ) + R e { £ i ( - ^ W ) } 

H0(a)da- H i M . (H.14) 

In the interval O.lcoo-"1^/^ lOcoo-1, tables of numerical 
values of all the functions in Eq. (11.14) are available.55 

In the range />10a)0
-1 where values of Jl^Ho^da 

are not tabulated, a more useful expression than Eq. 
(11.13) can be derived for h{t). From Eq. (II.3), the 

52 Tables of the Exponential Integral for Complex Arguments, 
National Bureau of Standards Applied Mathematics Series (U. S. 
Government Printing Office, Washington, D. C , 1958), Vol. 51. 

63 J. Miller and R. P. Hurst, Math. Tables Aids Computation, 
12, 187 (1959). 

«*Ref. 51, Vol. 2, Sec. 9.8. 
55 G. N. Watson, A Treatise on the Theory of Bessel Functions 

(The University Press, Cambridge, England, 1944), 2nd ed., 
p. 752; and M. Abramowitz, J. Math. Phys. 29, 49 (1950). 

3> cos(co0/;y) 

o (1-3 ,2)1/3+1 
dy. (11.15) 

After integrating Eq. (11.15) by parts and after some 
rearranging to isolate the singular factor (l—y2)~112 

which is introduced, one obtains 

sin(coo0 f1 

72(/) = +(co0/)-1 / ( I - ? 2 ) " 1 ' 2 sm{u,ty)dy 
co0/ Jo 

~(^t)-'( [\ + (l-fy^-hm{^ty)dy. (11.16) 
Jo 

The first integral on the right in Eq. (11.16) can be 
evaluated.56 The procedure of integrating by parts and 
isolating the singular factor can be repeated twice more 
starting with the second integral on the right in Eq. 
(11.16). The final result is 

f sin (woO cos(co0/) sin(co0/) 

co0/ 

i / 1 2 \7T 

+ )_H 
wo2/2 W co0

3 /3 /2 

coo2/2 coo3/3 

o(coo0 

1 r 7T 
1 H i (coo/) 

co0
z ,2/2L 2 

+ A ( / ) , (11.17) 

where the magnitude of the last term A(/) in Eq. (11.17) 
is less than 8co0

_4/~4. 

APPENDIX III: EVALUATION OF THE REDUCED LOCAL 
TEMPERATURE IN A PERFECT LATTICE 

The expression for the reduced local temperature 
given in Eq. (B24) is 

TJT1T\:0,TL'] = JO2(2LTL)+2 £ jAl—rL\ . (B24) 

In evaluating the sum in Eq. (B24), we make use of a 
uniform asymptotic expansion of Bessel functions (with 
error estimates) which has been developed by Olver.46'47 

The expansion is 

/ , (^ ) -^ - 1 / 3 ^( f ){Ai ( / 2 / 3 f ) [ l+ £ / - 2 M s ( f ) ] 

+/-4/*Ai'(/2/3f) Z l-2sBs({)} , ( III . l ) 
s=0 

66 Ref. 34, p. 69. 
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where 

r= 

and 

/1+Cl-x2)1 

fln^-

- { f ^ - ^ ^ - f s e c - ' x } 2 

VKI-**)1 '*) 
2/3 

0 < # ^ 1 

x^ 1 

0(f)=C4r(i-^2)-1]1/4. 

(IIL2) 

(III.3) 

(HI.4) 

Ai(#) and Ai'(x) denote the Airy integral and its 
derivative57 

For rL not too close to unity, — /2/3f is large (^L2/z) for 
all values of /, I ̂  2L. Consequently, all of the functions 
Ai(/2/3f) and Ai'(/2/3f) can be replaced by their asymp­
totic formulas, for large negative arguments.57 

Ai(/2/3f)^7r-l/2(_/2/3f)-l/4 C0S|——+2XJ (TL
2 " ) 

)}] (HIS) 

p K 1/2 

/ (2L 
— sec-"1! — T L 
2L \ I 

Ai(x) =--'f 
Jo 

cos(^tz+xt)dt, 

and 

Ai'(l2/^)-~7r-m(-l2/^)m sin| — + 2 L \ [ T L 2 -
4 l \ 4L2> 

and the functions As(£) and i?s(f) are defined by recur­
rence relations.46 The recurrence relations are 

(2L 
-— sec-1! — T L 
2L \ I 

\ W2) 

(III.6) 

ss(r)=ir1/2 rm{F(OAs^)-As"^)}dt 
and 

^i(r)=-iB.'(rmjV(r)s.(r)#, 
where 

^o(f) = l 
5 f^ 2 (x 2 +4) 

F ( r ) = — + - - — - , 
16f2 4 4 ( x 2 - l ) 3 

and x=x($) is defined implicitly by Eqs. (III.2) and 
(III.3). When x ^ l , the expressions for 2?o(f) and 
4i ( f ) are 

3 n + 5 n 3 5 
50(f) = -

The use of these asymptotic formulas for every I, 
S^l^2L, is justified if f(72/3|f | )3 / 2 is large compared 
to one, i.e., 

/

2LTL/1 

(X2-\y/2X-idx>>i (In.7) 

or 
p v 1/2 ^ / 2L \] 

2L\[TL2 ) secW — TL\ » 1 . (III.S 
« " 

and 
24f ,1/2 48fi 

81r i 2 +462r i 4 +385n 6 7 ( 3 n + 5 n 3 ) 455 

1152 4608ft8 

where ft= —J* and n = (#2—l)~1/2. 
Olver has shown47 that if terms up to and including 

Z-4£2(f) and / -M 3 ( r ) are retained in Eq. (III . l ) , then 
the remainder or error term is less than one unit in the 
8th significant figure when 1^8. Consequently, in the 
sum in Eq. (B24) from J = 8 to 2L, / , p ( 2 L / 0 r J can 
be replaced by Eq. (III . l ) with r—3. For T L > 1 , the 
sum of the terms in Eq. (B24), which are not included 
in X!z=82L, is negligible (of order Lrl). The Airy functions 
introduced into Eq. (B24) have the argument 

f.1LTL/l 1 2/3 

The condition expressed in Eqs. (III.7) and (III.8) is 
clearly satisfied, except when TL is close to 1 and, at 
the same time, I is close to 2L. We can determine the 
lower limit of TL such that the inequality in Eq. (III . 7) 
is satisfied over the whole range of values of Z, from the 
condition 

rTL 

2L / {x2~\)ll2x~ldx> (2L)1/2, (III.9) 

where (2L)1/2 is assumed to be large. Because the 
integral in Eq. (III.9) is greater than 2 3 / 2 ( T L - 1 ) 3 / 2 / 3 T L , 
the inequality in Eq. (III.9) is satisfied if TL— 1 > 2_132/3 

X (2L)~1/3. Thus, except for a very small time interval 
1 < T L < 1 + ( 2 L ) ~ 1 / 3 , the asymptotic formulas in Eqs. 
(III.5) and (III.6) can be used. 

Substituting these asymptotic formulas and the 
definition of 0(f), Eq. (III.4), in Eq. (III . l ) for 
JI[1{2L/1)TL]1 one obtains 

- (2L)-l/2(2/7r)1/2(TL
2-y2)~1/4i cos| 2L(TL

2~y2) 1/2 

ill {x2-\y?2x-Hx\ 

[ 3 / I2 \ m 

= - ( 2 Z H - ( T L 8 ) -
12\ 4L2J 

-2Lysec~l(y 1TL)—- [ i+E(2^) - 2 s ^ s ( f ) ] 

3 1 (2L 
s e c - i ( . — T L 

2 2L \ I ) ! " * 
+sin 2 L ( r L

2 - / ) 1 / 2 - 2 L j s e c -
4J 

67 J. C. P. Miller, The Airy Integral, British Association for the 
Advancement of Science, Mathematical Tables (The University 
Press, Cambridge, England, 1946), Part-Vol. B. 

x [ E (2^)-2s"1(-f)1/2^s(f)] [, (ni.io) 
8=0 
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where the variable y—l/2L ranges from 8/2L to 1. 
There is a final simplification of the expression for 
Ji{ly~lTL) in Eq. (III . 10) which depends upon the 
properties of (2Ly)-2sAs({), s^l and ( - f ^ ^ L y ) - 2 * - 1 

X$ s ( f ) , s^O. These terms constitute corrections to 
the leading term in the asymptotic series and were 
retained in order to have a uniform accuracy of one 
part in 108 for Bessel functions of all orders between 
/ = 8 and l=2L, independent of the value of 2LTLI~1. 

In the present application, the magnitudes of these 
additional terms are negligible for all values of /, 8 ^ / 
^ 2L, for one of two reasons. Either the factors (2Ly)~2s 

are negligible or the coefficients -4sCf(y)], s^l and 
C - f (y)J,2Bs^(y)l s^O are negligible. 

These assertions concerning the magnitudes of 
A.K(y)l,s21 and [ - r (y ) ] 1 / 2 £s [ f (y ) ] , s}0 can be 
verified as follows. When x^l or 2 L T L / ~ 1 ^ 1 , and 
f = - { f [ ( 2 V 0 2 T L 2 - l ] 1 / 2 ~ f sec-1[(2L//)rL]}2/3 , the 
expression for {2Ly)~2A i (f) is47 

(2Ly)~2A1(t)=(2Ly)-2 

S{{T^-1T+462[(T^-1T+3S5[(T''-)'-1] 
1152 

r/2L \2 n"1/2 r/2L 

TLlr1)-1] H A T 1 ) - 1 ] I 455 

= {2L)~A-

1152(-f)3/2 

81[rz,2-y2]-1+462y2[r i
2-3 '2]-2+385y[ri ,2- /]-3 

4608 
<-& 

0 {lrL
2~y2J/2-y sec-^y^TL)}-2 . ( I I I .H) 

1152 

7 { 3 [ T L 2 - / ] - 1 / 2 + 5 y [ r L
2 - j 2 ] - 3 / 2 } 455 / 4 

1728{[>z,2--y2]1/2--y sec"1 (y^ri,)} 4608 

In Eq. (III . 11) the largest term (i.e., the one with the most singular dependence on [ri}-—y2lrl is — (2Z)~2y4 

X (385/1152) (TL2—y2) - 3 . In the most unfavorable circumstance, when T L = 1 + ( 2 L ) ~ 1 / 3 and y = l , this term is 
equal to 

385 (2Z)"1 385 
(2Z)-2

T T--[2(2Z)-1 /3+ (2Z)-2 / 3]-3= [ 1 + ! ( 2 Z ) - 1 / 3 ] - 3 . 
1152 4 1152 

I t can be shown that the other terms in Eq. (III . 11) are also negligible for L5>\ and T L > 1 + ( 2 L ) _ 1 / 3 ; and the 
same arguments lead to a similar result for the higher order terms, (2Ly)~2sAs(£). 

The expression for (2Ly)-1(-^)ll2B0(O is47 

( 2 Z y ) - 1 ( - r ) 1 / 2 ^ o ( r ) = ( 2 Z y ) - 1 ( - f ) 1 
{ ( ^ H M T - H 

-3/2 

24(-f) 

(2Z)"1— 3[rL2-y2]-1 / 2+5y2[rL2-y2]-
24 

1/2 48(-f)2J 

(rL
2-y2)m-y sec-1 (y-lrL) 

(111.12) 

For all TL>1+(2L)-W and for all y, O ^ y ^ l , it can r L > l + ( 2 L ) - 1 / 3 , S^l^2L and 2 L » 1 , is 
be shown from Eq. (III. 12) that when 2L^>1, 

(2Ly)-1(-f)1 / 2^o(f) < (5/96)L~V2. Jt 

/ 2L \ / 2 \ 1 / 2 

(l—rLy{2L)-H~\ (rL
2-y2)-1/4 

Xcos 2Lix(rL,y) (III. 13) 

Similar results can be obtained for the higher order 
terms (2Zy)~ 2 - 1 ( - r ) 1 / 2 ^ s ( f ) . 

As a consequence of the above estimates of the 
magnitudes of Aft(y)l, s> 1 and [ - f (y)]1/2£s[f (y)], 
s^O the asymptotic expression for JI[_1(2L/1)TL~] for where /x(rL,y)= (TL2—y2)1/2—y sec - 1^ - 1^!-)- I t is clear 

2L\i(jL,y)— , 
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expression for JI[1(2L/1)TL] becomes 

989 

that upon inserting this result in Eq. (B24) for the 
reduced local temperature the summation over /, 
(2L)~12^ z=82L, can be replaced by an integration over 
y, fs/2i}dy; and the result is i'T^} •(2Z)-^2(27r)' - 1 / 2 / . 

\4L 2 / 

-1/4 

4 /-1 cos 2 [2L M ( r £ ,y ) -T/4] 

'a/iL (TL*-y2)m 
dy n-1T[0,r i]=- f 

TT J 8, 

2 rl l+co^jiLn(TL,y)-r/22 

X e x p { - | ^ 2 } , (III. 19) 

.if: 
7T J$/2L (rL

2-y2)m 
dy. 

(III. 14) 

Furthermore, in the limit of very large values of 2L 
and for r z > l + ( 2 L ) - 1 / 3 , the integral in Eq. (111.14) 
which involves cos[4L/z(r.L,;y)---7r/2] c a n be neglected 
compared to the first term. The value of the reduced 
local temperature obtained from Eq. (III . 14) is 

T Y ^ i m r J = (2/7r)sin-1(l/rL), 
for TL>1+(2L)-V\ (111.15) 

a result which becomes exact in the limit 2L —> 00. 
The simplest method for obtaining the corresponding 
value of Th^T^OyTL] f ° r T L < 1 is to make use of the 
identity expressed in Eq. (B23), 

/ 2L \ 
n - 1 r [ 0 , r L ] = l - 2 5 : JAI—TL). (111.16) 

l=2L+l \ I J 

In the sum on the right-hand side of Eq. (III . 16), the 
parameter (2L/1)TL is always less than one if T L < 1 . 
In this case, the asymptotic approximation, Eq. ( I I I . l ) , 
for J1[1{2L/1)TL~] is 

for l^2L and TL< 1— (2Z,)~1/3. Inserting this expression 
for JI[1(2L/1)TL~] in Eq. (111.16), the reduced local 
temperature is 

rr1rCo,rL]=i-ir-1 E (/2-4Z2rL
2)-1/2 

J=2L+1 

X e x p { - | ^ 2 } , (111.20) 

for r L < l - ( 2 £ ) - 1 / 3 . The sum in Eq. (111.20) can be 
shown to be negligible in the following way. A term-by-
term upper bound on 

S= £ ( /2-4L2rL2)-1 / 2exp{-J/r3 / 2> 
Z=2L+1 

IS 

S ^ ( 2 L ) - 1 ( 1 - T L 2 ) - 1 / 2 

X Z exp 
l=2L+l 

-21 f (\-x>yi*x-ld% 

^ ( 2 L ) - 1 ( l - r L
2 ) - 1 / 2 E e x p { - j 2 5 / 2 / ( l - r L ) 3 / 2 } 

Z=2L+1 

^ ( 2 i ) - H l ~ r i
2 ) - 1/2. 

J (l— TL)~1-W[ ) Ai(P«r) , (111.17) 

exp{-i25 ' '2(2Z.+ l ) ( l - rL ) 3 ' ' 2 

l - e x p { - | 2 6 / 2 ( l - r i ) 8 / 2 } 

(111.21) 

where 

f= 
I J 21 

1 2/3 

(1-^2)1/2^1^1 . 
2LTLl~X ' 

(III. 18) 

The argument of the Airy function /2/3f is positive and 
large for all terms in Eq. (III . 16) if T L < 1 - ( 2 L ) - 1 / 3 . 
This last condition on TL can be obtained in the same 
way that the condition T L > 1 + ( 2 £ ) ~ 1 / 3 was obtained. 
Replacing Ai(l21^) by its asymptotic formula, the 

Even in the most unfavorable case, i.e., when T L = 1 
- (2L)-1/3, the upper bound in Eq. (111.21) is 

3-2-5/2(2L)-x/3 exp{- |25 /2(2L)1 /2}. 

We now summarize the result for the reduced local 
temperature in the middle of an initially hot region of a 
perfect, infinite, one-dimensional lattice consisting of a 
very large number of particles, 2L, 

r l , i f TL<\-{2L)-W 

^(2/7r)sin-1(VrL), if rL> 1 + (2L)-1 '3. 
(111.22) 

Th-iTtO,TLl-


