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The coupled electron-phonon system is considered for phonon spectra of Einstein and Debye forms. The 
single-particle electron Green's function G is calculated in a nonperturbative manner in both models, and 
its spectral weight function is examined to determine the validity of a quasiparticle picture. The weight 
function and the poles of G both lead to several branches of excitations rather than a single "dressed" 
electron. The asymptotic time dependence of the G is found, and the effect of multiphonon processes on the 
electron decay rate is discussed. The electronic polarizability, P of the interacting system is calculated with 
the aid of a generalized Ward's identity for the electron-phonon vertex. This identity, which is a consequence 
of electronic charge conservation, is derived in an Appendix. The calculation of P is carried out in the limit 
that the Fermi velocity is small compared with the phase velocity of the polarization field. An Appendix 
on the formal development of the Green's function equations is included. 

INTRODUCTION 

WE investigate the coupled electron-phonon system 
using a field-theoretic scheme1,2 that goes beyond 

lowest order processes. Two model phonon spectra of 
the coupled system are studied; these are the Einstein 
and Debye models.3 We view these models as two 
limiting cases, neither of which is realized in practice. 
The Einstein model is a reasonable approximation for 
short-wavelength phonons while the Debye model is 
preferable for processes emphasizing long-wavelength 
phonons. 

We begin with the Einstein model in Sec. I. By 
approximating the electron-phonon vertex function V 
by unity and the free electron density of states in energy 
by a constant, the integral equation for the electronic 
self-energy 2 can be trivially solved. This approximation 
of T for the Debye model has been discussed by Migdal4 

who argues that the error thereby introduced is of the 
order of the square root of the electron to ion mass ratio 
(m/M)l/2 for normal metals and is therefore negligible. 
His argument also applies to short-wavelength modes 
in the Einstein model but fails when the phonon's phase 
velocity is of the order or greater than the Fermi 
velocity. 

The poles of the electron Green's function are given 
in several figures. Several branches of excitations appear. 
The quasiparticle picture is examined for this model 
and found to be inappropriate except very near to or 
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far from the Fermi surface. In Sec. II, the result for 
G(p,#o) is used to calculate the asymptotic behavior of 
G(p,t) as /—>oo. 

In Sec. I, it is found that the electronic decay rate 
shows no anomalies near the thresholds for multiple-
phonon emission. The constant density of states 
approximation is relaxed in Sec. I l l , and such anomalies 
appear. However, their relative magnitude is again of 
order (m/M)lf2 and they are not to be trusted if vertex 
corrections are neglected. 

The electronic polarizability P(q,#o) is discussed in 
Sec. IV with the aid of a generalized Ward's identity 
for the electron-phonon vertex which follows from 
charge conservation. This identity is derived in 
Appendix B. With the approximation of Sec. I for 2, 
the Ward identity is satisfied by the ladder approxi
mation for the vertex function which enters the expres
sion for P. The polarizability is calculated to order 
(<PF/#O)2, where VF is the Fermi velocity. This calcu
lation allows one to investigate the long-wavelength 
phonon spectrum. 

The Debye model is considered in Sec. V. Within the 
same approximations used for the Einstein model, the 
spectral function and poles of the electron Green's 
function are derived and plotted for the Debye case. 
Several branches are again found in the single-particle 
spectrum. 

The definition of the Green's functions and the 
formal development of the equations determining these 
functions are given in Appendix A. 

I. ELECTRON SPECTRUM IN THE 
EINSTEIN MODEL 

The model we first consider is one in which the 
lattice is composed of independent oscillators, each 
having a single characteristic frequency. Thus, a 
phonon can carry only a fixed energy, co, independent 
of its momentum. Since the phonon damping is expected 
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D(p-k) 

FIG. 1. Diagram 
corresponding to the 
approximation for 
the self-energy. 

G(k) 

to be small, our initial choice is that of undamped 
oscillators. 

We start with the approximation to the self-energy 
(A19), illustrated in Fig. 1, which neglects vertex 
corrections 

dAk r d*k 
?(p) = ig2\ -—D(p-k)G(k) 

J (2TT)4 

= ^ 
d*k 1 

where 

(27r)4[(^0-^o)2-co2+i5] 

1 
X , 5->0+ (1.1) 

[fto-€(k)-S(ft)] 

e(k) = k2/2m-ii. 

Here /z is the chemical potential and g, the coupling 
constant, is chosen to be independent of wave vector. 
The propagator for the electron field is written in its 
most general form, (A9). The phonon propagator has 
the characteristics mentioned above and includes an 
infinitesimal imaginary part to insure temporal outgoing 
wave boundary conditions which is required by the 
definition given in (A4). 

We see that for this model 2 (p) is independent of p ; 
we therefore define 

ko—2(&o) — koZ(ko) . (1.2) 

To perform the dsk integration, we approximate the 
free-electron density of states N(e) = mk/2Tr2 by its 
value at the Fermi surface mkF/2ir2. Furthermore, we 
maintain particle-hole symmetry by carrying out the e 
integration symmetrically about the Fermi surface, 
€ = 0, and for convenience extend the limits of inte
gration to infinity. 

The justification for these approximations is that the 
major contribution to the self-energy integral comes 
from electron states with energies e<co, the Einstein 
energy, which is typically one hundredth of the Fermi 
energy.3 Thus, we expect the characteristic features of 
our results to be insensitive to the changes of the 
integration region far from the Fermi surface. Within 
this approximation the electron self-energy may be 
written as 

S(£ 
J —c , 2 r 

X 
k0Z(k0) 

(#o-*o)*-«*+*» (*<£)*-«* 
(1.3) 

2(̂ >o) may now be completely determined if we use the 
relation 

Im&0Z(£o)>0 for fo>Q 
< 0 for &0<0 

which follows from the Fourier transform of the defini
tion (A4). Closing the e contour in the upper half-plane 
we obtain the expression 

S(p0) = -
>2N 

dk0 dk0 

1 

(po-h)*-<f+1d' 
-, (1.4) 

valid for pQ on the real axis. 
I t is interesting to investigate whether a simple 

quasiparticle picture of our model leads to a reasonable 
approximation for G{p). A quasiparticle picture assumes 
that the weight function A(ep,po) = (l/V) \lmG(p,po)\, 
which appears in the spectral representation 

A (€p,£o0 
G(p,#o)= / dp,1—. + / dp, , (1.5) 

./o po—po'+i& J-oo po—po—t8 

can be well represented by a single Lorentzian function 

« p | r p | A 
Me»Po')--

(K-£*)2+iy 

The quantities Ep and 2 | r p | are interpreted as the 
energy and decay rate of the quasiparticle. Were this 
picture exact, the quasiparticle peak would exhaust the 
sum rule 

f 
J —0 

A(et,p0')dpo'=l, (1.6) 

and the parameter av would be unity. In general, the 
weight function is given by 

A(e9,p0) = 
1 \MP)\ 
irlp0-ev~i:R(p)22+^i2(p) 

(1.7) 

where XB and S j are the real and imaginary parts of 2 , 
respectively. I t follows from (1.4) that for real po 

^i(po)--
g2Nw , /»oo 

/ dk0 

Jo 
{5(pQ—ko—u)+8(pQ—ko-{-u) 

4co Jo 

— 8(p0—k0—o)) — 5(—p0—ko—a))} 

g2Nir 

2o) 

= 0 

•sgn^o for \po\>o> 

for | ^ 0 | < w . (1.8) 

Thus, within our approximation S j is a constant for 
energies above the threshold for phonon emission. 
Were we to include damping of the phonons, due to 
their interaction with electrons, Sz would be nonzero 
for |^o| <to. However, its value in this region is very 
small compared to the value of S j above the phonon 
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emission thresnold. The real part of 2 for real po is Due to the assumed particle-hole symmetry we find 

g2N 

2«(£0) = In 
2co 

po+o) 

pQ — U 

2#(0) = 0, so that the chemical potential is un-
(1.9) affected by the interactions. On combining (1.7), (1.8), 

and (1.9), one finds the weight function is 

- | ImG(p ,£ 0 ) | = 5 ( f t - € p + ( g W / 2 « ) In| (po+o>)/(po~u)\) for \po\ < « 
x 

£N/2u> 

~{jo-*9+&N/2a) In| (^o+co)/(^o-co)|]2+ |7rgW/2co|2 

(1.10) 

for \p0\>o). 

This function is plotted for several values of ep in 
Figs. 2 through 5. For electrons injected in momentum 
states just above the Fermi surface (aC2>ep>0) a 
"quasiparticle peak," here a delta function, occurs at 
the energy 

with a strength 

E , = « „ / ( l + g W M 

a p = l / ( l + g W M . 

(1.11) 

(1.12) 

For large gW/co2 the major contribution to the sum rule 
(1.6) comes from the continua above thephonon emission 
threshold \po\ = co. The maximum value of the weight 
function in the continuum occurs at po=co (l+gW/co2)1/2. 
The continuum for ^>o<0 enters only when an electron 
is extracted from state p (i.e., hole injection) and 
describes a dressed hole and a phonon being excited. 

As €p increases, the delta-function peak moves 
toward co, approaching co asymptotically as ep-*oo. 
If we continue to interpret this peak as a quasiparticle 
even for ep̂ >o>, this branch of the excitation spectrum 
exponentially approaches a constant energy, co, at 
large momentum. The strength of the peak decreases 
however as exp[—2€pco/gW[], as ep—* oo. 

There is an important change in the continuum as 
ep increases beyond co in that the simple peak occurring 
for ep<co splits into two maxima, the lower energy 
maximum approaching co asymptotically from above 
as €p —> oo, while the upper peak approaches the free-
particle energy as ep —> oo. Since the upper peak almost 
completely exhausts the sum rule for large €p, it appears 
natural to call this peak the quasiparticle peak for 
large ep. 

Therefore, the quasiparticle representation of G(p) 
is reasonable in the regions | ep | >̂>co, however for | ep | ~co 
the picture is clearly incorrect. 

Another procedure often used to define quasi-
particles2 is to seek poles of the analytic continuation 
of G into the lower (upper) half-plane of the complex po 
plane for po>0 (po<0). If a simple pole is the only 
singularity of this function near the real axis, the asymp
totic time dependence of G(p,t) in the limit t—> oo will 
contain the term a^e~~iE^ie~^v^i^ where the pole is 
located at po=Ep+iTv, with residue ap. In our problem, 

the analytic structure of G is complicated by the branch 
cut due to the logarithm in 2R. While poles do occur 
on the second Riemann sheet, the branch point at 
po=co leads to contributions to G(p,J) which cannot be 
neglected as t —> oo. 

The analytic continuation of G across the cut from 
co to oo and from — oo to — co is accomplished by 
subtracting from Sj(p,^o) the jump in its value as po 
crosses the real axis from above to below for po>0 and 
vice versa for ^o<0 . Defining po—E-\-iT, we have the 
continued expressions 

2R(E+iT)--
-g2N 

4co 
•In 

( £ + c o ) 2 + F 

(E-co) 2+T 2 
(1.13a) 

2coT 
Sj(E+ir ) = tan"1 

2co £ 2 + r 2 - c o 2 
sgn£ . (1.13b) 

To define the energy spectrum of the quasiparticles 
by this approach we look for zeros of G~l(p) 
= j?o— €p—S(^o). The solutions of this equation are 
presented in Figs. 6 and 7 and were obtained by 
numerically solving the transcendental equation for T 
as a function of E, then plotting E as a function of 
E—HR{EJriY) = e. Typical values of gW/co2 range from 
J to \ in metals. Figures 6 and 7 have been drawn for 
g2N/o)2== J. The branch labeled I arises from the delta-

. 0 7 | 
coA(o,xu)) I 

FIG. 2. Spectral weight function .4(ep,#co) appropriate to the 
electron Green's function for €p = 0, g2iV/co2 = J. There is a delta-
function contribution at x—0. 
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6UA(.75CU,XCJ) 

.15+ 

.125-

.10-

.075-

FIG. 3. The spectral weight function A(ev,xco) for ep = 0.75co 
and g2N/o)2 = i. The heavy vertical line represents a delta-function 
contribution. 

function term in the weight function. Branch II arises 
from a pole on the second sheet. I t should be emphasized 
that a quasiparticle picture based on these two branches 
alone does not give an accurate representation of 
G(p,po), as is clear from the plots of the weight function. 
This physical statement is true since G(po) is not 
meromorphic but has branch-point singularities at 
energies ^o=±co which cannot be neglected in deter
mining the time dependence of G. 

The origin of the two branches or alternatively of 
the peaks in the spectral weight function might be 
partially clarified by considering the soluble problem 
of N pairs of coupled harmonic oscillators. Consider the 
Hamiltonian 

H=% E (pn2 + \n2qr? + Pn2+An2Qn) 
n=l 

+ ZgnqnQn. (1.14) 
7 1 = 1 

The Green's function for the operator qn, defined by 

r.00 

G9n(E) = i dteiE'(0\{T(qn(t)qn(0)}\0) (LIS) 

wA(2cd,xu)) 
1.8 

1.6 + 
1.4+ 
1.2 + 
1.0 + 
.8 
.6 
.4 
.2 

FIG. 4. The spectral weight function A{ev,xu) for ep = 2o> and 
g2N/co2~i. The heavy vertical line represents a delta-function 
contribution. 

has poles at the characteristic frequencies con and Qn 

of the coupled system. 

An2+A„2 

G»2 = +Kfrn2-Ar?y+gr?J>\ 
(1.16) 

2 

Xn
2+An

2 

— l[(X.2-An2)2+ g n2]l/2 > 

I 

If the starting Hamiltonian is positive-definite the 
system is stable, and both o)n

2 and Q,n
2 are positive. In 

a similar manner, our approximation for the electron 
Green's function has manifestations of two types of 
single-particle excitations. Roughly speaking, the peak 
at Ep=ep/(l+g2iV/a>2) corresponds to an electron 
"clothed" by a cloud of phonons analogous to a polaron 
in insulators, while the positive energy continuum for 
fixed momentum represents a clothed electron and a 
phonon being excited, the sum of their momenta being 

wA(5a>,xaj) 
2 .0 -
1.8-
1.6-
1.4-
1.2-
1.0-
.8 -
.6 -
.4-
. 2 -

| 

T / \ 

r—~\ \ \ i i 
- 6 - 5 - 4 - 3 - 2 - 1 0 I 2 3 4 5 6 

X 

FIG. 5. The spectral weight function A(ep,xco) for ep = 5w and 
g2N/a)2 = %. The heavy vertical line represents a delta-function 
contribution. 

p. We note that for large ep the poles of G(po) on the 
first and second sheets have the bare phonon-like 
behavior on branch I and the bare electron-like behavior 
on branch II. 

Within the approximations made we have a result 
which is only of order the coupling constant squared. 
Our approximation for the self-energy contains im
plicitly the possibility for multiple phonon processes. 
Why is their effect not seen? The reason for these 
processes not contributing may be understood most 
simply by examining the relevant diagrams in the 
perturbation expansion. For example, consider double-
phonon emission shown in Fig. 8: 

2<4>ex: / d ^ k z D i k j D i ^ G o i p - h Y G o i p - h - k . 

This expression contains as a factor 

since 
/

d3k' r00 1 
Go2 (*') = N / de = 0 , 

(2TT)3 7_ M ( e -£ 0 ' ) 2 

/ dz = 0 
(z-aY 
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by Cauchy's theorem. Thus, we see we may even include 
some "phonon line crossing" diagrams which would 
arise from inclusion of the full vertex function; as long 
as there are two symmetrically placed electron lines, the 
contribution will be zero. In Sec. I l l we will consider 
the effects of multiple-phonon emission. 

II. EVALUATION OF G(e,0 FOR LARGE t 

We now consider the evaluation of G(e,t) for large 
positive t. The Fourier transform of G(e,po) gives us the 
amplitude for a particle which is placed in the system 
at time zero with kinetic energy, e, remaining in the 
same state after a time, t. 

dz 

(2.1) 

2TT 

-I dz 
— e 
2TT g2N 

z— e-\ ln| 
4co 

/ co+s \ 2 l 

\co—z/ J 

The integral is to be closed in the lower half-plane. 
For e>w we choose the contour of integration as in 
Fig. 9. The result of the integration may be written as 

G(M)=-
exp(—iEit) 

exp(—iEnt—Tut) 

* l + 8 W / [ y - ( £ i i + * T i i ) 1 ] 

dz exp(-izt) 

+ 2TT •A 
4co [Ql 

If we change the variable in the line integral to 
T' = i (z—(a), then the dominant contribution comes from 
the branch point r ' = 0. Therefore, placing r ' = 0 in 
those terms of the denominator which give finite 
contributions, we obtain 

g2N r e~Vft 

L 2co Jo [co-^W7r/4o)+(g27V"/2co)ln(2co/r,)]2+(7rgeiV'/2a;)2 

If we place y=T't and neglect all but the singular 
behavior as t—+ °°, we obtain 

/ . • 

g2N 1 

2a>t [(gW/2co) In/]2, 
dye~y. 

Thus, the resulting expression is 

exp[—iEi(e)t] 
G(e,t)=-i-

l + gW/[c02-£!2(6)] 

exp[-iEn(e)+TuQ 

'l+gWrf/Z^-iEn+iTn)!2 

2o)e~iu>t 

g2Nt(\nt)2 
(2.2) 

Of course, for / increasingly large the damped term 
will be negligible not only compared with the undamped 
term but also with respect to the l//(ln/)2 term. In 
fact, the technique used in the evaluation of the line 
integral supposed t much greater than all the energies 
which entered. Thus, when this technique applies, the 
damped term may be mathematically neglected. 
However, we include it since it represents a physically 
important state of the system. 

When e is less than co we use the same integration 
technique but change the contour so that both poles 
are included. The result of the line integration, depend

ing as it does only on the behavior at the point 2=co, 
remains unchanged. 

III. MULTIPLE-PHONON PRODUCTION 

In Sec. I we saw that our approximation for S(^o) 
did not reflect multiple-phonon processes in that 2 was 
a smooth function of po near the multiphonon emission 
thresholds 2co, 3co, • • •. We show below that this result, 
while approximately correct, is strictly valid only if the 
e integral is extended symmetrically to infinity. We 
break particle-hole symmetry to investigate the approxi
mations of Sec. I. Results identical with this section, 

FIG. 6. Poles of the electron Green's function on the first and 
second branches. For a given kinetic energyfep, the poles are 
labeled by E. 
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except for numerical factors, are obtained if a large — °o by — fx in the e integration. When the imaginary 
symmetric cutoff is chosen. Thus, we will again use the part is taken and the spectral representation for G 
expression (1.3) for 2(p) but replace the lower limit inserted we find 

I m G - K ^ H - I m ^ f 
d*k 1 dk0

f ImG(k,W) f° <«j0'ImG(Mo') 
M ~ * 0 + . (3.1) 

(2TT)4 (po—ko)2—u?+i&[ Jo w ko—ko'+iii J-«> ir k0—ko'—ir}> 

We perform the ko integration by closing the contour so that only the poles of the phonon propagator contribute 

d*k f r 1mG(k,ko') r° ImG(k,ko) 
ImG-^Poj^Im-

( 2 T > 
/ dk0' ; / dk0

f— 
[Uo po—co — ko'+irj J -oo p 0 +o)—kof—it] 

g2 f d3k [ f™ 
— / dko' 
2a>J (2ir)HJ0 

ImG(kykof)b(po-u-h 
J —oo 

ImG(Mo')*(f t+«--*o') . (3.2) 

Since I m G " 1 ^ ) is an odd function of po we need consider only positive values of p0. Equation (3.2) leads to the 
result 

g2 f dzk 
ImG-^po)^-— / -^-^ImGfk, po—<a) for p0>co 

2o)J (2TT)3 

= 0 for 0<^ 0 <co 

Thus, continuing the constant density of states approximation, we have for po>o> 

(3.3) 

ImG-i(pa) = / de 
ImG^ipQ—w) 

2co 7_ , lp0-w-e-2B(p0-o,)J+[ImG-Hpo-''>)J 

+ t a i H -
g2Niv fn+po—w—ReS(/>0—w)l 

= - + t a n - 1 

2co 12 L ImG- 'Oo-w) 
(3.4) 

As required, this result agrees with (1.8) in the limit 
ju—>oo. We may make use of the fact that fx 
^>\ ImG^ipo—o)) | and consider the energy region where 
IJL^>\po—o)—ReS| by expanding (3.4) to form a linear 
difference equation 

g2N[ ImG~l(po-o>)\ 
ImG-H^o) = — TT (3.5) 

2w I jj, J 

with the boundary condition ImG~1(po=0) = 0. If we 

denote 

y^ImG-Hpo), 

where k gives the integer part of po/o), the difference 
equation (3.5) may be written 

g2N g2Nm 
^ _ i = — — 

2o)fx 2co 
(3.6) 

The solution to (3.6) is 

To=0 

g2NlT fr-l 

2w n=0 
£ (-*)"= 

fNvfl-i-x) 

2co 

•n-{-x)-\ 

\ i+x ) 
(3.7) 

where 

FIG. 7. Imaginary part of the energy, T, as a function of E for 
the poles of the electron Green's function corresponding to the 
curves drawn in Fig. 6. 

X = « 1 . 
2co/z 

Thus, as the energy goes through multiples of the 
Einstein frequency, ImG - 1 goes through oscillations of 
the order of magnitude 1/800 times ImG-1(co). We 
have considered only the no lines crossing diagrams in 



COUPLED ELECTRON-PHONON SYSTEM 999 

our approximation for the self-energy. We cannot 
trust the accuracy of these small fluctuations since the 
contribution of the crossed line diagrams which arise 
by including the full vertex may be of the same order 
of magnitude. 

To summarize, although by taking a finite cutoff, 
the effects of multiple-phonon processes may be seen, 
their effect is too small to be considered reliable in our 
approximation. 

IV. ELECTRONIC POLARIZABILITY 

To investigate the effect the modified electron 
spectrum has on the response of the system to external 
fields, we consider the irreducible polarizability P(q) 
defined by5 

P(q)=-2if G(P+q)G(f)T(p,q), (4.1) 

and illustrated in Fig. 10. At first sight one might be 
tempted to replace T by unity as in the expression for 
the electron self-energy part X (p). That such an approxi-

FIG. 8. A multiple-phonon 
process (4th order in g) 
included in the approxi
mation for the electron self-
energy. 

mation is inconsistent is most readily seen from the 
Ward identity6 

dpo dp0 

(4.2) 

This relation and a "generalized" Ward identity of the 
form 

qoT(p,q) = G-i(p+q)-G-i(p) (4.3) 

is valid in the limit q—> 0. These relations are a conse
quence of charge and current conservation. The proof 
of these relations is given in Appendix B. If 2 is ap
proximated by (1.1) it is straightforward to show that 
(4.2) and (4.3) are satisfied if T is evaluated within the 
ladder approximation,7 illustrated in Fig. 11. That is, 
the scalar vertex, T is approximated by the solution of 
the integral equation 

C d*k 
T(p,q) = l+i? G(k+q)G(k) 

J (2TT)4 

. ,XD(p-k)T(k,q). (4.4) 
6 See D. Pines, The Many-Body Problem (W. A. Benjamin, Inc , 

New York, 1962). 
6 J. C. Ward, Phys. Rev. 78, 182 (1950). 
7 Y. Nambu, Phys. Rev. 117, 648 (I960), 

FIG. 9. Integration 
contour used in evalu
ating G(e,t) for large /. I 

z plane 

». 

® 

We introduce a vector vertex, T, as the solution to the 
equation 

r(M)= 
2p+q 

2m 
-tg •I 

d*k 
-G(k+q) 

(2x)«-

XG(k)D(p-k)r(k,q). (4.5) 

The fact that solutions of these equations satisfy 

qoT(p,q)-(l'r(p,q) = G-'(p+q)-G-l(p) (4.6) 

follows by taking a linear combination of Eqs. (4.4) 
and (4.5) to form an equation for (goT—q-r). By 
direct substitution of the assumed relation (4.6) into 
this equation one finds 

qoT(p,q)-q-r(p,q) 

= ? o - e p + q + « p - 2 ( H - ? ) + 2 ( £ ) 
= G-i(p+q)-G-i(p), (4.6) 

as required, since in our approximation 

2(#) - - * / 
( 2 T ) 

•G(k)D(p-k). (4.7) 

The Ward identity (4.2) follows if we first take the 
limit q —> 0 and then let q0 —> 0: 

T(p,6)= lira 
G-1(P+qo)-G~1(p) dG-*(p) 

. """^ ?o dp0 

Therefore, in the limit q0 —>• 0 and qvF/qo —> 0, we have 

d2 fN 

r&o)=i = i + . 
dpo co2—po2 

(4.8) 

Since gW/w2 is typically ^ J, the corrections to the free 
vertex are at least of order unity in this limit rather 
than ~ C O / £ F « 1 which Migdal has found for 
\q\M°>/Ep)pF. V 

G(p+q) 

G(p) 

FIG. 10. Diagram corresponding to the definition of the 
irreducible polarizability, P(q). 
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p+q p+q k+q 

P P If 

FIG. 11. Ladder approximation for the vertex function. 

Long-Wavelength Polarizability 

We now turn to the problem of determining the 
polarizability in the long-wavelength limit subject to 
the condition that the phase velocity <?o/|q| of the 
wave being considered is large compared to the Fermi 
velocity VF. 

I t is convenient to rewrite P{q) as 

and the angular average of g is defined to be 

1 f 
— S(P,q)fop= £ |q |vS*(Mo). (4.14) 
47T J v^O (even) 

Thus, Eq. (4.9) becomes 

P,(qo)=-2i / ——[So(p,q»)X,(t,qit) 
J (2x)4 

+2i(p,qo)X^.t(p,q0) 

+ - - -g , (Mo)*o(Mo)] . (4-15) 

P(q) - - * / $(P,q)X(p,q): 

While all the g's are known explicitly, we know Xv 

explicitly only for v==0. Nevertheless, an exact solution 
can be given for Po(qo) and Pi{q^). 

To see this consider the q2 expansion of the vertex 
(4.9) equation (4.11): 

where g is denned as 

Q(p,q)^G(p+q/2)G(p-q/2). (4.10) 

The vertex function X(p,q)^T(p—q/2,q) satisfies the 
equation 

r dAk 
X(p,q) = l+i? -—G(k+q/2) 

J (2TT)4 

XG(k-q/2)D(p-k)X(k,q). (4.11) 

Since the right-hand side of (4.11) is independent of p, 
we assume X can be expanded for small | q | as a power 
series in q2: 

X(P,q)= E h\'X,(p,q0). (4.12) 
v~0 (even) 

If P and G are also expanded as a power series in | q [, 
it is clear that only terms even in | q | enter and that 
only the spherical average of g need be considered; thus 

P(q)= E | q | ^ f e ) (4.13) 
v=0 (even) 

© 0 

I h 

FIG. 12. ReP(g) 
plotted as a function 
of g0 in the limit 
qo/\(i\^>VF. 

X»(p,qo) = 8r,o+ig' •I 
d*k 

(M •rSo(k,q0)X,(k,q0) 

+ ---&(k,qo)Xo(k,qt)TD(p-k). (4.16) 

FIG. 13. Intersec
tion of ReII(g) and 
go2—co2 giving the 
phonon frequencies 
for fixed q in the limit 
£ o | q | » ^ . 

For v^0 multiply by Qo(p,qo)Xo(p,qo) and integrate 
over p: 

1 ̂ -(p-qo)Xo(p,qo)X,(p,qo) 

[ d*p 
= / —~tSo(p,qo)Xv(p,qo)+''-Qv(p,qo)X0(p,qo)3 

J (2TT)4 

X [ X 0 ( # , g o ) - l ] . (4.17) 

In Eq. (4.17) we have used Eq. (4.16) for v=0 to 
simplify the right-hand side. By rearranging Eq. (4.17) 
we find the integral required to obtain Pv(qo) can be 
expressed as 

/ 

<pp 
•[9o(Mo)X,(Mo)+ • • • &(Mo)*o(Mo)] 

d*p 

*/« 

L92(p,qo)Xv-2(p,qo) 

+ •• •Q,(P,q*)X0(p,q9)lX0(p,q0). (4.18) 
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Thus for ^=2we find 

P2(<?o) = - 2 * / —--<32(p,qoW(pyq0) , (4.19) 
J (2TT)4 

which can be evaluated directly since 92 and Xo are 
known functions. We note that as in the exact expres
sion for the polarizability, in our approximation, 
Po(qo) vanishes since for q= (0,</0): 

Po(qo) = -2i / —-G(p+q/2)G(p-q/2)Xo(p,qQ) 
J (2TTY 

•-2i 

(2TT)4 

d*p 

(2TT)< 
LG(p+q/2)-G(p-q/2)l = 0. (4.20) 

Thus, to order q2 the real part of P(q) for qo/\ q| ^>VF is 

.2 4 .6 .8 1.0 1.2 

FIG. 14. Spectral weight function A((-V,xu>) for the electron 
Green's function in the Debye model for ep = 0 and the coupling 
strength a = \. There is a delta-function contribution at x = 0. 

given by 

ReP(q)--
3 \ qj 

1 

qj (1+gW/co2)2 

3gW gW 
X 2+ 

co2—502 
(4.21) 

A plot of ReP(g) as a function of #0 is shown in Fig. 
12 for go/|q|^>z>F. 

We initially chose a phonon propagator corresponding 
to an undamped Einstein spectrum. Experimentally 
this is a valid assumption for large momentum transfers. 
One question we may answer at this stage is whether 
it is possible to arrive at this spectrum for the inter
acting phonon field starting from a Hamiltonian 
formulation. That is, our interacting phonon propagator 
is chosen to be 

We have implicitly calculated the phonon self-energy 

FIG. 15. Spectral weight function in the Debye 
model for ep=0.75w and a — \. 

II (q), since 

nfo)=g»Pfa).. 

But Dyson's equation gives 

D(q) = Do(q)+Do(q)U(q)D(q) 
or 

Do-^-qo'-^-Uiq). 

Since we are willing to accept a spatially nonlocal 
interaction, II may be a function of q. However, our 
result (4.21), is also a function of qo not linear in qo2. 
Thus, we could not start with a Hamiltonian formu
lation and arrive at an interacting phonon spectra with 
a single frequency for small wavelengths. 

Another question we may put forward is the following. 
Suppose the initial Hamiltonian had an Einstein 
spectrum; using the perturbation approach of the 
previous sections, what is the interacting phonon 
spectrum? The condition qo/\q\^>VF used in the calcu
lation for the polarizability is appropriate for the 
long-wavelength Einstein phonons. 

The dressed phonon frequencies are given by the 
poles of the dressed phonon propagator. 

Z > ^ ) = <tf-«2-n(q,go) = 0, (4.22) 

.b 

.4 

1 .3 
3 

CM 

1.2 
.15 
.1 

.05 

| 

_ 

-
/ 

" / 
•J 

—I 1 1 1 r 

A / x \ 
\ y \ . 

N. 

\ . 
N . 

^ * \ ^ ^ 
1 1 ! 1 -.- J 

FIG. 16. Spectral weight function in the Debye 
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FIG. 17. Spectral weight function in the Debye 
model for ep = 5co and a — \. 

where U(q) = g2P(q). Thus, the dressed frequencies are 
given by the intersection of the curves 11(g) and g0

2—co2 

in Fig. 13. I t is interesting to note that two roots exist 
for each value of q, one above and one below the bare 
phonon frequency. As q—>0, the roots approach co. 
So that if an Einstein spectrum is a reasonable choice 
for the noninteracting phonons, we would expect to 
observe experimentally the two branches splitting as 
we increase the momentum transferred to the lattice. 

V. ELECTRON SPECTRUM IN THE 
DEBYE MODEL 

We now consider a model of the lattice in which the 
phonons are described by a Debye spectrum,4 that is, 
there exists a linear relation between the energy and 
momentum carried by a phonon, w q = c | q | , where c 
denotes the velocity of sound and q ranges from zero 
to qo, the Debye wave number. The corresponding 
maximum phonon energy is denoted by co. Zero phonon 
damping is again assumed. We begin immediately with 
the approximation for the self-energy used previously 
in which T(p,q) = l, 

2(p) 
J (2T 

F 

(2wY (po-hy-w^+iS k0Z(k)-e 
(5.1) 

To obtain an estimate of the coupling constant we use 
the deformation potential model without corrections 
for umklapp processes8: 

Vk= |vA|2= 
4wZe2/ 2V\1/2 q2 47rZe2/ N' 

I d I W . 7 q2+ks
2 

(5.2) 

where we choose the static approximation to the 
dielectric function K and ks is the Fermi-Thomas 
screening length 

&S
2 = 4 £ 2 W & F A , 

where Z is the atomic number, N the ion density, M 
the ionic mass. In the long-wavelength limit, (2) 

8 J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955). 

becomes 

where 

&2= 
ir2c2q2 

7T2C0q
2 

mkF mkf 

c2 = tnvF2/3M. 

The variables of integration are changed by introducing 

q 2 = ( p - k ) 2 , 2 | q | < J | q | = 2 | p | | k | d k . 

Equation (5.1) may then be written 

2(#)=-
iir2mc2 

/
dk0d 
TT7SdV 
(lie, (Pa 

(hzy 
(5.3) 

The only dependence of 2 on p is in the factor 1/1 p | . 
If we put | p | =IZF then 2 and Z are independent of e, 
and the techniques used in the treatment of the Einstein 
spectrum are applicable. Since the dominant contri
bution to 2 comes from states of energy <o> about the 
Fermi surface, this replacement is justified. If particle-
hole symmetry is maintained and the cutoff extended to 
infinity the self-energy is 

2W = 
2 ^ 2 

f dk0- f 
J &o>0 J k 

L 

dko 
fco<o 

dq qz 1 

(2TT)2 (p0-ko)2-c2q28+i\ 
(5.4) 

As in the Einstein case, the boundary value of ImZ 
from above for po>0 is obtained from the delta-

€/OJ 

FIG. 18. Poles of the electron Green's function on the first and 
second branches in the Debye model. The real part of the energy, 
E, is plotted as a function of the kinetic energy ep measured 
relative to the Fermi surface. The parameter a was chosen to be 
1/24 for this calculation. 
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function contribution and is given by 

— iirpo* 

-iwoo* 
for pQ>u. 

3pF
2c2 

for po<o) 
3pF2c2 

The results of the integration are 

ReS(E+£T) = 
16c2p* 

| £ c o 2 + | ( £ 3 - E r 2 ) In-
[ ( £ + c o ) 2 + r 2 ] [ ( E - c o ) 2 + P ] co3 (E+co) 2 +P 

1— ln-
(E2+T2)2 

+ ( f r 3 - 2 r £ 2 ) t a n - 1 -

3 (E-o))2+T2 

2£Tw2 

(£2+p)2+(r2-£V' 
1 (co2r /r3 E*T\ [(£+w)2+r2][(£-o))2+r2] 

ims(£+;r)= in-
Sc2pF2l 3 \ 6 2 / (E2+T2)2 

+(?-£r*) 2ETco2 2Tco 
tan~ tan~ 

(£2+r2)2+(r2-£2V 3 £^+r2+co2) 
(5.5) 

The spectral weight function A (ev,p0) which is defined by (1.7) can be calculated from (5.5) with T —> 0. One 
finds 

a<p(x) 
uA(ep,xa)) = —— , (5.6) 

{x-ev+alx+xnn\l-l/x2\+\n\(x+l)/(x-l)\2}2+(aT)2<p2(x) 

where 

and 

<p(x) = 
| x | 3 ; 0 < j x | < l 

1; \x\>l 

24:pF
2c2 

(5.7) 

(5.8) 

Plots of A for a = J are shown for €p = 0, 0.75w, 2o>, and 
Sex) in Figs. 14, 15, 16, and 17, respectively. This value 
of a was chosen to make the damping rate for the 
Debye model agree with the calculation presented above 
for the Einstein model when x>l. I t should be noted 
that in Fig. 14 the delta function at x=0 (for 6P=0) 
is the dominant part of the weight function. I t is clear 
from the plots that as in the Einstein model, the quasi-
particle description breaks down unless e<Koo or e^w. 

The poles of G(p) on the first and second sheets are 
given for the Debye model in Fig. 18 for a= 1/24. There 
is a strong similarity between this plot and the corre
sponding curves for the Einstein model shown in Fig. 6. 
The imaginary part of the electron self-energy SJ(JE) 
is plotted in Fig. 19 for the two branches of Fig. 18, 
showing the well-known cubic damping rate for small 
E on branch I. 

CONCLUSION 

While the above calculations are for highly idealized 
models of the coupled electron-phonon system, we 
believe the qualitative features of the results are 
characteristic of physical systems. Specifically, we 

expect in general multiple peaks in the electron spectral 
weight function which describe various decay modes 
of an injected electron. Although one peak may have 
a majority of the total weight in limiting cases (i.e., 
e—*0 and e—•oo), a quasiparticle picture is expected 
to be insufficient for calculating system properties 
involving finite wavelength and frequency excitations. 
This does not preclude the use of Green's function 
methods since the approximations used above may 
well give an adequate description of these properties 
even though the quasiparticle scheme is inappropriate. 

FIG. 19. The imaginary part of the energy r , plotted as a 
function of E corresponding to the curves given in Fig, 18, 
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APPENDIX A. FORMAL DEVELOPMENT 
OF EQUATIONS 

The Hamiltonian we start with is1-8 (ft= 1) 

# = E € ( k K t ( k K ( k ) 
k,cr 

+i Z [nt(k)n(k)+«»(k)*.t(k)e(k)] 

Cv>(k,0,nt(kV)I]==*5k,k, 
[^(M^t(k',0]=Cn(V),nt(k',o]=o. 

Since we choose the phonon field Hermitian in co
ordinate space, we have 

« , t (k)=*>(-k) , n t ( k ) = n ( - k ) . 

The equation of motion obtained is 

a2 

dP 
-^(M=-co(k)v(M 

-2g(k) E ct(k',0c(k'+k, 0 - / ( M , (A3) 
+ E g(k')ct(kK(k-k')*(k') 

k,k' ,(r 

+£/(-k)?(k), (Al) 
where the spin sum has been accounted for by the 
factor of 2. The electron and phonon time-ordered 
Green's functions are defined by the equations1 

where e(k) = €( |£ | ) is the electron's kinetic energy as a 
function of momentum, minus the chemical potential fx; 
g(k) = g(\k\) is the electron-phonon coupling function 
and co (| k \) is the phonon frequency. J (Is) is an external 
source of phonons which we will use in generating the 

D(-q) 

G ( k , / ; k r ) = - f -
<$,+oo|r(c(k>Oct(k//))l*,-«>> 

FIG. 20. Diagram representing Dyson's equation 
for the electron Green's function. 

Green's function equations and then set equal to zero. 
We work with a box of unit volume and use periodic 
boundary conditions. 

The equation of motion for the electron field is 
obtained by considering the commutator 

=-i(T{cQi,i)cw,n)) 
S<¥>(k,fl> 5(<p(-k',l)) 

D(k,l; k'/) = = 
8J(k'/) S / ( - k , /) 

= -*{<r(^(k>o*»t(k',0)> 

-<^(MX?t(ky)». (A4) 

The Heisenberg state vector |<£, — oo) represents the 
ground state of the electron-phonon system, specified 
by a complete set of observables whose eigenvalues 
are given at the time minus infinity. The definition 
of the electron Green's function and the field equation 
(A2) are sufficient to obtain 

dc(k,t) 
tc(kJt),H'] = i—=e(k)c(k,t) 

dt 

\i € (k) |G(k ,* ;kr ) 

= 5 k ( k ^ - / ' ) - * Z g ( k ' 0 

+Zg(k')c(k-k',t)<p(k>,t), (A2) 

where we have used the anticommutation relations 

{cv(k,t),cS(k',t)) = 8at9>h,v 

{c,(k,0,c.'(kV)} = {cS(k,t)jC^(k',t)} = 0. 

Since the interaction is spin-independent, the spin 
variables, or, are suppressed. 

The equation of motion for the phonon field is 
generated by considering the commutator of the 
Hamiltonian with II (k), and then with <p(k), making 

X<r<*>(k", /Mk-k", 0* f(k ' / ))> • (A5) 

The phonon Green's function equation is generated by 
taking the functional derivative of the ground-state 
expectation of the phonon field equation with respect 
to J(k'J) 

d2 

—D(k,t,k'/)+u2(k)D(k,t; k't') 
dt2 

d(tf(k",t)c(k"+k, 0 ) 
- 8 k . k ' 6 ( * - 0 - 2 g ( k ) 2 : • (A6) 

k" 5J(k'/) 
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We use the following identity to rewrite the equation Then (A5) becomes 
for the electron Green's function , 

f* e(k)|G(k,/;kr) 
-i(T{<p{k",t")c(k,t)ci(k',t')}) Ldt J 

5 +<£«*")[ — -+i(<p(k",t))] 
= 7r7r(T{c(k,t)cKk',t'))) «" L 8J(-k",t") J 

5/ ( -k" , t") XG(k-k", /; k ' / ) = *k.k'*(/-/') 

-i(<p(k",t")){T(c(k,t)c<'(k',t')}). which may be rewritten as 

\i--e(ki\G(k,t;k't')- E g(k-k'")<*>(k-k''', t))G{k,t;k',t') 

r dG-1 (khh;k2,h) 
+i / dhdh E «(k-k"')G(k'",<; ki,/0 G(k2,«2; k'y') = Sk.k-5 (/-*'), 

J k»',ki,k2 5 / (k '"-k , t) 

where k ' " = k - k " . Thus, 

[* «(k)lG(k,*; k ' / ) - E g(k-k")<?(k-k" ' , *)>G(k"7; k ' / ) + * ( A I * . * . E «(k-k" ' )G(k"7; k^O 
L 31 J k'" y k'",ki,k2,k3 

X G(ko_,h;k'/)D(k3,h;k"'-k, O = «k.*'«(<-0- (A7) 
5<^(k,,<,)> 

By defining the vertex function as 
1 6G-,(ki,/1;kS)<1) 

r(ki,f1;k,^;k l><,)= — — — - , (A8) 
g(k») S< (̂k3,<s)> 

Dyson's equation for the electron Green's function may be written 

[dt" E [Go"1*,/; k " / ' ) -S (k , / ; k " / ' ) ]G(k" / ' ; k ' / ) = «k.k'«a-<0-
y k" 

In (A9) we define the inverse of the free-electron Green's function by 

G0-
1(k>/;k"/,)=j[* e(*)]8k.k»-«(k-k")<^(k-k">/)>[««-/") 

and the self-energy, 

S(k,;; k"t") = i (dhdh E g(k-k'")g(k2)G(k'"/; klyh)T(Kh; k",t"\ W»)0(W»; k ' " - k , /). (A10) 
J k / / / , k i , k 2 

We may take advantage of the translational invariance of the system for the source term set equal to zero, and 
define 

G(k//V;k1,/1) = 5k,/, |klG(ki;yi) 

rdtf 
=«k»'fk, / — r * ^ w G ( i i ) (All) 

J 2w 

and similarly for the other two-point functions. The three-point function, due to translational invariance depends 
only on two 4-momenta 

r ( k ^ i ; k " / ' ; k3,/3)=5kl_k-,k3r(k,/,k3; tht",tz) 

r dW dh« 
= «k1-k»-.*, / eW'^-t'^e-iHHti-H)?^"^). (A12) 

J 2T 2TT 

(A9) 
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These properties when used in (A10), lead to the standard form (Fig. 18) 

2(#) = +*' / T—-g2((l)G(p+q)T(piq)D(q) , (A13) 
J (2TT)4 

when we take the limit of an infinite volume continuum. The phonon Green's function equation, (A6), may be 
written in a similar form: 

/ a 2 \ . $G(k"+k , / ;k '7+) 
( —+co2(k) )D(k,t; k'/)=-8ktk,8(t-0+2ig(k) £ 
\dt2 / k» 5 / (kV0 

= - 5 k l k ^ 0 - / 0 + 2 ^ ( k ) g ( V ) / dMfe&s L G(k"+k , /; k ^ r f o , * ! ; k2,/2; k8,*8) 
y k / , ,ki )k2 ,k3 

XGfc^sk'^DCk^ajkVO. (A14) 

When translational invariance, the infinite volume limit and time Fourier transforms are used, 

[Co-1 ( * ) - n ( * ) ] / ? ( * ) = l , ... (A15J 

if the inverse of the free phonon Green's function and the phonon self-energy are defined by 

D<rKk)^h2-o?{k) 

r d'p (A16) 
n ( * ) = - 2 ^ ( f t ) / —-G(p+k)G(p)T(p,k). 

J (2TT)4 

To complete the formal development we consider the equation obeyed by the vertex function. Using (A8), 
(A9), and (A10), we obtain 

r(k,*; k" / ' ; k\t')^b^>xh(t-t"W-tf)+i / dhdhdhdh L g(k-k'")g(k2)G(k"V; k8>*8)r(k8,/,; Kh\ k ' / ) 
y k / ,,ki,k2 

XG(k4,/4; k!,*i)r(ki,/i; k" / ' ; k2,/2)P(k2,/2; k'"-*, 0+ i fdhdh E g(k-k'")g(k2) 
y k '" ,k i ,k 2 

XG(k'",*; W i ) ( — • / vi ' ^Vcki , / ! ; k"/ ' ; V2)£(k2,/2; k '-k, /)]. (A17) 
Vg(kO 5<*(k',/')>/ 

The last term of (A 17) represents the introduction of a The electron self-energy (A 13) then becomes 
new function since the functional derivative of YD 
with respect to (<p(z)} cannot be expressed in terms of W A W • f i( \r(*JL \r>( \ (\IQ\ 
the functions already introduced. As in the treatments *(P)-*J g W^p1-q)V{q). tA19j 
using an infinite chain of coupled integral equations, 
the last term of (A 17) is the introduction of a higher The vertex equation, derived using (A8), (A9), and 
order correlation function. (A 18) corresponds to the ladder approximation7 shown 

A very useful approximation4 is obtained when one in Fig. 11, when the variation of D with (<p) is neglected, 
uses an iterative approach and retains only the first 
term of (A17), approximating the vertex function by „ , N A , . f dAk , _ , , , x 

r(#,g) = l . (A18) J 2TT)4 

F XT(k,q)G(k)D(p-k). (A20) 

^ *̂ This approximation for V is used in Sec. IV to discuss 
S**~^ ***10ffit\ the electronic polarizability. 

D(q) °o ( q ) R ^ V ^ f - J 8 ^ D<q) APPENDIX B. WARD IDENTITIES 
G (p) 

FIG. 21. Diagram representing Dyson's equation for T o d e i ? v e t h e W a r d identity6 for T used in Sec. IV, 
the phonon Green's function. we consider the related vertex function Tp(x,y,z) 
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(M=0, 1, 2, 3), defined by the relations 

^(x,y,*) = (T{j,>(z)$(xW(y)}) D'o(*)>lK*)] = ~^(2)53(z-x), (z0=x0) 

• / ^(aj '^ '^JG^^OGCy'^)^ '^ ' • (B1) (B6) can be reduced to 

The current density 4-vector M̂ (for electrons of one y* = —iG(z—y)5(z—x) 
spin orientation) is denned by M=O dz* 

+iG(x-z)5(z-y). (B8) 
i„(2)=* tW^(«), M = 0, 

By inserting the Fourier representations of G and f 
f / ; /N„ , / \ into (Bl), it is easily seen that the 4-divergence of the 

= 2 ^ right-hand side of (Bl) is 
-WtoM*)}, ^ 1 , 2 , 3 . (B2) t d ^ w ) 

In the absence of spin-dependent forces, j , satisfies the £ Jz ~J ^r^)-q^o(piq)lG(p)G(p+q) 

continuity equation M dApd*q 
Xexp[ip(x-y)+iq(x--z)~]——-. (B9) 

3 d (2TT)8 

L — i,(*) = 0, ^ (/,*), (B3) 
M_0 ^z/* Since the right-hand sides of (B8) and (B9) are equal, 

T i , £ • i j ^ r / T ) ^ i , , ., so are their Fourier transforms: 
In the presence of spm-dependent forces, (B3) holds if 
jn includes electrons of both spin orientation. If we i[G(p-\-q) — G(p)~] 
assume the system to be translationally invariant it =i{qL-f(p,q)-q0To(p,q)}G(p)G(p+q). (BIO) 
follows that the Fourier transforms of G and T can be 
represented by This relation is equivalent to the Ward identity (B5) 

stated above. 

/

d4p To connect T and fM we note that T satisfies the 

G(jyp<*-*'> equation 
(0\T{cp(q,t'')c(p+q,t')cKv,t)}\0) 

W,y,z) = ]Vr(p,q) explip(x'-y') 
d*pd*q 

+iq(xf-z)2 . (B4) 
(2x)8 XG(p+q, t-h)G{v,h-t')dhdhdh. (Bll) 

By taking the 4-divergence of (Bl) and using the [ S e e ( A 5 ) a n d (A8)-(A10).] The phonon field, <p, 
continuity equation (B3) one readily obtains the satisfies the equation of motion 
generalized Ward identity 

<7or0(M)-q-f (p,q) = G*(p+q)-G-!(p) (B5) _ / ^ L + 8 V ( q r ) 

for the vertex TM. 
To see this in detail, consider the 4-divergence of AM = ArKq/OpCq/O^&pfa/O > (B12) 

with respect to sM where 

^ dA,(x,y,z) PW)= [v(z)f(z)<r*'*<Pz (*<>=/"). 

dZu 

m r - M / / M , t / N u 5 / N Therefore, by applying the operator A r W ) to 
'-(T{Ljo(z),f(x)W(y)})8(zo-Xo) (Bll) we obtain 

= - / g(q)r(p+q, /i; p,fe; q^)£>(q, *«-*") 

+ <r{*WCio(2),^t(y)]})«(2o-yo) <0| r{p(q/0c(p+q, t')J(p,t)}\0) 

S^^^^T' (B6) = ~ / r f o + * ^ PA,q,fa)Z>0-1(q,O (̂q, W ) +<r 

The two commutator terms arise from differentiating X £ ( p + q j f^Q^ t2-t)dhdt2dh. (B13) 
the time ordering operator with respect to zo, while the 
last term vanishes according to (B3). With the aid of We note, however, that aside from spatial coordinate 
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Fourier transforms, (Bl) and (B13) differ for /z = 0 D-1(q0)Do(q0) = 1 or equivalently D(r
1(qo)D(qo) = l we 

only by To being replaced by TDQ~1D. Hence, the use Eq. (B12): 

r e k t i ° n f . ( t a ) = I > . - W f o ) r ( t a ) (B14) Z , » - I ( * ^ ( « ; M') = 5 ( ^ O - i g ( q ) < r p ( q , 0 ^ ( q , O ) , 

is valid. _ where Z^q; MO = - * X H P (<!>*) *>+(q/)}>. Now for q = 0 , 
If we assume that T^(p}q) is analytic in q so that p(q,t) = N(t) = N is a constant of the motion, i.e., the 

q - f (/>,<?) vanishes for q—>0, we need only show total number of electrons. Thus, 
D~1(q)Do(q) = l in the limit q—> 0, in order to prove m - i / \ n / \ n n 
(4.3). The relation qP(p,q) = G-*(p+q)-^(p) then q°LD° W o ) # ( g o ) - l j - 0 
follows from (B5), (B14) in the limit q—> 0. To prove which completes our proof. 
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Dynamical Motion and Gamma-Ray Cross Section of an Impurity Nucleus in a 
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The general theory of the dynamical motion and gamma-ray cross section for a single impurity nucleus 
harmonically coupled to an arbitrary collection of N atoms is developed in supermatrix representation. The 
relevant properties of the system are expressed in terms of a functional matrix /o(Q) of order 3NX3N, 
where & is the mass-reduced force-constant matrix. Our approach is to use a Cauchy singular integral 
representation for /o(Q) involving an integration along the real frequency, <a, axis. Matrix partitioning 
techniques are used to reduce our problem to one of evaluating the 3X3 impurity atom dynamic response 
matrix, {G}n — (l + eJCIsH-reAnJ^An, where T=U>2—ib. Here, 8 is an arbitrarily small number, and 
€+1 = ratio of impurity atom to host atom mass, (MI/MH). For an arbitrary physical arrangement of the 
atoms, A11={[13(Z+I) — T>Z+1(A¥/MH)1~1T>Z+I}II, where the subscript, 1, refers to the impurity atom coordi
nates, AF is the perturbation in force-constant matrix, and z is the number of sites over which the perturba
tion extends. The Dz+i matrix has matrix elements obtained from the elements of the pure host matrix 
Dtf = [Tl3j\r— Ftfifj/"1]-1, F# is the pure host force-constant matrix. lk is a kXk unit matrix. 

The general approach is used to study the dynamic response of an impurity atom substituted in the alu
minum lattice with arbitrary e and nearest neighbor AF. The A matrix is block diagonalized by introducing 
the molecular vibration symmetry coordinates and An is characterized by a 4X4 symmetry adapted Green's 
function matrix whose elements have been tabulated. A generalized tensor force-constant model is used with 
Walker's force constants characterizing D#, the pure aluminum lattice Green's function matrix. Similar 
studies are carried out for a Sn119 atom isotopically substituted in Ge, where the relevant Green's functions 
are derived from Phillip's frequency spectrum. 

The dynamical motion and gamma-ray cross section of impurity nuclei are characterized by a dynamic 
response function, K, which is related to the imaginary part of {G}n. Typical K functions are presented for 
Fe67 in Al for various changes in AF and for Sn119 in Ge with AF = 0. Our results show that the dynamical 
behavior of impurity atoms in real lattices is quite sensitive to the vibrational properties of the host lattice. 
The resonant fraction of y rays absorbed by the impurity nucleus, / , the Lamb-Mossbauer coefficient, 2W, 
and mean-square velocity, (vi2)av, of Fe57-Al are tabulated for several AF changes as a function of temperature. 
Our results are extrapolated to study the temperature dependence of 2W and/for Fe57-Cu and Fe57-Pt. From 
the results derived in this paper, it is possible to determine K, 2W, and (vi2)av for any e and AF for Al as a 
host lattice. 

I. INTRODUCTION 

TH E purpose of this paper is to present the results 
of detailed studies of the dynamical motion and 

7-ray cross section of a Mossbauer impurity nucleus 
bound in a locally perturbed host crystal at an arbitrary 
temperature.1 A completely general lattice dynamics 

1 For a recent review article on the Mossbauer effect see 
H. Frauenfelder, The Mossbauer Effect (W. A. Benjamin, Inc., 
New York, 1962). Studies of a general nature involving impurity 
atom motion, resonant Mossbauer absorption by impurity nuclei, 
and optical absorption by impurity vibrational modes have been 
carried out by A. A. Maradudin, in Lecture Notes of Brandeis 
University 1962 Summer Institute of Theoretical Physics [W. A. 
Benjamin, Inc. (to be published)]. 

model is assumed in which the impurity nucleus is 

harmonically coupled to the host lattice with force con

stants which differ from those of the pure host lattice. 

A considerable amount of research has been carried 

out on vibrational as well as electronic impurity states 

in crystals. Green's function approaches to these prob

lems appear to have been developed by Lifshitz,2 Koster 

2 Qualitative studies of the impurity vibrational problem have 
been carried out by I. M. Lifshitz and co-workers in Russia 
over the past twenty years. See I. M. Lifshitz, Suppl. Nuovo 
Cimento 3, 733 (1956) for references to prior work. 


