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by the electrons during this time can be measured from 
the avalanche photographs. Using the observed drift 
velocities the corresponding values of E/Po are cal­
culated (Po is the final cloud-chamber pressure cor­
rected to 296°K and, hence, corresponds to the argon 
gas density used by other observers). These results 
along with results of other observers are shown in Fig. 3. 
The present data indicate that in the range of E/Po 
values used (7.9 to 10.4 V/cm mm Hg) ko is independent 
of E/BQ and has a value of|3.04X 105 cm2/V sec mm Hg. 
Herring6 measured drift velocities with E/Po values up 
to 6 V/cm mm of Hg. Herring's data is in excellent 
agreement with Nielsen's7 data over Nielsen's range of 
E/Po, i.e., E/Po values of less than four. Nielsen's data 
is usually considered to give the best drift velocity in­
formation for electrons in pure argon. The present 
mobility measurements appear to agree quite well with 
this data if its range is extended, although they are 
from 10 to 15% higher than the mobilities measured by 
Errett.8 The higher mobilities measured by Riemann9 

6 P. Herring, Compt. Rend. 217, 75 (1943). 
7 R. A. Nielsen, Phys. Rev. 49, 338 (1936). 
8 D. D. Errett, Ph.D. thesis, Purdue University, 1956. 
9 W. Riemann, Compt. Rend. 217, 75 (1943). 

I. INTRODUCTION 

SOLID solution alloys are well suited for studying 
the effects of imperfections on the transport of heat 

by lattice waves. The present investigation is concerned 
with semiconductor alloys, in particular Ge-Si alloys 
and III-V compound alloys, because extensive experi­
mental and theoretical data, relating to the thermal 
conductivities of these systems, are already available. 
The choice of the temperature range is motivated by 
the general interest in these materials for high-tempera­
ture thermoelectric devices. 

The simple phenomenological model of thermal con-

* Work Supported by the U. S. Naval Bureau of Ships. 

can be understood in the light of Errett's measurements 
of the effect of water vapor on electron mobilities" in 
argon; Errett showed a sizable increase in electron 
mobilities in argon containing a very small admixture 
of water vapor. The fact that the present measurements 
made using tank argon fractionally distilled in the vapor 
source agree well with results in purified argon is not 
surprising. Bortner, Hurst, and Stone,10 using tank 
argon fractionally distilled, using liquid nitrogen as the 
coolant, measured electron mobilities that agreed quite 
well with Nielsen's measurements. In the present meas­
urements the nitrogen and oxygen impurities are esti­
mated to be less than 0.1% which according to the 
measurements of Errett would produce an increase in 
the mobility measurements over that in the pure gas of 
5% or less in the E/Po range used. 
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ductivity, developed by Klemens1-4 and Callaway5,6, is 
used in the present work. An alternative treatment of 
thermal conductivity is by the variational method of 
Ziman,7 or modification thereof by Tavernier.8 

The high-temperature limit of the theory was applied 
1 P. G. Klemens, Proc. Roy. Soc. (London) A208, 108 (1951). 
2 P. G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955). 
3 P. G. Klemens, in Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1958). Vol. 7. 
4 P. G. Klemens, Phys. Rev. 119, 507 (1960). 
5 J. Callaway, Phys. Rev. 113, 1046 (1959). 
6 J. Callaway and H. C. von Baeyer, Phys. Rev. 120, 1149 

(1960). 
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8 J. Ta vernier, thesis, University of Paris, 1960 (unpublished). 
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The high-temperature thermal conductivity of a disordered semiconductor alloy is derived using the 
Klemens-Callaway theory. It is assumed that the reciprocal relaxation times depend on frequency o as co* 
for strain and mass point defects and as to2 for normal and umklapp three-phonon anharmonic processes. 
The thermal conductivity is expressed in terms of the lattice parameters and mean atomic weights of the 
alloy and its constituents. Agreement is obtained between theory and published experimental data on Ge-Si 
alloys at temperatures 300-1200°K, and on (Ga,In)As alloys at 300°K, using the value 2.5 for the ratio 
of umklapp to normal relaxation times. It is found that the large thermal resistivity of Ge-Si alloys is 
predominantly due to mass defect scattering, whereas that of (Ga,In)As alloys is mainly due to strain 
scattering. 
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by Klemens4 to the thermal conductivities of Ge-Si 
alloys measured by Steele and Rosi.9 The thermal 
resistance of these materials was shown to be due to 
scattering of phonons by mass fluctuations and anhar-
monic phonon-phonon scattering. A recent investiga­
tion10 revealed that the previously published values of 
thermal conductivities9 at 300 °K are too large by a 
factor of about 1.6. To obtain fit between theory and 
the new experimental data it was necessary to assume 
that there is appreciably more anharmonic scattering in 
the alloys than in the pure components, Ge and Si. It 
was suggested10,11 that this effect is due to five-phonon 
processes, resulting from simultaneous three-phonon 
anharmonic processes and two-phonon point defect 
processes. 

There are two kinds of three-phonon processes, N-
processes, in which crystal momentum is conserved, and 
^/-processes, in which total momentum is changed by a 
reciprocal lattice vector. Klemens12 suggested that N-
processes, which were neglected in his earlier work,4 

contribute substantially to the thermal resistance even 
at high temperatures and he estimated that they may 
account for the aforementioned discrepancy between 
theory and experiment. 

Following this suggestion, the high-temperature 
theory is extended to include A^-processes, using the 
formalism of Callaway.5 An expression is derived for the 
thermal resistivity of a disordered alloy in which the 
ratio of scattering rates due to A^-processes to that due 
to ^/-processes is introduced as an adjustable parameter. 
Agreement between theory and experiment for Ge-Si 
alloys is obtained over a wide range of compositions and 
temperatures using a single value of this parameter.13 

The other subject treated is scattering of phonons due 
to lattice strains. An alloy whose components have 
widely differing lattice constants usually contains a 
large concentration of highly strained regions. These 
scatter phonons effectively. A simple, heuristic, elastic 
continuum treatment of such effects is presented here. 
The results are in good agreement with published data 
on (Ga, In)As alloys.14 

II. THE VIRTUAL CRYSTAL 

The alloys are assumed to be a random mixture of 
atoms, with different masses and volumes, arranged in a 
lattice. To calculate the thermal conductivity, use is 
made of the customary artifice, in which the disordered 
lattice is replaced by an ordered virtual crystal and the 
disorder is treated as a perturbation. The phonons are 
scattered as a result of the disorder perturbation and the 

9 M. C. Steele and F. D. Rosi, J. Appl. Phys. 29, 1517 (1958). 
10 B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, Phys. 

Rev. 125, 44 (1962). 
11 P. Carruthers, Phys. Rev. 126, 1448 (1962). 
12 P. G. Klemens, Westinghouse Research Report, 929-8904-R3 

(1961); P. G. Klemens, G. K. White, and R. J. Tainsh, Phil. Mag. 
7 1323 (1962). 

' 1 3 B . Abeles,*Bull. Am. Phys. Soc. 8, 14 (1963). 
14 M. S. Abrahams, R. Braunstein, and F. D. Rosi, J. Phys. 

Chem. Solids 10, 204 (1959). 

anharmonicity of the virtual crystal. In this section are 
discussed the parameters of the virtual crystal, the 
effects of disorder are treated in Sec. III. 

The parameters of the virtual crystal are derived 
using the following physical argument. Heat is carried 
primarily by the acoustical phonons of the nondispersed 
(large group velocity) part of the spectrum. These 
phonons are related to the elastic continuum properties 
of the alloy. Therefore, the virtual crystal must have 
the density and elastic constants of the alloy. Thus, the 
atomic weight M of the virtual crystal is given by 

M=ZxiMi, (1) 

where Mi and X{ are the atomic weight and frac­
tional concentration of the component i of the alloy, 
respectively. 

In most cases Vegard's law, 

*=Z>A', (2) 
is a good approximation for the atomic volume, 53, of 
the alloy. The quantity 8/ in Eq. (2) is the cube root of 
the atomic volume of component i of the alloy when it is 
in its own lattice. For diamond and zinc-blende lattices 
8= a/2, where a is the lattice parameter. 

In the case of an alloy of compounds, Mi and (8/)z 

in Eqs. (1) and (2) are defined as the mean atomic 
weight and volume of the component compound i, 

Keyes15 observed that the elastic constants, ct-&, of the 
column IV, III-V, and II-VI covalent crystal systems 
depend on the atomic volumes only. The relationship is 
given by 

Cik84~ const, (3) 

where the constant assumes a different value for each 
of the above systems. The assumption is made here 
that Eq. (3) is also valid when the atomic volume is 
changed by pressure or by alloying. 

Steigmeier16 determined the unknown Debye tem­
peratures of the III-V compounds using the elastic 
constants computed from Eq. (3). Since 0~51/2c^1/2lf~1/2, 
Eq. (3) leads to the relation 

Mfi/V'2=0, (4) 

where 6 is nearly constant within a given covalent 
crystal system. 

The anharmonicity constant y is defined by 

y=-d(\n6)/d(ln8*). (5) 

Substituting Eq. (4) in Eq. (5) yields 7 = J. The volume 
dependence of 0, given by Eq. (4), has been verified for 
germanium by Daniels,17 who derived the value of 
7 = 0.49 from the measured volume dependence of the 
elastic constants. For silicon, however, the value of 7 
derived in this manner,17 is 0.25. 

No explicit calculations of phonon-phonon scattering 
18 R. W. Keyes, J. Appl. Phys. 33, 3371 (1962). 
16 E. F. Steigmeier, Appl. Phys. Letters 3, 6 (1963). 
17 W. B. Daniels, Phys. Rev. Letters $, 3 (1962). 
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have been made so far. I t is assumed that three-phonon 
N- and £/-processes can be characterized by relaxation 
times rj\r and ru given by 4~~6 

r ^ - J W , (6) 

TU~^B2O>\ (7) 

where 
B1/B2=ai (8) 

co is the phonon frequency and B\ and B2 are indepen­
dent of co and the ratio a is independent of T. All 
higher order phonon processes are neglected. Further­
more, it is assumed that the phonons have the isotropic 
nondispersed Debye velocity v= kfi~l (6x2)~1/305. 

Leibfried and Schlomann using a variational method,18 

derived an expression for the lattice thermal resistivity 
Wp due to three phonon anharmonic scattering, 

Wp= Khr^-H^^k^m-^TM-'d-1^, (9) 

where jTis the absolute temperature, m is the unit atomic 
mass and the quantity 71 is of the order of 2, and is 
related to the anharmonicity of the lattice. Although 
this formula is based on a highly idealized model, it 
gives the correct dependence3,19 of the thermal resistivity 
on the parameters T, M, d and 0. A similar formula was 
derived by Dugdale and McDonald20 using a dimen­
sional argument. The assumption is made here that 
Eq. (9) is valid for the virtual crystal as well. 

III. DISORDER SCATTERING 

The disorder of the lattice is taken into account as 
follows. An atom of the virtual crystal is replaced by an 
atom of the alloy. This atom acts as a virtual impurity 
and scatters phonons. In general, the virtual impurity 
atom differs from the atoms of the virtual crystal in 
its mass, in its size and in the coupling forces to its 
neighbors. Furthermore, as a result of anharmonicity 
the coupling forces are modified by the 'misfit' strain 
field in the neighborhood of the impurity. For a general 
treatment of the subject see the review paper by 
Carruthers.21 

Klemens treated the case of point-defect scattering 
by an impurity in a simple cubic lattice with only 
nearest neighbor forces acting. The relaxation time 
Tp.i""1 for this process, given by Klemens,2 is 

TPfi-
l=^bzYi/^rv\ (10) 

18 G. Leibfried and E. Schlomann, Nachr. Akad. Wiss. Gottin-
gen, Math. Physik Kl. Ha 4, 71 (1954). In a previous paper 
(Ref. 19), it was stated erroneously that Leibfried and Schlomann 
neglected normal processes. In fact, the above authors assumed 
implicitly that N processes dominate over U processes, since 
they chose the displaced Planck distribution function as their 
trial function. 

19 D. S. Beers, G. D. Cody, and B. Abeles, in Proceedings of the 
International Conference on the Physics of Semiconductors, Exeter, 
1962 (The Institute of Physics and the Physical Society, London, 
1962), p. 41. 

20 J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 19, 832 
(1953). 

21 P. Carruthers, Rev. Mod. Phys. 33, 92 (1961), 

where 

Ti^xKAMi/M)2 

+2((AGi/G)-2X3.2y(A6i/d)y}, (11) 

characterizes the scattering cross section of the impurity 
atom i, di is the radius of the impurity atom in the host 
lattice, Gi is an average stiffness constant of the near­
est neighbor bonds from impurity to host lattice, G 
is the corresponding quantity for the host atoms, 
AGi=Gi-Gy A5i=8i-5, AM^M—M and 7 is an 
average anharmonicity of the bonds. 

The scattering can also be treated in terms of the 
elastic continuum "sphere-in-hole" model.22 This formu­
lation has the advantage of leading to a more natural 
definition of Gi and 5,- than that used in the impurity 
model of Klemens. 

The argument runs as follows: A sphere with radius 
6 representing the virtual crystal atom is cut in the 
virtual crystal matrix. A sphere with radius 5/ and mass 
Mi representing the impurity atom is introduced. 
Matrix and impurity are treated as continuous isotropic 
media which are constrained to touch along a sphere of 
intermediary radius 5». The radius of the impurity in 
its own lattice, 5/, and its radius in the host lattice, 
8i, are related by the expression22 

W « = [ ( « / - « ) / « > / ( 1 + M ) , (12) 

where 

M = ( l + ^ / 2 G ( l - 2 , ) , (13) 

G and v are the bulk modulus and Poisson ratio of the 
matrix, respectively, and G% is the bulk modulus of the 
impurity sphere. 

In a real crystal, the Poisson ratio v is anisotropic and 
does not have a uniquely defined average value.23 For the 
purpose of the present work the value ^ = ^12/(^11+^12), 
corresponding to the isotropic case, is used. Since this 
quantity is nearly the same for Ge, Si, and the III-V 
compounds its average value v=0.3 is used. From Eqs. 
(12) to (14) it follows that Gi/G~l and the quantity 
/x/( l+/ j)~0.62. This value is used hereon. 

Rayleigh24 has treated the scattering of sound waves 
in a gas by spherical obstacles. Ziman25 used a simple 
physical argument to extend the Rayleigh formula to 
the case of the isotropic elastic continuum. The ex­
pression he obtained differs from Eq. (11) in that the 
strain term, proportional to A5»/5, vanishes and in a 
slightly different coefficient of the term AGi/G. The 
strain term vanishes for the isotropic continuum because 
the displacement field around the impurity sphere has 
a vanishing dilation. To obtain finite strain scattering 

22 For a review on elastic continuum defects see J. D. Eshelby, 
in Solid State Physics, edited by F. Seitz and D. Turnbull (Aca­
demic Press Inc., New York, 1956), Vol. 3, p. 107. 

23 H. B. Huntington, in Solid State Physics, edited by F. Seitz 
and D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7, 
p. 316. 

24 Lord Rayleigh, Theory of Sound (Macmillan and Company 
Ltd., London, 1929), 2nd ed., Vol. 2, p. 284. 

26 Ref. 7, p. 222. 
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anisotropy must be taken into account. The model used 
here is already so simplified that a rigorous calculation 
is not warranted and the assumption is made that 
Eq. (11) describes the macroscopic situation. 

To express AGi/G in terms of Adi/d use is made of 
Eq. (3), with the result, 

AG</G=-4A5</$. (14) 

Substituting Eqs. (12), (14), and 7 = 1 in Eq. (11) 
results in 

IV=*,{ (AM, /M) 2 +€[ (5 -5 / ) / 5 ] 2 } , (15) 

where e=39. In general, e should be regarded as a 
phenomenological, adjustable parameter. 

The disorder scattering relaxation time rp is given by 

where 
(16) 

(17) 

is the disorder parameter. In performing the summation 
it is implicitly assumed that multiple scattering can 
be neglected. 

In the case of a mixture of two kinds of atoms, A and 
B, Eq. (17) becomes 

where 

and 

T^x(l-x)t(AM/M¥+e(A8/5)21, 

AM=MA-MB) 

M=XMA+(1-X)MB-

IV. THERMAL CONDUCTIVITY 

(18) 

(19) 

(20) 

(21) 

The expression for the thermal resistivity W is de­
rived by substituting in Callaway's5 Eqs. (16) and (19)-
(21) the expressions TN, ru and rp given by Eqs. (6), 
(7), and (16). In the limit of high temperatures, 
0/T<l, one obtains by simple integration13,26 

W r tan-W 

wp L u 
(l-fajrW/U))* -1 

1 

[ ( l+o0/5a]£ / 4 - !*7 2 +l- (tarrW/U). 

where 
W = (%ir)w*ihk-i8r0-1wP-1, 

U>=Uf(l+(S/9)«)-1, 

—1 

, (22) 

(23) 

(24) 

and the quantities Bi and J52 in Eqs. (6) and (7) have 
been expressed in terms of the ratio a and in terms of 
Wp, the thermal resistance in the absence of point 
defect scattering, and the velocity has been expressed 
in terms of the Debye temperature. The quantity 
W/Wp, given by Eq. (22) is plotted in Fig. 1 as a func­
tion of the parameter Uo for several values of a. 

26 J. E. Parrott, Proc. Phys. Soc. (London) 81, 726 (1963), de­
rived independently the identical expression. 

15 

5 — / 

loo 

1 

/ / / CFOyS 

1 

FIG. 1. The ratio of thermal resistivity of a disordered alloy, W, 
to that of the alloy in absence of disorder scattering (virtual 
crystal) Wp as a function of the disorder parameter Uo. The solid 
curves were computed from Eq. (22) for several values of the 
parameter a~Bi/B%. 

In the limit of vanishing N-processes, a~ 0, Eq. (22) 
reduces to the expression given by Klemens4 and Call­
away and Von Baeyer.6 In the case of weak point-
defect scattering, Z70«l, expansion of Eq. (22) results in 

W/Wp= 1+ U<? 3-Yl+2<*+—cA (1+ (5/9)a)-2 (25) 

which for a=0 reduces to the expression given by 
Ambegaokar.27 In the limit of strong point-defect scat­
tering, Uo2>l, the second term in the denominator of 
Eq. (22) can be neglected, and for ce= 9/5 the expression 
reduces to the one of Klemens.12 

For interpreting experimental data it is convenient 
to eliminate the Debye temperature in Eqs. (9) and (24) 
using Eq. (4). The result is 

Wp= 1 . 7 S X l O - ^ i ^ A f 1 ^ 7 ^ W-1 deg cm. (26) 

and 

U= 8.69X 106(1+ (S/fyayv^r^TWS-WT-1'2 (27) 

In the limit of strong point-defect scattering, 27o»l, 
expanding Eq. (22) and substituting Eqs. (26) and (27) 
results in 

W~ 9.67X 105(1+ (S/fyayityiP^TWMi'WT1'2 

+7.08X 10-2(1+ (5/9)a)Ti2/3-3lf1/267/2r 

W-1 deg cm. (28) 
27 V. Ambegaokar, Phys. Rev. 114, 488 (1959). 
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FIG. 2. Thermal resistivities of Ge-Si alloys as function of com­
position, at 300, 500, and 900°K. The solid curves were computed 
from Eqs. (18), (22), (26), and (27) with « = 2.5, /8 = 1.52X10-8 

deg cm3/2, 7i = 1.77 and e=39. The experimental points are taken 
from the works of Joffe and Joffe (Ref. 29), Steele and Rosi 
(Ref. 9) and Abeles et al. (Ref. 30). 

Equations (18), (22), (26), (27), and (28) express the 
lattice thermal conductivity of an alloy and its com­
ponents in terms of their atomic weights, their lattice 
constants, the temperature, and the three adjustable 
parameters: The ratio a of W to lU' scattering rates, 
the anharmonicity parameter, Yi and the strain param­
eter, e. These parameters, as well as the parameter /3 
appearing in Eq. (4), are nearly constant within a 
particular covalent crystal system and do not vary 
appreciably from system to system. The above equa­
tions are an extension of the one of Keyes28 which re­
lates the lattice thermal conductivities of covalent 
crystals to their atomic weights, their lattice parameters 
and their melting points. 

V. Ge-Si ALLOYS AND III-V COMPOUNDS ALLOYS 

The high-temperature thermal resistivities of Ge-Si 
alloys, published by three different groups of workers, 
are plotted in Fig. 2. Included are the room-temperature 
measurements of Joffe and Joffe,29 and Steele and Rosi9 

and measurements at 300, 500, and 900°K by Abeles, 
Beers, and Cody.30 The results of Joffe and Joffe29 are 
in good agreement with those of the third group, but 

28 R. W. Keyes, Phys. Rev. 115, 564 (1959). 
29 A. V. Joffe and A. F. Joffe, Izv. Akad. Nauk SSSR Ser. Fiz. 

20, 65 (1956). 
30 Included in Fig. 2 are measurements on specimens T-1810, 

GS-8, JPD-7, and S-1142 (Ref. 10), specimen GS-68 (Ref. 19) 
and specimen GS-9, containing 78% Ge and 22% Si (unpublished). 
The specimens designated (see Refs. 10 and 19) DS-4, D-75, 
D-171, and JPD-12 are not included in Fig. 2 because the first 
three samples had appreciable conduction of heat by photons and 
in the third, heavily doped sample, phonons were scattered by 
electrons. The remaining specimens were doped sufficiently to 
eliminate photon conduction but not doped sufficiently to give 
rise to appreciable phonon-electron scattering. The increase in 
W due to phonon electron scattering in these specimens is 
believed to be less than 10%. The thermal resistivities were 
corrected for a small electronic contribution to the thermal con­
ductivity which amounted to a few percent. 

the values of Steele and Rosi are smaller by a factor of 
1.6. This discrepancy may be due to a photon contribu­
tion to the thermal conductivity in their9 high electrical 
resistance samples. The measurements on Ge-Si alloys 
by Toxen31 are not included because they were made at 
low temperatures. 

The theoretical curves for W in Fig. 2 were computed 
using Eqs. (18), (22), (27), and published32 values of 5. 
The value of 0 was determined by substituting in Eq. 
(4) the Debye temperatures19 of Ge and Si, computed 
from the elastic constants. The resulting values of f3, 
for Ge and Si, differ by less than 1% and their mean 
value /3=1.52X10~8 deg cm3/2 was used. The value of 
e=39, estimated on the basis of the impurity model of 
Klemens, was used in Eq. (18). The resulting strain 
contribution to T is only about 10% of the mass con­
tribution. The values of Yi and a were determined by 
fitting the theoretical curve to the measured thermal 
resistivities. The best fit is obtained for 7i=1.77 and 
a=2.5. 

The thermal resistivities of (Ga,In) As and In(As,P) 
alloys were measured by Abrahams et al.u and Bowers 
et a/.,33 respectively. These systems are particularly 
interesting, because, on the basis of differences in lattice 
parameters one expects strain scattering to be appreci­
ably stronger in (Ga, In)As than in In(As,P). 

The theoretical curve for (Ga,In)As, plotted in Fig. 
3, was determined in a manner similar to that of the 
Ge-Si alloys. The lattice parameters were calculated 
from Eq. (2). The values of /3, computed from Eq. (4) 
using the Debye temperatures of19 GaAs and34 InAs 
differ by 8% and their mean value p= 1.33 X10~8 deg 
cm3/2 was used. The value of ce=2.5, determined on 
Ge-Si alloys, was assumed. This assumption is justified 
by the argument that the quantity a is determined by a 

0 .1 
GaAs 

.2 .3 .4 .5 .6 .7 
MOL FRACTION OF In As 

.8 .9 1.0 
I nAs 

FIG. 3. Thermal resistivities of (Ga,In)As alloys as function of 
composition at 300°K. The solid curve was computed from Eqs. 
(18), (22), (26), and (27) with a=2.5, /3 = 1.33X10-* deg cm3/2, 
Yi = 1.75 and e=45. The experimental points are from the work 
of Abrahams, Braunstein, and Rosi. (Ref. 14), with the exception 
of the GaAs value which is taken from J. Blanc, R. H. Bube, and 
L. R. Weisberg [Phys. Rev. Letters 9, 252 (1962)]. 

31 A. M. Toxen, Phys. Rev. 122, 450 (1961). 
32 E. R. Johnson and S. M, Christian, Phys. Rev. 95, 560 (1954). 
33 R. Bowers, J. E. Bauerle, and A. J. Cornish, J. Appl. Phys. 30, 

1050 (1959). 
34 D. Gerlich (to be published). 
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ratio of areas of W and iU} scattering surfaces and thus 
is essentially a geometric property of the Brillouin zone. 
It is reasonable to assume that III-V compounds with 
mass ratios close to unity have similarly shaped phonon 
spectra as Ge and Si and, therefore, should have similar 
values of a. The quantities 7i, and e were used as adjust­
able parameters to obtain the best fit between theory 
and experiment. The curve in Fig. 3 was computed for 
7i= 1.75, €=45. In contrast to the case of Ge-Si alloys, 
here the strain contribution to T is about three times as 
large as the mass fluctuation contribution. The agree­
ment between the phenomenological value, e=45, and 
that computed from the model of Klemens, €=39, is 
surprisingly good. 

The same numerical values of a, /5, Yi, and e were used 
for In(As,P) as for (Ga,In)As. The computed curves 
and experimental results are compared in Fig. 4. In 
this case the strain contribution to T is about one half 
that of the mass fluctuation contribution. The agree­
ment becomes worse the richer the alloy is in InP. This 
may be related to the fact that InP has a mass ratio of 
3.7 and probably has a vibrational spectrum differing 
from the semiconductors with mass ratio close to unity. 

VI. DISCUSSION 

The model used in this work is essentially that of an 
isotropic elastic continuum. The only use made of the 
discreteness of the lattice is in the assumption of anhar-
monic {/-processes. The fact that an elastic continuum 
model explains fairly well the lattice thermal conduc­
tivity is not surprising since heat is carried primarily by 
the phonons of the nondispersed part of the vibrational 
spectrum. 
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FIG. 4. Thermal resistivities of In(As,P) alloys as function of 
composition at 300 and 500°K. The solid curves were computed 
from Eqs. (18), (22), (26), and (27) using the same values of the 
parameters a, /S, yh and e as for (In,Ga)As alloys. The experi­
mental points are from the work of Bowers, Bauerle, and Cornish 
(Ref. 33). 

One can narrow down the identity of the phonons 
carrying the heat to the longitudinal acoustic (LA). 
Of the six phonon branches in germanium and silicon,35 

the LA phonons are least dispersed, have the highest 
group velocity and are nearly isotropic. One expects 
similar behavior for the phonons of the III-V com­
pounds. Because of this property, the number of three-
phonon N- and [/-processes in which LA phonons can 
participate is much smaller than the corresponding 
number for the optical (O) phonons and the highly 
dispersed and anisotropic transverse acoustical (TA) 
phonons. Thus, there is a group of phonons, mainly LA, 
with a long mean-free path, which carry most of the 
heat energy. The rest of the phonons, mainly 0 and 
TA phonons, have a short mean-free path and act as a 
heat reservoir for the LA phonons. 

The assumptions made here for the relaxation times 
TN can be justified for the case of strong point-defect 
scattering. Point defects scatter selectively TA pho­
nons and all short-wave phonons so that only long­
wave LA phonons contribute to heat conduction. Her­
ring36 has shown that for long-wave LA phonons Eq. (6) 
applies. Moreover, if N scattering is stronger than U 
scattering, then the thermal resistance of the disordered 
alloy is not sensitive to the choice of ru; for then point-
defect scattering combined with three phonon N process 
is more effective in destroying phonon momentum than 
three phonon U processes. 

Five-phonon processes and anharmonic three-phonon 
processes result in the same temperature dependence of 
thermal conductivity10'11 so that they cannot be sepa­
rated easily. In the present work, five-phonon processes 
were neglected. 

In view of the simplifying assumptions made, the 
good^agreement obtained between theory and experi-
ment^may be somewhat fortuitous. In particular, 
the assumption implicit in Eq. (17) requires further 
examination. 
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