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The problem of high-frequency conductivity of a degenerate semiconductor is investigated by a kinetic 
description. The finite duration of encounters is taken into account in a self-consistent fashion which properly 
includes collective effects. This treatment is an extension for quantum plasmas of the Dawson-Oberman 
method given for classical plasmas. 

I. INTRODUCTION 

RECENTLY Dawson and Oberman1'2 developed a 
method for obtaining the absorption of electro

magnetic waves in classical plasmas, taking into account 
collective effects. They have used an elementary model 
for the classical plasma, where the ions are infinitely 
heavy and randomly distributed1 or in thermal equi
librium with the electrons.2 Their results are in accord 
with a complete treatment given by Oberman, Ron, and 
Dawson.3 

The purpose of the present work is to calculate the 
absorption of electromagnetic waves in heavily doped 
semiconductors. This system is approximately described 
by an elementary model, where randomly distributed 
fixed ions are embedded in a dense electron gas.4 Our 
treatment is a generalization of the Dawson-Oberman 
work to a quantum system. For the derivation of the 
absorption coefficient one may use more sophisticated 
methods, e.g., Green's function approach,5 which al
though having the advantage of being rigorous, are 
rather elaborate. We feel that for the sake of simplicity 
it is advantageous to derive the absorption coefficient 
by employing an elementary model thereby obtaining 
a simple physical interpretation. 

We approach the problem using a quantum-mechani
cal kinetic equation for the electrons taking into ac
count their collisions with the ions, without carrying 
the usual time-scale restriction inherent in the well-
known transition probability approach to transport 
phenomena.6 It is clear that for applied fields changing 
rapidly in time, one cannot use the Dirac time-depend-
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ent perturbation theory in the infinite time limit for 
the calculations of collisions if the frequency of the 
driving field is higher than the collision frequency. 

In Sec. II we introduce our model and derive the 
basic equations. Section III is devoted to the numerical 
calculation of the resistivity and to the discussion of the 
results. 

II. MODEL AND BASIC EQUATIONS 

In our model of the degenerate semiconductor, the 
appropriate Hamiltonian is 

pi2 e2 Ze2 

tf=23 —+h £ ' - - L 
* 2m a \Xi--Xj\ i,i | r ;—R* 

(i) 

where the r* and R/ are, respectively, the electron and 
ion coordinates, e and m are, respectively, the effective 
charge and mass of the electrons while embedded in the 
crystal (for a detailed discussion of the physical assump
tions, see Wolff4). In Eq. (1), p* represents the electron's 
momentum and Ze the charge of the ions. The presence 
of a prevailing spatially uniform electric field E, oscil
lating in time at the frequency co, adds to the 
Hamiltonian 

# > = — £ eE*Tie-~ (2) 

This field represents an electromagnetic wave in the 
limit where the wavelength is much longer than the 
Bohr radius of the electrons. We also restrict ourselves 
to frequencies much greater than the collision frequency. 

We now introduce the one-electron density matrix 

F(r1,r1',0 = <*t(ri'W(r1O>> (3) 

where \(/(rt) and yp^{xt) are the annihilation and creation 
Heisenberg operators for the electrons. For any operator 
A we define 

<.4> = T r M } (4) 

where p, the many-electron density matrix, is constant 
in time. The Wigner distribution function for the 
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electrons7 is given in terms of F(rhYi,t) by and 

F(x,p,t) = / Jr ^ ' r ^ ( x + r / 2 , x -± r 7 i). (5) 

= -eJd9'dq\9-9'\-iJ(9'A',t) 
In the high-density limit, where the number of electrons 4-Ze Y I 4-te~io}t — R I_ 1 (11) 
in the Bohr sphere is large, we obtain the following z 

equations for F(x,p,t) in the rest frame of the ions w j th 

'd p d d\„ f(9A,t)=F(9+ze~i«t,q--ico?nte-i"t,t). (12) / a p d d \ 
- + ~ eEtr*'— )F(x,p,t) 

\dt m dx dp/ dp/ We shall now assume that the right-hand side of 
Eq. (10) causes only a small perturbation on the equi-

= -ie fdt ^ P - [ # ( x + r / 2 ) - * ( x - i r ) ] H b r i u m S ° l u d ° n ° f ^ e q U a t i ° n ' 
J
 r A , fo(p) = Ze^&/2m-v)+l-}-\ (13) 

f p • / ~ 
^ / (1 \*%V ' ' where £ is the inverse temperature in energy units and 

w k ^ **' ix is the chemical potential of the noninteracting elec
trons. In other words, we assume that the discrete nature 

/ o f the ions causes only a small effect, and that the elec-
dx'dp I x—x' I ~1F(xf

Jp,t) tron motion in the region of frequencies under considera-
i ~ y, i __-n i_i />7\ tions is largely inertia-dominated (the conductivity is 

i mainly reactive). The equations for / and î , the small 
departure from equilibrium are 

is the self-consistent field of the electrons and the held 
due to the ions and fi is taken to be one. / , }̂ \ rt ,\ __ • / ^ r / A 

Equations (6) and (7) were obtained under the as- \ ^ m do/ ' ? J (2irY 
sumption that the electron-electron correlations, in
cluding their exchange effects, are systematically ne- f 
glected. The validity of this neglect has been borne out " j dr ^ t ( * ~ q / ) ' W e + 5 * ) - ^ ( p - 5 r ) ] , (14) 
by the more general treatments of Refs. 3 and 5. This 
amounts to the fact that the electron-electron correla- and 

tion and exchange contribute only to effects of second ^ ( ^ / ) = — e / d9'dq\ 9—9
/\~1f(9',q;> 

order, while we restrict ourselves to effects of the first J 
order only. + Z e £ | j > + e * - * " - R , | - i . (15) 

To facilitate the solution of the coupled Eqs. (6) and 
(7) we perform the following transformations: I f w e d e n o t e t h e F o u r i e r transform of a function 

9=x-t(Tiat, / (e ) by 

q = p+iwwe«r«««, (8) / ( k ) = = ' fdg e x p ( i k . 0 ) / ( 0 ) , (16) 
i—t (2wY J t = t, 

w n e r e and Fourier-analyze Eqs. (14) and (15), we obtain 
£ = ( 6 V W ) E . (9) 

fd % \ 
Equations (6) and (7) become ( q*k J/(k,q,J) 

(L+!L.—)?(Myt) = -^(k,/)[/o(q+ik)-/0(q-k/2)], (17) 
\dt m d9J and 

/

Aire C 

</r*r**- r .[$(p+r/2, / ) - $ ( o - r / 2 , /)] ^0M) = ~ / dqf(k,q,t) 

f dq; 

J (2,)» n M ' h ^ } + - — E e x P p k ( R ; - e ^ < ) ] . (18) 
(2T)3AJ2 i 

see' l u ^ S o P n t v i c h e I n d ° V . ¥ i&S&tXffiSS S i n c e t h e conductivity is denned by the limit , -> 0, 
(1960) [translation: Soviet Phys.—Usp. 3, 84 (I960)]. we shall expand the second term on the right-hand side 
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of Eq. (18): 

£ exppk- ( R z - e e - i w 0 ] « E e « k ' R ' [ l - * - w r * " ' ] - (19) 
i i 

(See Ref. 1, Appendix A for the justification of this 
expansion.) With this linearization we can decompose 
the solutions of Eqs. (17) and (18) into two parts cor
responding to the two source terms on the right-hand 
side of Eq. (19): 

/(k,q>0 = fs ( k , q ) + / (k,q,w) e~ 

*(k ,0=*. (k)+*(k ,u)«r<" ' . 

The solution for the static part is 

4we2Z 1 1 
*.(k) = - pik'Rl 

¥ (2irf8(k,0) i 

and for the dynamic part 

iKM=-
4rre2Z 1 

pik'Rl 

W (2ir)3 8(k,u) i 

where S(k,u) is the dielectric function given by 

4xe2 r dp / o ( p + k / 2 ) - / 0 ( p - | k ) 
8(k,co) = l- ' f dp 

J (2x)3 p-k/m—w—i8 

(20) 

(21) 

(22) 

(23) 

Following Dawson and Oberman1 we obtain the aver
age field on the ions due to the electrons: 

<E(»)>. 

X 

iireZ 

r 1 

veZ r k 
— / dk-h 
:*-)3 J # 

S(k,0) S(k 
V - Z e~A-CR»-R'' \ , (24) 

(V)Jw a / 
where (• • •) stands for the ensemble average over the 
ion positions. In our case where the ions are randomly 
distributed, the averaging over the ion positions in 
Eq. (24) gives one. 

From the equation of motion of the electrons, in 
the ion's rest frame we obtain 

-««j=(Af/f»)[E+<E(«)>.T], (25) 

where j is the average current density. Here we use the 
fact that the force acting on the ions, due to the elec
trons, is equal and opposite to the force which is exerted 
on the electrons due to the ions, and that this force is 
invariant under the frame transformation. 

From Eqs. (24) and (25) we obtain 

: c 0 1 - - - /(«) 
3w mor 

where 

<r0= = i0)p
2/4:7l 

(26) 

(27) 

, = (4^jre2n/m)1/2 is the plasma frequency, and 

/(«) - dk# 
1 

(28) 
L«(*,o) <S(MJ 

Equations (26), (27), and (28) are our final results 
for the high-frequency and long-wavelength conduc
tivity for a degenerate semiconductor. 

III. ASYMPTOTIC VALUES AND 
NUMERICAL CALCULATION 

In this section we are concerned with explicit evalu
ation of the resistivity given by 

R(a>) = Rel/<r(a>) 

1 

6w2 mo)p
2 

- dkk2-
0) J 

Si(k,a>) 

[<sr(M]2+[<S;(M]2 
(29) 

where Sr and Si stand for the real and imaginary parts 
of 8(k,u>). In the following calculation we approximate 
S(k,<a) by its zero-temperature value (see, e.g., Glick and 
Ferrell8). R(u>) is explicitly evaluated in the Appendix 
for the limits CO/WF<$C1 and W/COF»1, where O>F is the 
Fermi frequency, and given by 

and 

r 2TT 
R(<ti)=(2w/<aF)ctrt\ In 1 

L £ars } 
C0/c0F<3Cl , 

r , « l 
(30) 

jR(a>)=(&r/3)af8coF1/2co-8/2; <o/w F »l . (31) 

Here rs = ro/ao, where r0 is the mean radius per particle 
and ao=fi2/me2 is the Bohr radius; a= (4/9w)llz and 
£ > 1 is a numerical factor (see Appendix). In order to 
evaluate Eq. (29), one must consider separately the 
contribution from the pole arising when both Si and 
Sr are zero. The estimate of the pole contribution is 
obtained in the Appendix and is given by 

1 6 T T / 5 \ 3 / 2 1 [(co/cop)2-l]1 / 2 

*p(«) = — ( - ) —«r. • (32) 
3 \ 1 2 / o)F (o>/«p)

2 

One should notice that Rp(co) has its maximum at 
<a=\/2a)Pi and that for this value of o>,k<KkFm, and there
fore, the approximation for 

«, 
a,* 3 / 

r = l 
3 /2O)F\2 ( k 

-
Q>* 5 \ 0)v J \kp) 

is consistent. However, for co^co^, Rp(o>) behaves like 
l/o>, which is an overestimate of the contribution from 
the pole. One should therefore place a cutoff frequency 
on co. We have no easy way to calculate this cutoff and 
we merely choose it to be at coc = 2.5cop. 

The rest of Eq. (29) has been computed on an IBM-
7094 for a degenerate semiconductor and is displayed 

i A. J. Glick and R, A, Ferrell, Ann, Phys. (N. Y.) 2, 359 (1960). 
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FIG. 1. Plot of the function (l&ir^copRfa/cop). 

in Fig. 1. We have chosen the effective electron mass 
and charge to be m/100 and e/(10)1/2, respectively (see, 
e.g., Ref. 4), and the electron density (for convenience) 
1.03X1018 electrons/cm3. 

The resistivity R(o>) show a bump of order 15% just 
above the plasma frequency. This enhancement of the 
resistivity is due to the generation of a longitudinal 
plasma oscillation and it arises from the pole of the in
tegrand. For classical plasmas, Dawson and Oberman1 

have found the same effect; however, numerically it 
is a very small effect. 
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APPENDIX 

We wish now to evaluate R(a>) for the limits co/a>*C2>l, 
ovW<3Cl anc* n n ( i also the contribution from the plasma 
pole to R(co). 

We rewrite Eq. (29) as 

l for l f 
£(«)== dqq* 

0)F & J [&r 

Siiqtt) 

[&(5Q)?+[«<(S0):F 
, (Al) 

where 

and 
& — c»)/a)F, q = k/2kF, 

ars 1 12 

4 <f 4q 

i r / a 

HirO]-*1^ 8<fL \4q 
a \l-q\<—<l + q 
4? 

= 0 elsewhere, (A2) 

a.rB 1 1 
<5r(g0) = l + 

x 322 

+-

+-

89l 

1 HM1 

2"> | ( 0 / 4 ) - j » - g 
In 

In 

(Q/4)~q'+q 

(Q/i)+q*+q 

l(0/4)+8*-? 

(A3) 

In the high-frequency limit, i.e., w/W^>l w e approxi
mate Sr to be S rw 1 and need to consider only the con
tribution from &iU(qQ)<&l. Thus, we obtain 

l & r l 
RW(a>) = R(o>»a>F)^ lim 

°^°F o)F 

16T 1 ars 

= lim 

r»H(iH-D1/2+l] 

~ / <%2<§i («Q) 

x / - i - I — j ) 

87T 
= —(wp)l/2arsco-8'2. 

3 
(A4) 

This is our final result for i£(00)(co) given in Eq. (30). 
For the calculation of JR(0)(W) = limw^WJ,jR(co), we 

write 

16x1 
#°(co)= lim 

r1
 2 # St(<fi) 

16TT 1 r 1 ^ 

OOF 4c J o q 

L8r(qO)J 

ars 1 
1+—-#+/(«)] 

2TT g2 

where 

/(5) = — i - I n — - , 
2? 1-c 

(AS) 

(A6) 

The integral in Eq. (A5) is very difficult to evaluate. 
However since / ( # ) < ! , w e n o w evaluate R(0)(oo) to be 

16TT 1 r1 da/ &r8 l\~2 

j R ( o > ( a , ) = — ^ r . - / — ( l + ) , 
CCF 4 J o q \ 27r g 2 / 

(A7) 

where 1 < £ < 2 as can be found from more elaborate 
calculations in the case of interest where ars/2w<^l. The 
integral in Eq. (A7) can be evaluated analytically and 
we obtain 

2TT r / 2TT\ / 2 x \ - 1 l 
i^(o)(co)==_ar I ln( H ) —1+1 1+ ) 

OF L \ %arj \ %ars/ J 

£ * — a r . l n ( H ) - l for a r , « l , (A8) 
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which is our final result as it is given by Eq. (30). approximate Sr by 
We finally wish to calculate the contribution from 

the pole. Here we write 

1 f $i(qo>) 
Rv(co) = 167r- / do a2 

0> J LSr(q^)J+l8i((f0)J 

1 

Sr(qo})^l-
C0„2 1 2 / 0)F 

( 2 - ) f- (A10) 

The integration in Eq. (A9) is straightforward and we 
obtain 

Rp(u) = 4n* 
5 y« £ / j M * [(co/a>p)2-l]1/2 

O)F\2OIF' (co/cop)2 

/ 5 \ 3 ' 2 l / < 

\ 1 2 / wF \2 

- - 1 6 T T 2 - Ugg 23[«r(gw)] . (A9) 1 6 i r / S V 2 l [(Co/cop)2-!]1^2 
f 5y 
a2/ -ar8-

3 \ 12 / COF (co/cop)2 

In order to evaluate the integral in Eq. (A9), we shall which is our final result given in Eq. (32). 

(Al l ) 
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A perturbation theory is developed to second order for the energy of a system of weakly interacting 
atoms. For a large uniform system the expression is correctly proportional to the number of atoms N. The 
result is given as the sum of electrostatic and Van der Waals terms plus exchange effects. The exchange 
energy is described first in the pair approximation, followed by corrections due to electron exchange among 
three or more atoms in both the first and second orders of the perturbation series. The second-order exchange 
term is due to the effect on exchange produced by the first-order perturbation on the wave function caused 
by Van der Waals forces. 

The zeroth-order term is the energy of the isolated atoms so that in the ground state all other terms are 
successive corrections to the smaller binding energy. 

In the case where the unperturbed atoms have an angular momentum, use of degenerate perturbation 
theory leads to a spin-wave type of solution, with coupling between the atoms. 

ALTHOUGH the perturbation treatment developed 
here has some general features, the specific formu

lation is for the case of electrons in a nonmetallic solid, 
where the solid is not dense and the individual atoms 
are well separated. This case does not*lend itself well to 
treatment with the usual many-body theory based in 
zeroth order upon noninteracting electrons. 

In the limit of zero density the electrons on different 
atoms are distinguishable, being associated with the 
various atomic sites, and the problem is to calculate the 
binding energy as the density is increased and inter
atomic exchange of electrons begins to occur. 

One obvious choice for an unperturbed Hamiltonian is 

//o=E*<(R<), (1) 

which describes a collection of N, noninteracting atoms, 
with hi(Rt) the Hamiltonian of the ith atom having 

* Most of the work reported here was done while the author 
was at the Atomic Energy Research Establishment (Theoretical 
Physics Division) Harwell, England. 

nuclear coordinates Rz. The eigenfunctions of Ho are 

fj=fM--*iA*N) (2) 

and the eigenvalues 

^ = = ^ i + e ; 2 + - (3) 

where ^ ( R i ) is centered about Ri and is an eigen-
function of fti(Ri) (antisymmetric in the space and spin 
coordinates of those electrons about Ri) with eigen
value €yr Here we have arbitrarily assigned particular 
electrons to particular atoms and t£(Ri) indicates 
^ ( R i ; 1,2- • •) where the electrons 1, 2- • • are assigned 
to the atom at Ri. 

The ^ j form a complete orthogonal set and, therefore, 
it might seem that the set a ^ j would be convenient for 
the expansion of an antisymmetric function of all elec
trons, where 

a^^v(±)PV7 (4) 

the sum being over all permutations Pv of electronic 
space and spin coordinates, and the sign being given by 
the parity. However, the Q&j are no longer eigen-


