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which is our final result as it is given by Eq. (30). approximate Sr by 
We finally wish to calculate the contribution from 

the pole. Here we write 

1 f $i(qo>) 
Rv(co) = 167r- / do a2 

0> J LSr(q^)J+l8i((f0)J 

1 

Sr(qo})^l-
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The integration in Eq. (A9) is straightforward and we 
obtain 

Rp(u) = 4n* 
5 y« £ / j M * [(co/a>p)2-l]1/2 
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- - 1 6 T T 2 - Ugg 23[«r(gw)] . (A9) 1 6 i r / S V 2 l [(Co/cop)2-!]1^2 
f 5y 
a2/ -ar8-

3 \ 12 / COF (co/cop)2 

In order to evaluate the integral in Eq. (A9), we shall which is our final result given in Eq. (32). 
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A perturbation theory is developed to second order for the energy of a system of weakly interacting 
atoms. For a large uniform system the expression is correctly proportional to the number of atoms N. The 
result is given as the sum of electrostatic and Van der Waals terms plus exchange effects. The exchange 
energy is described first in the pair approximation, followed by corrections due to electron exchange among 
three or more atoms in both the first and second orders of the perturbation series. The second-order exchange 
term is due to the effect on exchange produced by the first-order perturbation on the wave function caused 
by Van der Waals forces. 

The zeroth-order term is the energy of the isolated atoms so that in the ground state all other terms are 
successive corrections to the smaller binding energy. 

In the case where the unperturbed atoms have an angular momentum, use of degenerate perturbation 
theory leads to a spin-wave type of solution, with coupling between the atoms. 

ALTHOUGH the perturbation treatment developed 
here has some general features, the specific formu

lation is for the case of electrons in a nonmetallic solid, 
where the solid is not dense and the individual atoms 
are well separated. This case does not*lend itself well to 
treatment with the usual many-body theory based in 
zeroth order upon noninteracting electrons. 

In the limit of zero density the electrons on different 
atoms are distinguishable, being associated with the 
various atomic sites, and the problem is to calculate the 
binding energy as the density is increased and inter
atomic exchange of electrons begins to occur. 

One obvious choice for an unperturbed Hamiltonian is 

//o=E*<(R<), (1) 

which describes a collection of N, noninteracting atoms, 
with hi(Rt) the Hamiltonian of the ith atom having 

* Most of the work reported here was done while the author 
was at the Atomic Energy Research Establishment (Theoretical 
Physics Division) Harwell, England. 

nuclear coordinates Rz. The eigenfunctions of Ho are 

fj=fM--*iA*N) (2) 

and the eigenvalues 

^ = = ^ i + e ; 2 + - (3) 

where ^ ( R i ) is centered about Ri and is an eigen-
function of fti(Ri) (antisymmetric in the space and spin 
coordinates of those electrons about Ri) with eigen
value €yr Here we have arbitrarily assigned particular 
electrons to particular atoms and t£(Ri) indicates 
^ ( R i ; 1,2- • •) where the electrons 1, 2- • • are assigned 
to the atom at Ri. 

The ^ j form a complete orthogonal set and, therefore, 
it might seem that the set a ^ j would be convenient for 
the expansion of an antisymmetric function of all elec
trons, where 

a^^v(±)PV7 (4) 

the sum being over all permutations Pv of electronic 
space and spin coordinates, and the sign being given by 
the parity. However, the Q&j are no longer eigen-
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functions of HQ, since Ho is not symmetric in the elec
tron coordinates. As a consequence, the antisymmetrized 
functions are nonorthogonal and linearly dependent, 
and cannot serve as a basis for a straightforward per
turbation expansion. The use in some sense of H0 as 
the unperturbed Hamiltonian, therefore, requires a 
special treatment, independent of a configuration ex
pansion. However, it is not difficult to formulate the 
problem so that iteration procedures can be used. 
Particular attention is required for the case of large N 
where a central part of the problem is in obtaining ex
pressions which are proportional to the number of 
atoms in the system. 

DEVELOPMENT OF THE PERTURBATION THEORY 

We seek a solution of the Schrodinger equation 

( # - £ ) $ = 0 , (5) 

subject to the requirement that <£ is an antisym
metric function, a requirement which may be satisfied 
by setting <3> equal to axp, where a is an antisymmetrizing 
operator, or more properly, a reduced antisymmetrizing 
operator defined for later convenience by 

a=a/(a). (6) 

The angular brackets ( ) in (6) indicate a mean with 
respect to ^0 , which serves as the zeroth-order approxi
mation to xp, and is one of the set of unperturbed func
tions given by (2) (assumed for the present to be 
nondegenerate), having the eigenvalue e0. Thus, the 
value of (a) is unity. 

The Hamiltonian of the system is 

H=H0+H', (7) 

where / / ' is the interaction among the atoms, and with 
this and the above substitution, Eq. (5) becomes 

(Ho- eo+H'- {H')-AE)at=0, (8) 

with AE defined by E-(H). 
I t is important to remember that a commutes with 

the complete Hamiltonian, but not with H0 and H' 
separately. 

By multiplying on the left in Eq. (8) by ^o and 
integrating, the result is obtained that 

A £ = ( ^ 0 | # ' - < # ' > ! # ) , (9) 

providing \p is normalized so that (\po\ a\\p)— 1. 
I t also follows since AE is real that 

A£=! [ (^o |# ' -< f f '> | a«A)+c .c . ] . (10) 

Now if \p is written as T/ 'O+A^, then 

AE={(H'-(H'))a) 

+4HGM (H'~ <ff')) I «A^)+C.C] , (ii) 
since {(Hf—(Hf))a) is obviously real, as it is equal to 
{(H-(H))a) or to (a(H-(H))). 

Returning to the Schrodinger Eq. (5) we substitute 

a(\l/Q~{-A\p) for <£ and obtain 

a(H-E)f0+(H-E)aAilr = 0, (12) 

which may be written in this manner because of the 
commutivity of H and a, 

If H— E is written as in (8), then (12) becomes 

a(H'-(H')-AE)$o 

+ (Ho- eo+H'- (H')- AE)aA^= 0. (13) 

Consider now the projection operator (P0 defined by 

<Po/=*oGM/). (14) 
Since (P0(#o— eo) is null, we may obtain, by transposing 
some terms in (13) and operating on both sides of the 
equation by the same factor, the result that 

(Ho-eo)aAt=-Zl-(?o] (15) 

[a(Hf-(H')-AE)yPo+(H'-{H')-AE)aAyp~l. 

Following the notation of Brueckner,1 we define 

1 1 
- = ~ [ l - ( P o ] . (16) 
o to—Ho 

Then, from (15), the expression for aAfi which properly 
normalizes a\[/ is given by 

1 1 1 
aA^=-a(H/-(H,))rPo+-(H,--(H,))aAxp-AE-a^. (17) 

b b b 

Because < 1/b vanishes, (^o\a\ A\//) = 0and (xpo1a|&) = 1. 
Substitution of the relation (17) into (11) leads to 

the result 

A E = < ( H ' - < ^ ' ) ) f l ) + - [ ^ ^ ( £ r ' - < H ' > ) ^ 

+ (^o\Hr-(Br-{Hf))\aA^\ 

-AEUol^-I^Vc.c.1, (18) 

where use again has been made of the fact that <\/b 
vanishes. 

To shorten the notation and to give physical inter
pretation to the results, we define a— 1 as the exchange 
operator and define a non-Hermitian exchange Hamil
tonian by 

Hj={H'-{H')){a-X), (19) 

where 

ff«'t=(a-l)(ff'-<ff'>). (20) 

1 K. A. Brueckner in The Many Body Problem, edited by 
C. deWitt (John Wiley & Sons, Inc., New York, 1959), p. 47. 
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Then from (18) 

+ / f f « ' - f l ' \ ~ | + - T (+O\H'-(B'-(H')) I a A * \ 

-AEU0\H r-\*n+ccA. (21) 

Continuing the iteration by the use of (17) in (21) 
would lead to a formal series expansion for the energy. 
However, we consider here only the second-order terms 
in (21), under the assumption that the last bracketed 
expression on the right-hand side is small at low density.2 

The second-order term (H'(\/b)Hf) is, for large inter-
nuclear separation, just the Van der Waals energy; 
while the second-order exchange term 

I C ( H e x ' ( l / 6 ) F ' ) + c . c ] 

shows itself to be the change in exchange energy due 
to the first-order change (l/b)H'\l/o in the wave func
tion, caused by the Van der Waals polarization. At very 
large atomic separations the second-order terms domi
nate the first-order terms, since it is well known that 
{H,(\/b)Hr) becomes larger than ( # ' ) , and it can be 
shown, at least in some cases, that ^ [{Hex^ l / ^^O+c .c . ] 
likewise becomes larger than (H^). The reason for the 
latter result is that the exchange energy in very low 
density, depends largely upon the wave function in the 
region between the atoms, a region where it is very 
small and easily perturbed by the Van der Waals 
forces.3 The basis for the expectation that (21) may to 
good approximation be cut off at second order is the 
assumption that the aggregate of terms beyond second 
order does not introduce new qualitative features but 
only higher Van der Waals corrections. 

Thus, if AE in (21) is replaced by E-(H) or E-e0 

— (H'), we have 

E ~ e 0 + < # ' ) + <V"> +<H«'> 

+;1 i[<fl4r>+"; (22) 

For a large uniform system it can be shown that all 
terms in (22) are proportional to the number of atoms 
A7, providing a is interpreted as a series expansion dis
cussed in the following sections. 

2 The difficulty of treating the complete series, apart from con
vergence questions, is one of demonstrating that "unlinked" parts 
leading to spurious powers of N cancel. 

3 This point has been emphasized by T. Holstein and C. Herring; 
see Conyers Herring, Rev. Mod. Phys. 34, 631 (1962). 

Since eo is exactly the energy of the isolated atoms, 
E—eo for the ground state is the binding energy. 
Therefore, it is necessary to evaluate the terms beyond 
eo only to the accuracy needed for the binding energy 
itself. 

The magnitude of (Hf)+(HJ) (with {H')+{HJ) 
assumed negative) is a lower limit on the magnitude 
of the binding energy, since the sum of the zeroth- and 
first-order terms is 

e 0 + < # ' ) + < # ex'>= (Ha)= (Ha)/(a), (23) 

as can be demonstrated by expanding the right-hand 
side. The expression {H&)/{&) is just the mean value 
of the true Hamiltonian with respect to an antisym-
metrized wave function d\[/o and, therefore, it is an 
upper bound on the ground-state energy. 

In evaluating the terms in (22), the products in the 
angular brackets may, of course, be expanded in terms 
of intermediate states \pj from (2). However, the exact 
summation is difficult to perform. In diatomic molecular 
calculations it is known that in the term {Hr(\/b)Er) 
a good approximation is obtained4 by replacing (1/b) 
with (l /e)(l— (Po), where e is the unperturbed energy 
of the pair of atoms. Since {E,{\/b)Hr) here can be 
reduced to a sum over pairs of atoms, a similar approxi
mation can be made; however, some caution must be 
used in making such an approximation for the ex
change terms. 

The form of the exchange energy as written in (22) 
is most appropriate for the case of only moderately 
large atomic separation, where (# e x ' ) is expected to be 
the dominant exchange term and the second-order part 
is a smaller perturbation. However in the limit of very 
large separation (He^) is known in some cases to give 
nonsensical results.3 In this situation the second-order 
term can dominate as may be shown by the follow
ing transformation. Since <HQ^= <(H'—(Hf))(a—\) 
which, in turn, can be written as < (H— (H)) (a— 1) or 
as < ( a - 1 ) ( # — < # » , it follows that 

/HJ-H\^((a--\){Hf-{H'))-H'\ 

-{{a-\){H'-{H>))) (24) 

and, therefore, since the second term on the right-hand 
side is (Hm'), 

= J7(a-l)(ff'-<ff'>)^+c.c.] . (25) 

The same transformation applies to any individual 
term in a. As the matrix elements of (1/b) are negative 

4 H . Margenau, Phys, Rev. 38, 747 (1931), 
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if eo is the unperturbed ground state, the right-hand 
side of (25) can have a sign opposite to that of (He x ' ) . 

Various approximations may be made for (1/b) in 
either (22) or (25), depending on the interatomic dis
tance. However, a precise evaluation of the second-
order exchange terms, apart from direct summation 
over the intermediate states, requires a solution for 
(l/b)H'\f/o. If this function is called \f/h then the equa
tion which \[/i satisfies is 

(€ e-flo)ih=(fl ' --<ff '>)*o, (26) 

obtained by multiplying the expression for yj/i by e0—#o. 

FACTORIZATION OF a 

For the case of more than one electron per atom, the 
antisymmetrizing operator can be simplified due to the 
use of the wave functions (2) which are already anti
symmetric in electrons on the same atom. For any arbi
trary permutation operator dzPv (taken with its proper 
sign) which operates on $j, there are M equivalent 
permutations obtained by following Pv with all the M 
ways of permuting electrons on the same atom or atoms. 
Thus, in (6), the substitution QL—^A can be made, 
where A contains all permutations such that no two 
can be made equal to one another by intra-atomic ex
change of electrons. 

In general, <$ can be written as 

a=i+Zan, (27) 

where dn includes all permutations involving n elec
trons, with the explicit expressions given in Appendix I. 

Likewise, 

A^l+Y,An, (28) 
n=2 

where A n includes only the permutations of n electrons 
in which all n are exchanged to atoms different from 
those to which they were assigned in \f/j; for any per
mutation which leaves one or more of the permuted 
electrons on its original atomic site must be ignored, 
since by an intra-atomic exchange it can be made equal 
to a lower order permutation. 

I t is easy to write A 2 and A 3. From Appendix I they 
are given by 

and 
A^lZk'H/ZiPkiPij, (30) 

where the prime on the i summation indicates that the 
sum is over all electrons assigned to atomic sites dif
ferent from that of j , and the double prime indicates 
that k must be on a site different from both i and j . 

The terms beyond A 3, as seen in Appendix I, are 
more complex, containing both "linked" permutations 
as in (30) and "unlinked" terms, which in A*, involve 

four sums over PijPki, where k and / are different from 
i and j . Matrix elements of the linked terms, particu
larly with respect to bound states, are small unless all 
electrons are in the same locality; but such is not the 
case for the unlinked terms, and it is necessary to show 
that in the energy expression cancellation occurs among 
the unlinked parts. 

MATRIX ELEMENTS OF A AND CANCELLATION 
OF UNLINKED PERMUTATIONS 

Because of the unlinked permutations, matrix ele
ments of A, with respect to the set of states \[/j of (2), 
are given by a series in ascending powers of N. How
ever, we may expect the ratio Au/Aoo to be inde
pendent of N, where 0 is again the unperturbed ground 
state, or the state taken for zeroth order in the per
turbation series ( ( / I ) = A 00). 

From Eqs. (6) and (28) for an infinite system 

00 

8TJ+ E {An)u 
71=2 

arj = 

i+E<^«) 

CO 

E Z(A»)ij-(An)8ul 
71=2 

= Su+ — . (31) 

1+ E (An) 
7i=2 

By adding and subtracting terms in the numerator, 
the A 2 terms may next be divided out and a repetition 
of this procedure leads to a series expansion for ajj. 
The general expression is obtained by writing 

00 

il = l + £ X M , (32) 
n=2 

and 

« H = 5 w + D i " « i / n ) (33) 
n=2 

(X= 1), and equating powers of X in the expression 

AIj=(A)au. (34) 
We find 

aIJv~(A2)Ij-(A2)5Ij, (35) 

aIj^=(Az)IJ-(A,)dIj, (36) 

tf//4)= (A,)Ij~(A,)8Ij~(A2)aIJ^, (37) 
etc. 

I t is easily established (Appendix II) that the matrix 
elements of a(2) and a(3) in a large system are inde
pendent of N. 

In a(4) a product of second-order terms appears as 
well as the fourth-order permutations. I t is this product 
which nearly cancels the unlinked permutations of 
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fourth order, leaving again a term independent of N, 
as is shown explicitly in Appendix II. There is no 
reason to suppose the same is not true in all orders 
since we are calculating the ratio of two matrix ele
ments of the same quantity. Thus, if / and / are bound 
states, higher orders of au contain proportionately 
more products of overlap integrals and the expansion 
for a tends to converge at sufficiently low density.5 

DIRECT AND INDIRECT EXCHANGE COUPLING 

By substituting (33) into (19) an expansion 

tf ex '= ( # ' - <ff'»a«)+ ( # ' - <fl'»a<»+ • • • (38) 

is obtained, where the first term on the right-hand side 
is the sum of the direct exchange interactions, i.e., the 
exchange in the pair approximation,6 and the next term 
gives the correction to the pair approximation due to 
exchange among groups of three atoms, etc. 

Because exchange couplings are usually expressed as 
an effective interaction between pairs, the terms beyond 
a(2) are " indirect" couplings, in that the interaction 
between a given pair of atoms is obtained via one or 
more other atoms. 

If ^o is approximated by a product of one-electron 
orbital and spin functions, then (Hex

f), evaluated by 
the use of (38), is just an expression previously given 
by the author for exchange energy.7 However, we have 
in (38) a generalization to use in calculating exchange 
in higher order (off-diagonal) terms as well. 

PROOF THAT THE ENERGY IS PROPORTIONAL TO N 

The proof that the expression (22) for the energy 
gives a result proportional to the number of atoms, 
when the expansion (38) for Hex is substituted into it, 
is obtained by expressing H' and Pv as a sum over 
pairs and groups of atoms and noting that unlinked 
terms tend to cancel. For terms not involving the ex
change operator, the proof follows directly from the 
work of Brueckner.1 Also from previous work7 (see also 
the more recent calculations of Arai8), it is obvious 
that (He*) is correctly proportional to N. We may infer 
that the second-order exchange energy is also propor
tional to N from the fact that off-diagonal matrix ele
ments of He* are independent of N}

9 and from the fact 
5 A different dependence on internuclear distance may occur 

when unbounded levels (which are necessary for completeness) 
appear in \pj. However, we assume the expansion may be used, in 
general, for low-lying states, where most of the atoms are in 
bound states. 

6 In which the denominator in the pair interaction is also ex
panded, see W. J. Carr, Jr., J, Phys. Soc. Japan 17, Suppl. B-I, 
36 (1962). 

7 W. J. Carr, Jr., Phys. Rev. 92, 28 (1953); J. Phys. Soc. Japan 
17, Suppl. B-I, 36 (1962). In the first reference the results are 
given with i7ex ' replaced by He^=(H—(H))(a—l). 

8 T. Arai, Phys. Rev. 126, 471 (1962). 
9 Because the difference H'—{Hr) appears in the expression 

rather than Hr alone, (H'a)u by itself is proportional to N as 
can be established by writing it as Hn'aij-\-'ZK?<.iHiK,aKj, where 
the first term involves a factor of N because of Hi/. However, 
HII—HQQ depends only on the number of excited atoms in I 
relative to 0. 

that in a pure lattice the sum over intermediate states 
introduces a factor of N. The latter comes about, if \[/Q 

describes all noninteracting atoms in their ground states, 
because each intermediate excited state yf/j has an N~ 
fold degeneracy (obtained by making a translation of 
all the excited atoms), all degenerate functions having 
the same matrix elements with xf/Q. 

By making use of the translational degeneracy of the 
lattice and the fact Ho/ vanishes except for single atom 
excitations and for two atom excitations, the energy of 
a pure lattice, as given by (22), may be reduced to a 
problem of about the same complexity as a molecular 
problem. 

TREATMENT OF DEGENERACY 

The unperturbed states possessing angular momen
tum have a degeneracy corresponding to the various 
possible atomic orientations. If this or other degeneracy 
exists then in (22) it is necessary to replace ifoby a 
proper linear combination of the degenerate functions. 
In order to bring contact with the usual way of treating 
this problem, we write the sum of the zeroth- and first-
order terms in (22) as (Ha) or (HA)/(A), according to 
(23), and demand that \[/Q be that combination of de
generate functions for which 

S(HA)/(A)=0, (39) 

the variation being made on the coefficients of the linear 
combination. If the degeneracy is removed by this 
procedure, i.e., if the first-order terms in the energy 
which are given by the solution of (39) are nonde-
generate, then it is easily shown that both A and HA 
(and consequently H'A) have been diagonalized in the 
subspace of the degenerate functions. Thus, H'+Hex 
will be diagonal, and we may immediately calculate the 
second-order terms in (22) by ignoring the degenerate 
levels in the sum over intermediate states; or what 
amounts to the same thing, we may replace [1 — (Po] in 
the definition of (1/b) in (16) by [1—S^ow], the sum 
being over all the degenerate unperturbed states (as
sumed to be taken as orthogonal). 

In case the solutions of (39) only partially remove the 
degeneracy, then a further diagonalization in this re
stricted degenerate subspace is necessary before the 
higher order terms are calculated. 

When the degeneracy involved is due to spin, Eq. 
(39) will be recognized as leading to a typical spin 
wave problem with the addition that it is the spins of 
the atoms (rather than individual electrons) which are 
coupled together and with the additional advantage 
that the ''exchange integrals" which arise have a precise 
definition. If H is independent of spin then a spin 
Hamiltonian may be constructed in the usual way, for 
example, as in Ref. 7. 

Presumably, cases including orbital angular momen
tum may be treated in a similar manner, and in general, 
the exchange and nonexchange parts in (22) become 
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interrelated by spin-orbit coupling and through the 
solution of the degeneracy problem. 

THE CHOICE OF HQ 

The choice of Ho and ^o determines which state is 
being "followed" by the perturbation procedure and it 
it necessary to note that different types of states re
quire different unperturbed Hamiltonians. For example, 
the ground state of the system may go over into a col
lection of neutral atoms as the density approaches zero, 
whereas "polar" states will go over into a set of atoms 
some of which are ionized and others possessing an 
extra electron. We must obviously start with different 
Ho's to describe these two situations. There is some 
question, however, about treating the case where the 
ionized states have translational degeneracy as in a 
pure lattice. 

In some problems it may be desirable to choose for 
HQ a Hamiltonian which only approximately represents 
the noninteracting atoms. An example here is the de
scription of a system where the angular momentum has 
been quenched by the inclusion in Ho of a crystalline 
field, or the use of a fictitious potential in exchange 
problems.3 

ACKNOWLEDGMENTS 

The author is indebted to Dr. Walter Marshall for 
the opportunity of visiting Harwell during the summer 
of 1962, and to Dr. John Hubbard for some useful 
discussions. 

APPENDIX I 

a 2 is given by — EE;> i^"> the sum being over all 
pairs of electrons. The term <23 is 

2-J 2—i 2L)i>J>k\^ijk,jki~\^ijk,kij)y 

with Pijkjki meaning i—>j, j —> k, k—>i; and, in gen
eral, &n is given by the total of all the ways of permut
ing a given n electrons, summed over all groups of n. 

<3U, which contains terms with different parity, is 

<$4=— E E E lLLPiJkl,jkli-{-Pijkl,jUk-\-Pijkl,klji 
i>i>k>l 

\ '-L ijkl,kilj\ ' -L ijkl,lijk\ '-* ijkl,lkijJ 

+ E E E ^[.PiJklJilk-\-Pijkl,klij-{-Pi3kl,lkji]* (40) 
i>i>k>l 

These terms may be expressed in a more compact 
notation by 

1 
a2= E E P « , (41) 

2! &i 

2 1 
ct8=-'£ E E Pnkjki=- E E E PkiPv, (42) 

6 3 
( 3 > 4 — E E E E Pijki,jku~\— E E E E Pijujin 

4[ i^j^k^l 4 ! i^j^k^l 
(43) 

1 1 
= — E E E E PjkPkiPu-\— E E E E P^PM* 

4 i^j^k^l 8 i^j^k^l 

In 0,4 the first group of terms on the right-hand side 
of (43) are "linked" and the second group "unlinked." 
Matrix elements of the latter are generally a factor of 
N larger than for the former so that in an energy ex
pression the unlinked terms must enter in such a way 
that they largely cancel. 

APPENDIX II 

I t is obvious that off-diagonal elements au{2) are 
independent of N, because in the double sum over P # 
in A 2, the yth electron must be near the site of the iih 
for an appreciable matrix element, and the position of 
the ith, for example, is determined by the excitations of 
/ relative to / . The diagonal elements of a(2) are like
wise independent of N-, for although (A%)JJ is propor
tional to N the difference (A2)JJ— (A2) depends only 
on the excitations of / relative to 0. 

Similar considerations apply for a(3) and for the 
linked terms on the right-hand side of Eq. (37), de
fining a(4). The unlinked terms in (37) are, from A A, 
Eq. (43) in Appendix I : 

IH'ZZ' Hl{PijPki)ij-{PijPki)hj'] (44) 
i^j^k^i 

and from these is subtracted 

( ^ ) ^ ( 2 > = 1 E ' E £ ' H ( P i K ( P u ) i j - { P H ) h i ] . (45) 

Assume that the state / has excited atoms with re
spect to 0 at Ri, R2, • • • and / at R3, R r • •. If neither 
electron in the pair ij and in the pair kl is on an ex
cited atom, then (PijPki)u=(PijPki)8ij and (Pki)u 
= (Pki)§u and both (44) and (45) vanish. If the pair 
kl involves an excited atom but the pair ij does not, 
the bracketed part of (44) becomes 

(PiMPkdu-iPki^u^ 

since (PijPki):=(Pij)(Pki)- This result is (except for a 
term independent of A7) one-half the corresponding re
sult in (45). Cancellation between (44) and (45) occurs 
when the case is considered where the pair ij involves 
an excited atom and kl does not, for then (44) is the 
same as before and (45) vanishes. The case where both 
ij and kl involve excited atoms causes no difficulty. 


