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as Ge. As we mentioned above, our resonant mechanism than that found for longitudinal phonons [mainly due 
scatters longitudinal phonons more strongly than to the substitution of v? for v? in (5.22)]. Since 
transverse phonons and, hence, the depression in Qp is phonon-phonon scattering is dominant at these tem-
smaller for the latter. In addition, the "transverse peratures, the bound electron-transverse phonon inter-
phonon" depression will occur at a higher temperature action is negligible for a second reason. 
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An expression is derived for the change in frequency of the lattice vibrations in a metal caused by the 
interaction of the phonons with the conduction electrons. The various factors affecting the magnitude of 
these Kohn anomalies are considered, and a connection is made with the value of the electrical resistivity 
of the pure metal. The valence of the metal is found to be the most important factor determining whether 
such anomalies should be observable. The results of the calculations are applied to Pb, and give good 
agreement with experiment. 

INTRODUCTION 

IT has been pointed out by Kohn1 that the interaction 
of the conduction electrons in a metal with each 

other and with the vibrations of the crystal lattice 
should cause anomalies in the phonon spectra of metals. 
In particular, it has been suggested that the group ve­
locity of phonons of wave number q will exhibit a 
logarithmic singularity whenever 

q=2k,+ g, (1) 

where k/ is the wave number of an electron at the Fermi 
surface, and g is a vector of the reciprocal lattice. There 
is, at the time of writing of this paper, some controversy 
as to whether these anomalies should be observable 
experimentally. While evidence for such behavior has 
been found by Brockhouse et al? in their investigation 
of the lattice vibrations of lead, Harrison3 has suggested 
that this reflects the form of the electron dispersion 
relations rather than being directly due to the electron-
phonon interaction in the way envisaged by Kohn. It is 
the purpose of the present work to calculate the expected 
magnitude of the Kohn anomalies in various metals 
in a more quantitative way than has hitherto been 
attempted. 

A previous calculation of the magnitude of this effect 
is due to Woll and Kohn4 who adopted a semiclassical 
approach to the problem of calculating the vibration 
frequencies of a lattice of point charges in a sea of 
interacting electrons. Their method is a simplification 

* Magnavox Research Fellow. 
1 W. Kohn, Phys. Rev. Letters 2, 393 (1959). 
2 B . N. Brockhouse, K. R. Rao, and A. D. B. Woods, Phys. 

Rev. Letters 7,93 (1961); B. N. Brockhouse, T. Arase, G. Caglioti, 
K. R. Rao, and A. D. B. Woods, Phys. Rev. 128, 1099 (1962). 

3 W. A. Harrison, Phys. Rev. 129, 2512 (1963). 
4 E. J. Woll, Jr., and W. Kohn, Phys. Rev. 126, 1693 (1962). 

of Nakajima's6 quantum-mechanical calculation and is 
essentially a Hartree method which considers only terms 
of first order in both the electron-electron and electron-
lattice interactions. However, while it is very satisfying 
to be able to calculate the required quantities from first 
principles, one cannot have complete confidence in a 
calculation that neglects electron correlation. A more 
serious criticism arises when it is pointed out that the 
result givenby these authors contains terms that involve 
the product of parameters describing both electron-
electron and electron-lattice interactions. Because the 
Hamiltonian is diagonalized only to first order in each, 
the validity of such terms is clearly in doubt, and in 
fact does, as we shall see, lead to contradictions. 

The effect of the interaction of the electrons is to 
attenuate the Kohn anomalies. In the Hartree approxi­
mation, this attenuation is quite large; this is, however, 
an overestimate of the significance of these interactions, 
and is considerably reduced by the effect of the lattice 
potential on the electron wave functions. 

We can separate the amplitude of the Kohn anomalies 
into two parts: The first part is due to the second-order 
corrections to the phonon energies caused by the elec-
tron-phonon interaction; the second part, which we 
describe by an attenuation coefficient, a> arises from the 
presence of infinities in the derivative of the matrix 
element for the interaction itself. No attempt is made in 
this paper to calculate a, although some of the factors 
affecting its magnitude will be discussed. The calculation 
of the direct effects of the interaction is a matter for 
greater confidence, for here we may have recourse to 
experiment. The electrical resistivity of pure metals is 

8 S . Nakajima, Busseiron Kenkyu, 65, 116 (1953). More ac­
cessible are the summaries of his work given by G. V. Chester, 
Phil. Mag. Suppl. 10, 357 (1961) and in Ref. 10. 
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calculated directly from the strength of the electron-
phonon interaction, and it is possible to invert these 
formulas to obtain an average value for the relevant 
matrix elements. These matrix elements of course con­
tain all the correlation effects. 

GENERAL FORMULA 

We shall now derive an expression for the lowest order 
term in the change in frequency due to the electron-
phonon interaction. We start by considering a gas of 
independent quasiparticles (we shall refer to them as 
electrons) interacting with the phonon field of a crystal 
lattice, and calculate the change in energy of the 
phonons by elementary perturbation theory in a similar 
procedure to that of Frohlich.6 Here is a catalog of some 
of the quantities we shall need: k crystal momentum of 
an electron; <Sk energy of an electron; Vk = dS/fidk elec­
tron velocity; /k occupation number of state k; k/ wave 
number on the Fermi surface; m electron mass; e elec­
tron charge; k Boltzmann constant; g reciprocal lattice 
vector; q phonon wave number; nq average phonon 
occupation number; T absolute temperature; © Debye 
temperature; p valence; p electrical resistivity; a den­
sity; Q Debye cutoff wave number; No Avogadro's 
number; A atomic weight; 5 Kronecker delta-function; 
co phonon frequency; M (k,k',q) electron-phonon matrix 
element; V volume of crystal; Aco change in phonon 
energy; pi, p2 radii of curvature of the Fermi surface; 
vs velocity of sound; 8/ Fermi energy. 

The matrix element for scattering of an electron from 
k to k' by the absorption of a phonon q is7 

AT(k,k') = (hnJlMNVuYHW, k+q+g)J(k,k'), 

where for any given metal the function 7(k,k') depends 
only on the wave functions of the electrons. The change 
in energy of the phonon state q due to this interaction is 

FIG. 1. Any two points 
on the Fermi surface 
where the electron ve­
locities are parallel may 
give rise to an anomaly. 

at A are pi and p2 (Fig. 1). Let the vector AB be q0, the 
angle between v and q0 be 0, and consider the value of 
expression (2) for a phonon of wave number q = qo+Sq, 
where 5q and qo are parallel. When Sq is small, we may 
wrrite 

£ ( k 6 ) = £ ( k a + q 0 ) = £ (k a ) , 

8(ka+hk)-8(kh+hq+hk) = fi(\a-yb)^k-fiyh^q. 

Then, 

h 
-=£ 

ft-7* 
k 8k— 8k+i±hw «k (v„—vj)'5k—Vi>-8q±a)q 

(3) 

Assuming that the matrix element and electron ve­
locities are slowly varying, we can find the contribution 
of states near A to the summation by integration over a 
paraboloid with vertex at A. I t is found to be 

-V vh 

-{pip<i)ll2~ 7- cos05g In 
2ir2h ( v a - v 6 ) 2 

5q±~ 
q0vs seed 

Vb 
• (4) 

WqMa> = 2Z 
Wk,k')| 

k.k' 8v • O k >-h 

The gradient of this quantity with respect to q displays 
a logarithmic infinity at values of q close to those given 
by Eq. (1), when for certain terms in the summand the 
energy denominator becomes small. We note that so 
far we have not treated the electron interactions ex­
plicitly ; they have simply been absorbed into the matrix 
element for the effective interaction. 

At zero temperature, the occupation function /k is 
equal to unity inside the Fermi surface and zero outside. 
The summation is then simply performed for phonon 
wave numbers near those at which anomalies occur. We 
consider two points, A and B, on the Fermi surface 
where the electron velocities, va and v&, are parallel, 
and where the principal radii of curvature of the surface 

This expression applies to all shapes of electron Fermi 
surface; for a surface containing holes the sign is re­
versed, since Vb must be counted negative. I t is valid 

-/k$(k', k + q + g ) . (2) provided | vtt— vfe |, pr1, p2~~1 differ from zero; otherwise 
o the order of the infinity in the group velocity of sound 

is raised.8 

At a finite temperature T, the occupation function 
/k is described by Fermi-Dirac statistics. The integral 
leading to expression (4) is then modified, and the 
logarithmic term becomes approximately 

In 8q±-
q0vs sec# 

*>& 

kTsecd/1 1 

h 

The group velocity of sound no longer tends to infinity 
as q tends to either of its critical values, but to lnT. I t is 
roughly constant over a range of q of 2kT/fiv cos0. 
Finally, we add the contributions of the terms with 
positive and negative signs—that is, we add the 
anomalies due to phonon absorption and emission. 

6 H . Frohlich, Proc. Roy. Soc. (London) A215, 291 (1952). 
7 J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 

England, I960), pp. 364, 182, 358. 

8 This has also been shown by different methods by A. M. 
Afanas'ev and Yu. Kagan, Zh. Eksperim. i Teor. Fiz. 43, 1456 
(1962) [translation: Soviet Phys.—JETP 16, 1030 (1963)]. 
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When the phonon energy is of the order of 2kT, the two 
kinks in the dispersion curve merge to give a single 
region over which the group velocity is proportional to 
\nT. Since most experimental determinations of phonon 
spectra by neutron or x-ray diffraction are performed at 
room or liquid-air temperatures, which are of the order 
of ®, the two anomalies will not generally be resolvable. 

MAGNITUDE OF THE ANOMALIES 

As we remarked in the Introduction to this paper, it 
is the same matrix element as occurs in the theory of the 
electrical resistivity of pure metals that appears in 
Eq. (2). For an isotropic metal, the Bloch theory of 
electrical conduction gives the following relationship at 
high temperatures between p and a certain average of 
the matrix element7: 

/|M(k,k')|2' 

n^hcc ) -
/ av 

8e2*8*/6 p 

3wtnWQ4k T 
(5) 

Let us define a number C as the ratio of the actual value 
of expression (4) to its value in a free-electron model— 
that is, we put 

(Wm)(pm)ll2lvb/(va-vby] cos0=C. 

Expression (4) is then equal to approximately 

- (CVm/WW)8qln\8q\, (6) 

and we can combine relations (2), (5), and (6) to give 

Aco e2hN0 p*vp 8q 
— = C— In 18q | 
co irmk AT Q 

(7) 

where an extra factor of 2 is included to allow for both 
phonon emission and absorption. This tells us what the 
relative shift of the phonon frequency in a metal would 
be if (a) the Fermi surface were spherical, so that C was 
equal to unity, (b) the matrix element were independent 
of q, and (c) electron interactions could be ignored. In 
a real metal, none of these will be true. We introduce a 
coefficient L to describe the ratio of the actual matrix 
element M(q)—assumed now to be independent of k 
and k'—to the average M used in expression (5), that is 

M(q0) = LM. 

A further coefficient, a, to be discussed in the next 
section, is also introduced to describe the effects of elec­
tron interactions not already included in M. Swallowing 
the remaining constants of Eq. (7) into a dimensionless 

TABLE I. 

P 

D 

Values 

Na 

1 
0.97 
0.28 

of the quantities p, a 

Cu 

1 
9.0 
0.38 

Ag 

1 
10.5 
0.20 

and D for various 

Al 

3 
2.7 

13 

Pb 

4 
11.3 

115 

j metals. 

Sn 

4 
5.8 

55 

FIG. 2. The construc­
tion to find DCLa. O is 
the estimated center of 
the kink and P is any 
point on the curve. 

factor D, i.e., putting 

D = (e2fiN0/irtnk) (pzap/A T), 

we have finally 

Aco/co = DCLa (8q/Q) In 18q | . 

The order of magnitude of D gives us a very good idea 
of whether a kink will be observable in any given metal. 
Values of this parameter for some common metals are 
given in Table I. I t is to be seen that the valence, enter­
ing as it does to the third power in the definition of D, 
is the dominating factor. We also note how much greater 
the coefficient is for Pb than for Al. 

The meaning of the set of coefficients DCLa in the 
interpretation of experimental results may be illustrated 
very simply. I t is a property of functions of the form 

that 
y {%) — ax In (bx)+ex, 

x"1 (y—xdy/dx) — a, 

whence it is clear that in the construction of Fig. 2 the 
gradient of OA is equal to a and is independent of the 
position of P. This provides a simple means of testing 
whether a kink in an experimental dispersion curve has 
the appropriate form to be considered a Kohn anomaly, 
and, if so, of evaluating the factor DCLa. 

EFFECTS OF ELECTRON INTERACTIONS 

Equation (2) describes the phonon frequencies in 
terms of the matrix element for scattering of inde­
pendent quasipartides. If we were to start with a set of 
interacting electrons in Bloch states, we should need to 
known the transformation by which the matrix element 
M(q) of the quasiparticle gas could be derived from that 
for the Bloch electrons Mo(q). Such an expression has 
been given by Bardeen,9 and an essentially similar one 
by Nakajima,5 who finds 

M(q) = i l fo (q ) ( l+ / ? (q )E ' 
h 

k S},— (^k+qd=^< •r-
where F(q) describes the electron interaction. We write 
this as 

Because the summation is the same as that of expression 

9 J. Bardeen, Phys. Rev. 52, 688 (1937). 
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(3), the matrix element for the quasiparticle gas has the 
same rapid variation near qo as has the frequency shift 
itself, and the magnitude of the kink is correspondingly 
diminished. In the limit of small interaction constant, 
this term enters the frequency shift as a factor (1-2/3). 

This result is inconsistent with that of Nakajima, 
who calculates that the frequency shift contains a term 
of only (1-/3) in the same limit. I t is simply seen—by 
examining for instance, the steps from Eqs. (2.4) to (2.5) 
in Ref. 4—that this difficulty is due to neglect of terms 
of order fiM at all steps in the calculation save the last. 
I t is thus difficult to estimate the magnitude of the co­
efficient a which describes these effects, because of un­
certainty in both the validity of the Hartree approxima­
tion and the accuracy of the formalism in which it is 
used. Bardeen and Pines10 have estimated using a collec­
tive description of the interactions that Nakajima's 
method is valid whenever q<kc, the cutoff wave number 
for plasma oscillations. At greater wave numbers ex­
change terms may enter, reducing the effect of the elec­
tron interactions. The presence of the lattice potential 
also reduces the difference9 between the long- and 
short-wavelength values of M (q). 

A simple form for Jkfo(q) is given by the rigid-ion 
approximation,11 which predicts that Afo(q) is initially 
constant but begins to decrease rapidly as q becomes 
greater than Q. Electron interactions reduce its value for 
small q to something which depends on the Bloch 
character of the electrons and which is zero for free 
electrons. Presumably the Bloch character is most pro­
nounced, and, hence, the effect of electron interactions 
least observable, in those metals in which the electron-
phonon interaction is strongest, and in which the Kohn 
anomalies are consequently most likely to be observed. 
With this justification, and because we know so little 
about the magnitudes involved, we shall, in what 
follows, ignore the effects of electron interactions, 
putting a equal to unity. 

GEOMETRICAL CONSIDERATIONS 

We can distinguish three separate cases in which 
Eq. (2) predicts that in principle an anomaly will occur: 

A \ 

\ \ FIG. 3. For a 
\ / \ multiply connected 
\ / \ Fermi surface, there 
\ j \ may be many differ-
\ I / ent situations in 
\ \ / which anomalies can 
\ \ / occur. 

10 J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955). 
11 Ref. 7, p. 185. 

(i) A and B equivalent points. In this case expression 
(4) simplifies, since v a = — v& and 6 is zero. This is the 
situation envisaged by Kohn in which the effect occurs 
for a phonon that spans the Fermi surface; 

q~2k,+ g. 

(ii) A and B nonequivalent points in the same band. 
When the Fermi surface is everywhere convex, there 
can clearly be no two nonequivalent points where the 
electron velocities are parallel. For a multiply connected 
Fermi surface, however, this is not the case, and there 
may be many different points on the Fermi surface 
where the electron velocities are parallel (Fig. 3). When 
there is a minimal amount of symmetry in the crystal 
structure, such points occur in pairs and there may be 
some cancellation between them. 

An important point about such transitions as these is 
that the electron velocities on the two parts of the Fermi 
surface may be parallel rather than antiparallel. In the 
schematic diagram of a section of the Fermi surface of 
Cu shown in Fig. 3 for instance, the point A is on the 
"belly" of the surface while B2 is a saddlepoint situated 
on one of the "necks." In this case, (vb~ va)~2 will be 
larger than either Vb~2 or va~

2 and the factor C may be 
much greater than unity. In the model of nearly free 
electrons12 which was used elsewhere,13 C for Cu was 
found to be roughly equal to 4. This is insufficient to 
counteract the effects of the low value of D given in 
Table I, and to render the anomaly observable. 

(hi) A and B in different bands. The geometrical 
factor C for such transitions may be large for the same 
reasons as in case (ii). However, anomalies may not be 
present in certain crystal directions if the matrix element 
connecting these states falls to zero or is small. I t is 
commonly true, especially in divalent metals, that when 
electron and hole surfaces coexist they lie very near to 
the boundaries of the Brillouin zone. As is well known, 
states that are actually on the zone boundary possess 
definite symmetry characteristics. The electron-phonon 
interaction is consequently incapable of causing transi­
tions between states that are on the same zone boundary 
but in different bands. Since phonon spectra are nor­
mally measured along symmetry directions, anomalies 
may frequently be absent where they might otherwise 
have been expected. 

There is one further situation in which the effect 
vanishes for reasons of symmetry. That is when the 
wave number at the Fermi surface happens to be equal 
to one quarter of a reciprocal lattice vector. There is 
then a positive anomaly superimposed upon a negative 
one of equal magnitude, and no net kink is observable. 

APPLICATION TO Pb 

Lead is of especial interest, both because the coeffi­
cient D is so large for this metal and because the phonon 

12 N. F. Mott and H. Jones, Metals and Alloys (Clarendon Press, 
Oxford, England, 1936), p. 59. 

13 P. L. Taylor (to be published). 
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spectrum and Fermi surface have been the subject of 
careful experimental investigation. I t is thought to 
contain four conduction electrons per atom, forming a 
Fermi surface consisting of a simple hole surface in the 
second zone and a multiply connected electron surface 
in the third zone.14-17 A section through a (110) plane 
is shown in Fig. 4, based on the application of the model 
of nearly free electrons to Gold's data14 on the de Haas-
van Alphen effect. We shall attempt to show that such 
a surface is fully compatible with the phonon spectrum 
in the [HCT] direction determined by Brockhouse et at.2 

from neutron scattering experiments and, hence, also 
with Paskin and Weiss'results from x-ray experiments.18 

On a surface as complex as that proposed by Gold, 
there will be many different pairs of points which might 
cause anomalies. However, it has been estimated by 

FIG. 4. A section in a (110) plane through the Fermi surface 
of lead. The broken lines are the free-electron surface and the 
solid lines a proposed surface. 

that author that the portions of the surface of which 
Fig. 4 is a section are close to being cylindrical in shape. 
One of the radii of curvature appearing in the expression 
for the coefficient C will then be large, and we may ex­
pect these regions to dominate the effect. Figure 5 shows 
on the same scale the lengths of wave vector in the 
£l 10] direction at which anomalies may be expected on 
the basis of this model together with a rough estimate 
of their relative magnitudes, calculated using a nearly 
free electron model. For the reasons of symmetry dis­
cussed earlier, transitions cannot occur from regions a 

14 A. V. Gold, Phil. Trans. Roy. Soc. (London) A251, 85 (1958) 
and Phil. Mag. 5, 70 (1960). 

15 W. A. Harrison, Phys. Rev. 118, 1190 (1960). 
16 A. R. Mackintosh, Proc. Roy. Soc. (London) A271, 88 (1963). 
17 J. A. Rayne, Phys. Rev. 129, 652 (1963). 
18 A. Paskin and R. J. Weiss, Phys. Rev. Letters 9, 199 (1962). 

— .c_d f^ a/ "* 

FIG. 5. The positions at which kinks in the phonon spectrum 
in the [110] direction are predicted, with a rough indication of 
their magnitude. The positions are marked in units of 0.1(27r/a). 

and / to b, c, d, or e, and the transitions from b to d are 
largely cancelled by those from c to e. Because a and / 
are a large distance from any zone boundary, umklapp 
processes are unlikely to be able to cause any transitions 
between them. The large distance between these points 
also means that M(q) will be small, and so the value 
of L for these transitions is correspondingly small. 

A comparison of Fig. 5 with the experimental phonon 
dispersion curve (Fig. 3 of first Ref. 2) shows that a 
satisfactory agreement has been obtained. There is a 
large kink at qc^OA (2w/a) which can be accounted for 
by the combined effects of the transitions b-~ c, c—d, and 
d— e, and an upward anomaly at #~1.24(27r/a) which 
coincides with the position predicted for transitions 
b—d.1* The uncertainty with which the radii of curva­
ture in the plane perpendicular to that of Fig. 4 are 
known makes a comparison of the magnitude of the 
kink with the theoretical prediction difficult; there is, 
however, no obvious inconsistency. 

I t thus seems reasonable to suppose that Kohn 
anomalies are experimentally observable, in certain 
metals at least, and that the drastic reduction in the 
effect, suggested by Woll and Kohn, need not always 
occur. I t is perhaps also worth noting that this effect is 
rare among Fermi surface tools in being capable of 
distinguishing between electron and hole surfaces. 
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