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Using the variational technique for the calculation of the zeroth-order phase shift and the perturbational 
technique for obtaining the higher order phase shifts, an analytic expression is derived for the total scattering 
cross section of ionized impurity scattering in degenerate semiconductors. The formula obtained may be 
looked upon as resulting from a refinement of the first Born approximation and its significance lies in the fact 
that it is valid in a doping region where neither the uncorrected Born approximation nor the simplest form 
of the partial-wave method (based on using only a variationally determined zeroth-order phase shift) can 
be applied for the calculation of the resistivity of ionized impurity scattering. 

I. INTRODUCTION 

IN a previous paper,1 hereafter referred to as I, ionized 
impurity scattering in degenerate semiconductors 

was discussed by making use of a variational approach 
in the partial-wave method. The analytic formula 
derived in I for the resistivity resulting from the 
scattering of electrons by ionized donors involved only 
the zeroth-order partial-wave shift, since it was assumed 
that the higher order phase shifts are very much smaller 
than the zeroth-order one. In the present paper a more 
exact resistivity expression is obtained that contains the 
contribution from all the higher order phase shifts too. 
The formula is arrived at by a combination of the 
variational and perturbational treatments of the partial-
wave method and it may also be looked upon as result
ing from a refinement of the first Born approximation. 

II. THEORY 

The scattering amplitude for the scattering of a 
particle by a spherically symmetric potential is given2 

by 
1 cc 

/ (*) = — E ( 2 m ) ( ^ - l ) P * ( c o s # ) , (1) 
2ik z~o 

where rji is the Ith. partial wave shift, k is the wave 
number of the scattered particle, i is the imaginary unit, 
and Pj(cos#) is the Ith Legendre polynominal. 

Assuming that all phase shifts, except the zeroth-
order one, are small compared to unity, as will be shown 
to be the case for degenerate semiconductors, one can 
approximate e2i^ by l+2irn and rewrite Eq. (1) as 

/(*) = 
1 

2ik 
0 2 ^ - l ) P 0 ( c o s # ) 

+ E ( 2 / + 1 ) ( 2 ^ I ) P I ( C O S ^ ) | , (2) 

where for the present purposes the phase shifts are 
considered as unknown numerical quantities. For the 

1 P. Csavinszky, Phys. Rev. 126, 1436 (1962). 
2 L . I. SchifX, Quantum Mechanics (McGraw-Hill Book Com

pany, Inc., New York, 1955), 2nd ed., p. 105. 

zeroth-order phase shift, one may choose an approximate 
value r)0v such as obtained in I by the variational 
method, and for the higher order phase shifts one may 
take the approximate values TJIB given3 by 

2m* 
t&nrjiB^ k 

ft2 F 
Jo 

ji2(kr)V(rydr, (3) 

where m* is the mass of the scattered particle, ji(kr) is 
the spherical Bessel function of order /, and V(r) is the 
interaction energy between the scattering center and 
the particle. The criterion for the validity of Eq. (3), 
which is the Born approximation expression for the 
partial-wave shifts, will be discussed later. 

Approximating t a n ? ^ by rjw and substituting Eq. (3) 
into Eq. (2), one obtains 

/ (#) = — (#imv- l)p0(cos#) - 2ik (2fn*/¥) 
2ik\ 

Jo L z-i 
(2l+l)jl

2(kr)Pl(co^) >}• (4) 

If in the right-hand side of Eq. (4) one adds and sub
tracts the quantity (2irjoB)Po(costf), then one finds that 

1 
/ (#) =—(e2ir>™ - 2ir)0B - 1 )P0 (cos#) 

2ik 
2m* 1 

ft2 K F 
Jo 

r sinKrV(r)dr, (5) 

where K = 2k sin(±#), since £ M 0 0 (21+ l)ji2(kr)Pt(cos#) 
can be shown8 to be equal to sinKr/Kr. The second term 
in Eq. (5) is just the well-known Born approximation 
expression for the scattering amplitude, and therefore, 
one may write Eq. (5) as 

1 
m^fB^)+~(e2i^~2iVoB-l), (6) 

2ik 

where it has been considered that Po(cos#)= 1. 
Using Eq. (6) the differential scattering cross section 

3 See Ref. 2, p. 167. 
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is calculated2 as 

*(*)= \f(&)\2=UB(#)+(2ik)-l(e^v-2irioB-l)l 
XUB(#)-(2ik)-i(e~^+2ir)0B-l)l, (7) 

which upon some manipulation is brought to the form 

a(^) = k~2(rjoB2—VoB s i n ^ + s i n 2 ^ ) 
+k-i(smVov-2r)oB)fB(&)+fBW. (8) 

If, for instance, the scattering of electrons by donor ions 
in degenerate semiconductors is considered and a 
screened Coulomb potential4 is chosen for the donor 
ion then 

V(r)=-(e0
2/Kr)e-^R

y (9a) 
with 

/7T\^ k^2 

(9b) MD 47T^0Wo1/2 
-1/2^-1/6 

where R is a screening length,5 K is the static dielectric 
constant of the semiconductor, n is the electron con
centration, and 7 = w*/wo is the ratio of the effective 
electronic mass to the free electronic mass. 

Using Eqs. (9a) and (9b) one finds that the scattering 
amplitude in the Born approximation is given by 

2m* 1 r00 

/ * (# )= — — — / r sinKrV(r)dr 
K J o 

2m*ei 

x . 
WK R~2+K2 

1 
(10) 

The total scattering cross section, weighted for large 
angle scattering, is evaluated1 from 

6=2* • (l — costfyr 
Jo 

(#) sintWt?, (ID 

which upon using Eqs. (8) and (10) is found to be 

Q=2Tr{kr2(r]oB2—VoB smr}QV+sm2r]ov)A 
+k-1($inV0v-27]0B) (2mW/nft2)B 

+ (4w*VA^ 4 )C} , (12) 
where the integrals 

A= / ( l - cos# ) s in tM#; 

( l ^+2£ 2 ) - 1 ( l - - cos#) s i n W ; 
Jo 

J 0 

CR-2+i£2)-2( l -cos#) sintMtf 

are evaluated as 

A = 2; 

B = k~2[l- (WR2)-1 In( l+4#IR 2 ) ] ; 

R2 1 
c = 1_— m ( l + 4 & 2 # 2 ) . 

k2(l+U2R2) 4k* 
(13) 

4 R. B. Dingle, Phil. Mag. 46, 831 (1955). 
5 R in Eq. (10) of I is misprinted. Where m0 appears m0

1/2 should 
be read; and where y~l appears y~112 should be read. 

The quantity TJOB is calculated from Eq. (3) and 
found to be 

ST2MW 1 
tan?7oB= G\, (14a) 

h2K k 
where the integral 

Jo 

oo e~r/R 

• sin2krdr (14b) 

is evaluated1 as 
G i = i l n ( l + 4 £ 2 i ? 2 ) . 

One also finds from Eq. (3) that the first few higher 
order phase shifts are given by 

Sir2mW lr 
tan?? i 5 = 

h2K kl 

tan?72B = 

lYH-LWil 
LA 2k2R2J 2 J 

1+ + } 
K kL\ 2k2R2 8£4£V 

8ir2in*eQ2 1 

3 \ 1 

2k2R2 Sk*R* 

3 

+ 
4 Sk2R2JA 

III. DISCUSSION 

\ 4 Sk2R?J 
(15) 

The derivation of Eq. (12), in terms of which the 
resistivity of ionized impurity scattering can be 
expressed,1 was based on the assumption that T)IB is 
small compared to unity when V^ 1. For Ge with 
electron concentrations of 1018 and 5X1018cm-3, for 
instance, one finds from Eq. (15) (using an effective 
mass of m* = 0.25mo as in I) that the phase shifts (in 
rad) are 

1 ^ = 0 .16 , 7/25 = 0 .057, 

and 
rjiB = 0.15 , r)2B = 0.055 , 

which, indeed, satisfy the above requirement. One may 
also show that the Born approximation expression for 
the higher order phase shifts, as given in Eq. (3), is a 
good approximation. For this to be the case the follow
ing condition6 must be satisfied: 

for r given by 

1(1+1) fi2 

V(r)« , 
r2 2m* 

jfef=P(/+l)]l/2. 

(16) 

For Ge with ^=1018cm~3 and ^=5X1018cm~3, respec
tively, one finds from Eqs. (9a) and (9b) that 

F ( r ) ^ i = 6.69X10-15, F(r)z==2= 1.24X10~15, 

and 
1.66X10"14, 0.407 X10~14, 

which shows that the left-hand side of Eq. (16) is, 
indeed, smaller than the right-hand side, whose value 

6 N. S. Mott and H. S. W. Massey, The Theory of Atomic 
Collisions (Clarendon Press, Oxford, England, 1949), 2nd ed., 
p. 127. 
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for the given electron concentrations is 23.2 X10~15 and 
6.79X10~14, respectively. 

Since in degenerate semiconductors the resistivity 
resulting from ionized impurity scattering is directly 
proportional1 to the total scattering cross section, the 
ratio of the total scattering cross section containing only 
the zeroth-order phase shift as given in I to that of the 
expression given in Eq. (12) of the present paper will 
show the importance of the inclusion of the higher order 
phase shifts. 

In I, for n=10ls and 5X1018cm -3 the approximate 
expression 

Co^CVA^sinV, 

(F refers to electrons on top of the Fermi surface) is 
found to be 8.90X10~13 and 2.41 XIO"13 cm2, respec
tively, while Eq. (12) leads to the values of 16.8X10~13 

and 3.28X10 -13 cm2, which gives for the ratio QF/QQF 

the values of 1.88 and 1.36. I t is thus seen that though 
the higher order phase shifts are small compared to the 
zeroth-order one, their consideration still leads to an 
increase in the total scattering cross section and, 
consequently, in the resistivity by a factor of between 
1 and 2. 

At this point, attention is drawn to some of the short
comings of the theory of ionized impurity scattering in 
degenerate semiconductors. First, an effective scalar 
electronic mass was used throughout which is a simplifi
cation of the actual band structure of the semicon
ductor. Second, the dielectric constant K and the 
effective mass (whether scalar or tensor) might depend 
on the electron concentration, n, which is not considered. 
Third, at the electron concentration of 1018cm~3, for 
instance, the screening length is 29.4 A, which is not so 
large compared to several nearest-neighbor distances in 
the semiconductor in which region the space depend
ence7 of the dielectric constant, K=a(r), might also have 
some importance on the magnitude of the total scatter
ing cross section. Fourth, the calculation4 of V(r) is 
based on a series expansion of the Fermi-Dirac integral 
which becomes invalid at a certain value of r=rQ. The 
condition for the validity of the expansion can be 
expressed8 as 

1 e0
2 

e - ^ « l , (17) 

where kn is Boltzmann's constant and T is the absolute 
temperature. At w=1018cni~3 and r = 1 0 0 ° K , for in
stance, one finds fromEq. (17) t h a t r Q ^ R . For this reason 
the use of the screened Coulomb potential in the region 

7 K. Weiser, Bull. Am. Phys. Soc. 6, 156 (1961). 
» T. Morimoto and K. Tani, J. Phys. Soc. Japan 17,1121 (1962). 

r<R is not strictly justified and amounts to using an 
asymptotically correct expression in all regions of space. 

Fifth, one may ask to what degree is the picture of 
individual scattering correct. Some considerations of 
this problem have been given elsewhere.9 Here it is only 
added that the wavelength of an electron on top of the 
Fermi surface in Ge doped to an electron concentra
tion of 1018cm~3, for instance, is Xir^200 A, while the 
"average distance" of impurities (calculated from 
fp37ra=l) is 2p~120 A, which would suggest that the 
picture of individual scattering acts is marginal. 

Finally, one may also note that ionized impurity 
scattering should also be augmented by dipole scattering 
when a screened Coulomb potential is used for the donor 
ion. The reason for this is twofold. First, when the 
electron approaches the screened donor ion, the electron 
cloud surrounding the ion undergoes polarization and, 
consequently, a dipole is created whose magnitude is a 
function of the electron's position. Since the total 
energy of the system of a screened donor ion and an 
electron must be conserved, this process is only possible 
if the energy for the creation of the time-varying dipole 
is supplied from the kinetic energy of the electron which 
means that the scattering process is no longer elastic 
though the kinetic energy of the electron before and 
after the scattering act is the same. 

Second, as pointed out by Koenig,10 the thermal 
motion of the impurity also creates a dipole since the 
screening around the ion does not rigidly follow the 
motion of the impurity. While the previous mechanism 
for dipole scattering should be temperature-inde
pendent, this latter one should show a temperature 
dependence since the rms displacement of the ion is a 
function of the temperature. 

IV. CONCLUSIONS 

In summary, one may conclude that consideration of 
the higher order phase shifts in the resistivity calcula
tion is important and that this may be achieved by a 
combination of the variational and perturbational 
treatments of the partial-wave method. As far as the 
theory of strong ionized impurity scattering as a whole 
is concerned, a number of as yet not investigated 
features appear whose consideration may or may not 
have a significant bearing on the numerical result. 
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