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by the unitary transformation (independent of k)14 

for each k, (Al) -;*C !)• 
where the submatrices of t are multiples of the unit 
matrix of order 3. Then, suppressing the index k, if K 
of (2.12) is written as KO+^KI, where KQ and KI are real 
and symmetric, 

ft— Kl K0 \ 
d = r 1 a t = ( ) . (A2) 

\ K0 T + K K 
14 This transformation has been used by L. J. Slutsky and 

C. W. Garland, J. Chem. Phys. 26, 787 (1957). 

d is easily inverted numerically to obtain ji=d_1. If 
\i is represented in submatrix form as 

then ^=tyt_ 1 gives rise to the relations 

«I=i[(vi+V4)+i(v3-V2)], 

C=iC(V2+V3)+«(v4-Vi)]. 

(A3) 

(A4) 

These results are valid for any lattice with two atoms 
per unit cell for the case of central forces. 
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A consistent method of calculating the wave functions and electron-spin-resonance properties of a dilute 
paramagnetic impurty in a molecular crystal is outlined, and the system of atomic hydrogen in solid argon 
is treated as a detailed example. Starting from a one-electron, tight-binding, static-lattice picture of the 
impurity-doped crystal, the crystal wave function is formed as the antisymmetrized product of atomic 
Hartree-Fock functions. This is modified for the interactions in the crystal by adding variational corrections 
for crystal field effects, the spin-orbit interaction, and the Van der Waals interaction. The spin-resonance 
parameters are then found from the expectation value of the interaction with a magnetic field. The results 
lead to a reintepretation of parameters in previous theories and show that the various crystal perturbations 
do not add independently to give a net result when there is appreciable overlap between the impurity and 
host atoms. Estimates of the electronic g factor for hydrogen in argon are in good agreement with experi­
ment. The predicted hyperfine shifts for substitutional hydrogen impurities also agrees well. However, it 
is shown that for interstitial sites the hyperfine-shift calculations are unreliable. 

I. INTRODUCTION 

RECENTLY both spin-resonance and optical-ab­
sorption spectra of isolated impurities trapped in 

rare-gas solids have been observed.1-4 The outstanding 
feature of the results is that the spectrum of a dilute 
impurity is changed only slightly from the free-state 
spectrum by the crystal environment. Several theo­
retical treatments relating these shifts to the polariza-
bility, spin-orbit splitting, etc., of the impurity and the 
host lattice have been given for specific systems. In 
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these, additivity of the effects of the various crystal 
perturbations has been assumed and experimental data 
have been used to evaluate parameters in the models.4-5 

The present work outlines a calculation of the ground-
state wave function and electron-spin-resonance pa­
rameters of a tight-binding paramagnetic center in a 
rare-gas crystal. It is a "first principles" calculation in 
the sense that experimentally determined quantities are 
not used, and the major perturbations due to the crystal 
environment are calculated simultaneously so that ef­
fects depending on two or more interactions are re­
tained. Specifically, the theory developed has been 
applied to the case of atomic hydrogen in argon, and 
order-of-magnitude estimates have been made as a 
guide for applying the theory in detail. Excited states 
and, therefore, optical properties could be treated, but 
more attention to overlap effects would be necessary.6 

5 F. Adrian, J. Chem. Phys. 32, 972 (1960). 
6 For a review see D. L, Dexter, in Solid State Physics, edited by 

F. Seitz and D. Turnbull (Academic Press Inc., New York, 1958), 
Vol. 6, p. 353. Examples of calculations include R. S. Knox, J. Phys. 
Chem. Solids 9, 265 (1959); A. Gold, ibid. 18, 218 (1961); Phys, 
Rev. 124, 1740 (1961). 
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Starting from a one-electron, tight-binding, static-
lattice picture of the impurity-doped crystal, the Pauli 
principle is satisfied by using an antisymmetric crystal 
wave function. This wave function is then modified by 
the addition of variational corrections of the correct 
symmetry to account for the perturbations on the tight-
binding approximation due to the crystal field, spin-
orbit interaction, and Van der Waals interaction.7 

II. TRAPPING SITES IN RARE-GAS CRYSTALS 

The rare gases crystallize in face-centered cubic 
lattices. For this study it is assumed that the impurity 
is in one of the three stable sites pointed out by Foner 
et al.,2 namely, the substitutional site and two inter­
stitial positions—an octahedral site at the center of the 
face-centered cube or a tetrahedral site near any corner 
of the face-centered cubic structure. The lattice may 
relax about the trapped atom, but the symmetry of the 
site is preserved because the ground electronic state is 
orbitally nondegenerate. Other possible trapping sites 
might be aggregates or vacancy-impurity combinations. 

Preliminary calculations made in connection with 
this study indicate that in argon the nearest neighbors 
of a substitutional hydrogen atom relax by moving 
inward by about 1% of the equilibrium atomic separa­
tion for the pure crystal. This is reasonable since the 
hydrogen atom is " smaller" than the rare-gas atoms 
and would behave something like a vacancy for which 
the relaxation has been calculated to be 0.839% by 
Hall8 and 0.32% by Kanzaki.9 The additional relaxation 
inward arises from the long-range Van der Waal's at­
traction of the hydrogen not present in the case of the 
vacancy. For the octahedral position, the relaxation of 
the nearest neighbors is of the order of 4% outward. 
This is consistent with Hall's figure of 5% relaxation 
about an octahedral interstitial atom of the rare gas. 

III. THE HAMILTONIAN 

For a crystal consisting of N nuclei with charges 
Zj\e\(J=l, - • •, N) and ^JZJ electrons, the Hamil-
tonian for electronic motion in the Born-Oppenheimer 
approximation is 

W ZrZj 
^ — IV^E x; 

2m i i J>I | R r — R j | 

eh 

1 Zj 

i J I r r - R j l 

4m2c2 ?*MHA)] 
7 Since this work was begun a similar approach has been sug­

gested in a discussion of transition ion complexes. See W. Marshall 
and R. Stuart, Phys. Rev. 123, 2048 (1961). 

8 G. Hall, J. Phys. Chem. Solids 3, 210 (1957). 
9 H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957). 

£(p<-A+A-p*)+i/3,g£«*'H 
i i 2mc 

| r r - R / | 3 

igfa-R^-crtfo-RjO-I,/-

| r r - R / | « 

+ | 7 rg5 ( r , -R J VrI /} . (3.1) 

Here the symbols m9 M, h, and V have their usual 
meaning, e is the electronic charge (a negative number) 
and pi is the momentum operator—ifoVi. ,#e= | e \ h/2mcy 

the Bohr magneton, and pn—\e\fo/2Mc, the nuclear 
magneton, g is the electronic g factor, and y is the 
nuclear g factor. A represents the vector potential for 
the external magnetic field, H, and E is the electric field 
within the crystal. \j is the spin operator in units of 
fi for the / t h nucleus at position R/. cr* is the Pauli 
spin operator in units of \fo for the electron with co­
ordinate r*, and L* is the orbital angular-momentum 
operator in units of h for the same electron. 

The first term in Eq. (3.1) is the kinetic energy of the 
electrons, the second, third, and fourth terms account 
for the electrostatic interaction of the electrons and 
nuclei,10 and the fifth term is the spin-orbit interaction.11 

The sixth and seventh are the interaction with an ex­
ternal magnetic field, and the eighth is the hyperfine 
interaction of the electrons and nuclei.12 The inter­
action of the electron with the magnetic field is taken 
only to first order in H since the quadratic terms are 
small for the fields involved and give rise to a dia-
magnetic effect which is not of interest in the present 
calculation. 

In the case of hydrogen in a rare-gas crystal, the 
energy contributions fall into three groups: 

I. The atomic binding energy (of order 10 eV or 
more). 

II. The Van der Waals, crystal field, and spin-
orbit energies (of order 0.1 to 0.001 eV or less). 

III. The interaction with an external H field and 
the hyperfine interaction (of order 10~5 eV). 

It follows from this division of the Hamiltonian that 
the interaction of the crystal with a magnetic field may 
be most reasonably found by starting with the Hartree-
Fock wave functions for the free atoms, modifying 

10 See F. Seitz, The Modern Theory of Solids (McGraw-Hill 
Book Company, Inc., New York, 1940). 

11 For example see L. I. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1949), 1st ed., p. 321; and 
E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra 
(Cambridge University Press, Cambridge, England, 1935), p. 130. 

12 For example, see L. D. Landau and E. M. Lifschitz, Quantum 
Mechanics (Pergamon Press, Inc., London, 1958), p. 486; and 
N. F. Ramsey in Experimental Nuclear Physics, edited by E. Segr£, 
(John Wiley & Sons, Inc., New York, 1953), p. 381. 
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them for the interactions in group II, and using the 
results to rind the expectation value of the interactions 
in group III. 

The spin-orbit term and the orbital interaction with 
the magnetic field have been left in terms of the vector 
potential, to emphasize the importance of the choice 
of a convenient gauge. For a specific atom in the crystal, 
say, the 7th, we may choose the vector potential to be 
zero at the nucleus. Then to a good approximation for 
this atom, these interactions reduce to 

efi2 1 dFz 

4mV | r - R / | df lr-Rjl)* ' ' 

and L/-H, (3.2) 
2mc 

respectively. Here Vi is the intra-atomic potential of 
the 7th atom and Lr is the angular-momentum opera­
tor, with Rj as origin. However, for all other atoms in 
the crystal, the interactions are more complicated and 
involve the vector potential at the nucleus of the atom 
in question. This has been stressed by Slichter in his 
treatment of a paramagnetic center having a wave 
function made up of a linear combination of functions 
centered on two nuclei.13 

In particular, for g-shift calculations, energy terms 
linear in H and a are sought. In perturbation theory or 
an equivalent variational scheme, these arise in first 
order from the spin-orbit interaction because of the 
A-o" term and in second order from the cross product 
of the o" (EXp) and the (p-A+A-p) terms. Provided 
the vector potential is zero at the center on which the 
wave function being considered is located, the first-
order term is negligible, and the second-order term re­
duces to the form H« LL-<r, giving a g shift proportional 
to the tensor LL. However, if A is nonzero, the first-
order energy may be made arbitrarily large by the 
choice of gauge. This is offset by a corresponding change 
in the second-order term,13 but both contributions must 
be considered. 

To eliminate the problem of the arbitrariness of the 
gauge we shall use a method originated by London.14 

In this we introduce the gauge-invariant atomic wave 
functions defined by 

XM = Vn exp[ (ie/hc) A„ • r ] , (3.3) 

where AM is the value of the vector potential at the 
nuclear position of the atomic wave function ^ . In 

13 C. P. Slichter, Principles of Magnetic Resonance (Harper & 
Row Publishers, Inc., New York, 1963). The author is indebted 
to Professor Slichter for access to a prepublication manuscript of 
this text and for pointing out the importance of the vector-poten­
tial part of the spin-orbit interaction. 

14 F. London, J. Phys. Radium 8, 397 (1937). The use of gauge-
invariant wave functions here is equivalent to the unitary trans­
formation, T, introduced by Adrian in a similar discussion of the 
electronic g factor of F centers, F. J. Adrian, Phys. Rev. 107, 488 
(1957). 

calculating expectation values of the Hamiltonian, the 
differential operator in p "brings down" A/s from the 
exponential, and these combine with the vector po­
tential in the Hamiltonian to give operators depending 
on the vector potential as measured from the nucleus 
in question. The matrix elements of the Hamiltonian 
calculated using the x's depend only on the difference 
in vector potential between the centers involved and 
are consequently gauge invariant. 

In evaluating these matrix elements, the gauge may 
be chosen for convenience. For the problem at hand it is 
practical to take the origin of the vector potential at 
the rare-gas nucleus for each of the rare-gas-impurity 
pairs and to expand all other functions about these 
centers. This is a particularly useful choice for calcula­
tions of the g-factor shift since the spin-orbit inter­
action arises from the highly localized electric fields in 
the rare-gas atoms and hence lead to a Hamiltonian 
that is important only in the neighborhood of the rare-
gas nuclei. Furthermore, because of this high degree of 
localization of the spin-orbit interaction, the contribu­
tion of each of the rare-gas atoms to the g-factor shift 
may be treated separately. 

An effect noted by Bender15 has been ignored. The 
hyperfine interaction leads to a slight difference in 
polarizability between hyperfine states. Consequently, 
the Van der Waals energy depends on the state, and an 
additional splitting is introduced. This could be in­
cluded in the present formalism by adding a variational 
correction to account for the excited s states admixed 
to the impurity ground state by the hyperfine inter­
action. Only one-electron operators are involved and 
the theory would be formally the same as for the crystal 
field and spin-orbit corrections. For numerical estimates 
we shall use the perturbation theory results of Adrian5 

and Herman and Margenau.16 

IV. THE CRYSTAL WAVE FUNCTION 

To modify the wave function for the noninteracting 
atoms, a variational procedure similar to that of Hasse 
and Buckingham17 is used, i.e., a correction is added to 
the wave function that is proportional to both the initial 
wave function and the perturbation. For example, if 
5C0 is an unperturbed Hamiltonian having a ground-
state eigenfunction \f/o, and h is the perturbation; 
Hasse's method is to seek a solution of the form ^ 
= (l+X^)^o, where X is a variational parameter. 

In our case, the modified crystal wave function is 
taken to be 

+E«.,9^(r«,r f)>o, (4.1) 
15 P. Bender, "Comments on Dr. Fontana's Paper" made at 

The Ann Arbor Conference on Optical Pumping, Ann Arbor, 
Michigan, 1959 (unpublished). 

16 R. Herman and H. Margenau, Phys. Rev. 122, 1204 (1961). 
17 H. R. Hasse*, Proc. Cambridge Phil. Soc. 26, 542 (1930); 27, 

66 (1931); R. A. Buckingham, Proc. Roy. Soc. (London) A160, 
94 and 113 (1937). 
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where Ct is the usual antisymmetrization operator 
(N l)"lisE^iNl ( - 1)P'PV and 3>0 is the product, IL**(* ) , 
of the one-electron functions $*(r*), occupied by the N 
electrons of the system. In Eq. (4.1), the correction 
terms are 

# ( r € ) = A M ( r < ) , 

and 
9^(r€ , r , ) = X^«^(r € >r , ) , 

where A*, «£*, and \*v are variational parameters. The 
wave function </>?(r̂ ) is corrected by the function v*(r$) 
for crystal field effects, and by w*(r$)L$-or$ for spin-
orbit effects. The last term ^ ( r ^ r , ) corrects the prod­
uct of the wave functions <£* and <t>v simultaneously for 
the Van der Waals or interatomic correlation effect. 

If Hasse's method were to be extended literally, fl*(r$) 
and wS(r$)L|-<r$ should be replaced by the crystal field 
potential, and the spin-orbit interaction, respectively. 
However, both are singular at the nuclei and lead to 
divergencies in the matrix elements. From the argu­
ments of Shull and Lowdin18 and the work of Wikner 
and Das,19 it is expected that a solution can be obtained 
by using as our functions fl*(r$) and w*(r$), a series 
^2nCn\t^—R^\n. For actual calculations only one term 
will be kept and a corrected wave function of the form 

* - ( l + X | r { - R t | " ) * , (4.2) 

where both X and n are to be chosen to minimize the 
energy, will be used. 

For uir,(r^Tv), the first term of the multipole ex­
pansion for the Van der Waals interaction will be used.20 

This is the familiar dipole-dipole term given by 

«^( r { l r , ) = ^ - ' C ( r f - R { ) - ( r , - R , ) 

- 3 ( r { - R t ) - J ? ( r , - R ? ) - J J ] . (4.3) 

R^ and R,, are, respectively, the coordinates of the 
nuclei on which <^(r$) and ^ ( r , ) are centered, R 
= R$— R„ is the separation of the nuclei, R is the unit 
vector along R, and r$ and r , are the coordinates of the 
electrons. Here the discussion is limited to interatomic 
correlation by assuming u^(r^rv) = 0 if $*(r$) and 
^ ( r , ) are centered on the same nucleus.21 

To simplify the calculations, Lowdin's method of 
symmetric orthonormalization22 is applied to transform 
the atomic functions into the orthonormalized one-
electron functions used to form $0. For the particular 
unitary transformation introduced by Lowdin, the 
orthonormal functions <£M are given by the series 

<£"= <p»-\ E « <P°Sai* + § Ha,fi<paSapSfi,x , (4.4) 

18 H. Shull and P. O. Lowdin, J. Chem. Phys. 23, 1362 (1955). 
19 E. G. Wikner and T. P. Das, Phys. Rev. 107, 497 (1957). 
20 See, for example, J. O. Hirschfelder, C. F. Curtiss, and R. B. 

Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, 
Inc., New York, 1954). 

21 For the separation of correlation energy into intra- and inter­
atomic terms, see O. Sinanoglu, J. Chem. Phys. 33, 1212 (1960) 
and Phys. Rev. 122, 493 (1961). 

22 P. 0. Lowdin, Advan. Phys, 5, 1 (1956). 

where the <pM's are free atomic functions, and Sap is the 
overlap between atomic wave functions <pa and <p̂ , 
f<p"*<pWr. 

This series converges if X)a|6Va| < 1 . For the prob­
lem at hand, this convergence condition is satisfied for 
the substitutional site. For the octahedral and tetra-
hedral sites, it is satisfied if only outer shell overlaps 
are considered. If all shells are included, the question 
of convergence is not clear cut since this sufficiency 
condition is not met, but neither is a similar sufficient 
condition for divergence. However, for these " cramped" 
sites, there is a relaxation of the lattice outwards from 
the impurity, and so these cases would presumably be 
convergent also. For this study it is assumed that this 
series expansion is valid and that only terms up to 
order S2 are important, i.e., the "S2 approximation" is 
made. A more detailed discussion of convergence is 
given by Lowdin.22 

Since our main concern is with the paramagnetic 
atom, not all the variational parameters will be equally 
important in calculating the magnetic effects. In par­
ticular, it is necessary to calculate X^'s for all impurity-
rare-gas interactions, but £* only for the rare gas, and 
A* only for the impurity. 

In calculating the Van der Waals parameters, matrix 
elements involving correlation corrections in two-, 
three- and four-electron coordinates are encountered. 
I t is known that the three-electron term represents 
only 2 to 9% of the total cohesive energy,25 so all but 
the two-electron term will be neglected. 

The final assumption is that overlap integrals be­
tween host crystal atoms may be neglected. Their 
main role is to determine the repulsive forces between 
atoms, and thus the lattice structure for the pure 
crystal, which is taken as given. Since both the overlap 
and the Van der Waals interaction fall off rapidly with 
distance, it can be shown that the nearest neighbors of 
an impurity account for all but a few percent of the 
perturbations on the impurity. For numerical estimates, 
the "crystal" will, therefore, be defined as the impurity 
and its nearest neighbors. 

V. CALCULATION OF THE VARIATIONAL PARAMETERS 

A. The Crystal Energy 

The variational parameters are found by minimizing 
the crystal energy ignoring the hyperfine and mag­
netic-field interactions. To avoid the complication of 
writing this energy in terms of atomic functions at this 
point, an abbreviated form for the matrix element is 
used. The wave function may be expanded as 

$ = a$0+ a E * SK*«)*o+ a £«3* (r*)$o 
+ a£«.,g*'fo,r,)*o, (5.1) 

23 B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943); 
B. M. Axilrod, ibid. 19, 719 and 724 (1951). 
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where UQ is identified with Ct$o, ^1 with CfcE*^*(r$)$o, 
etc. 

In the tight-binding approximation, the correction 
to the normalization is very small compared to unity 
and may be expanded in a binomial series. Retaining 
terms up to the square of the variational parameters, 
this gives for the crystal energy, 

£ = e + { [ / z — € Q ; ] A + [ ( ^ — e(l) — a(n— €a)]A
2} 

+ {£M-eAls>+Z(N-eB)-A(M-eA)-]&>} 
+ {\jn-ecT\\+[(n— eb)~a(m— €a)]X

2} (5.2) 
+ [ P A £ - € C A £ - (aM+An)+2eaA-]ks> 
+[PAX— eCAx— (atn+an)+2eaa]A\ 
+ ZP£x-eC£x-(aM+Am)+2eaAl^, 

where, for 3C' the first-five terms of the Hamiltonian, 
Eq. (3.1), we have used the abbreviations 

€=(wo|3C'|wo), 

a=2(ui\uo), fx= (ui 15C' | Uo)+ {uo | 3C' | Ui), 

4 = 2(«2|«o), M=(w2|5C'|^o)+(^o|5C,|^2), 

j 8 = ( « i | « i > , v = < « i | 3 e , | « i ) , 

JB=<«2|«2>, N={u2\3Zf\u2)y (5.3) 

5 = (W8| «8>, W = ( ^ 3 | 5 C / | ^ 3 ) , 

CA£ = («11 U2)+ (u21 «i) , PA£ = <«l I 3C' I U2)+ {u21 3C' | Mi) , 

CAX=<«l |«3>+<«3|«l>, i ^ x H « l | ^ « 3 > + < « s | X ' | « i > , 

C «ex= <̂ 21 ̂ 3)+ <̂ 31 «2), Pjex= {u213C' I ̂ 3)+ («s 13C' I «2). 

The contributions of the first and second powers and 
the cross terms in the variational parameters have been 
grouped together in square brackets which are labeled 
with a subscript to indicate the term they contain. The 
energy in this approximation is a polynomial of second 
degree in the variational parameters. It may be 
written as 

E= e + E 2JeAH-£ E /*,A*A' 

+ E E 2n€,x«H-£ Z E E T€,,PA««X" 

+ E E 2î „A*£'M-E E E 2Z*ifPA«A" 

+ E E E 24ftlW£«\w. (5.4) 

The coefficients /$, etc., are found by expanding the 
appropriate parts of Eq. (5.2) in terms of the Hamil­

tonian and the atomic wave functions. A skeletal outline 
of this procedure is given in the Appendix. Because of 
their length, more complete derivations are given 
elsewhere.24 

Minimization of Eq. (5.4) leads to a set of coupled 
equations for the variational parameters. For A* we find 

A«=-
'tt 

•n^i v v P>V 

'tt 

(5.5) 

Similar expressions hold for the other parameters. 
The leading terms, such as I%/J%% in Eq. (5.5), arise 

directly from a perturbation on the free atom. On the 
other hand, the cross terms arise from considering an 
atom already corrected for one interaction being per­
turbed by a second. If the tight-binding approximation 
is valid, this "second generation" effect is of secondary 
importance compared to the leading terms and the 
equations can be solved by iteration. Furthermore, it 
is consistent to calculate the cross terms to order S° 
only, while calculating the leading terms to order S2. 

B. Crystal Field Parameters 

A* is given by Eq. (5.5) in terms of the energy equa­
tion coefficients 1%, J^v, K^Vy and L^>p. These will be dis­
cussed for a hydrogen impurity atom. In atomic units 
1\ for £=0, the hydrogen Is function, is given to second 
order in overlap by25 

/o=(0|^Fo|0)-E(0|^°U)(77 |2Fo|0) 

- iE5o«{(0|rf27. |a)+(a| tf l2Fo|0) 

a 

-(0|*°|0)C(0|2F«|«)+2(a|2F0|0)] 

+[(oA>^r1|o^y)-(OA-l^n-r^A-)]}, (5.6) 
where the potential 2Vt(ti) is shorthand for the "ex-24 David Young Smith, Ph.D. thesis, University of Rochester, 
1962 (unpublished). On file with University Microfilms, Ann Arbor, 
Michigan. 

25 Here we introduce the rounded-bracket notation 

(<p* | Operator | <p£) 

to indicate that the matrix elements are taken between atomic 
functions, ^ ' s . Heretofore, we have used only matrix elements of 
Lowdin functions, <t>*'s. These are indicated by the angular brackets 
(0$| Operator | <£*). For simplicity of notation, we shall generally 
abbreviate wave functions with their quantum number index and 
indicate their associated coordinate by a subscript. Thus (^(r») | 
will be denoted (&|, 
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change'' potential denned by 

= - £ ' -——I ^O+E'^k^hy) I <pf) 
J | r < - R j | ^ 

-fek.-r1!^)!^). (5.7) 
Here the primes on the summations indicate that J 
does not include the atom on which <p* is centered, and 
7] does not include any function with the same center 
a s <p*. 

The energy eigenvalues for the atomic wave func­
tions have canceled, leaving matrix elements of poten­
tials and the variational function v*. Aside from ex­
change corrections, this has the general form of the 
matrix element of the crystal field times the variational 
correction less the product of the matrix elements of the 
crystal field and the variation. 

In the case of a molecular crystal the electron on one 
atom will experience an attractive potential provided 
its wave function overlaps the intra-atomic potential 
of a neighboring atom. It is, therefore, to be expected 
that, if there is no overlap, 1$ is zero and that 1% must 
have a leading term related to the electron overlap 
integrals. Actual calculations show that for hydrogen 
in argon the matrix elements of the potential, and hence 
I^ are essentially proportional to the square of the 
hydrogen ls-argon 3p overlap. The exchange correc­
tions to the potential are also of order S2 and arise 
from considering the interaction of the exchange charge 
clouds (p^cp* and <pv*(p*, where ^ is a hydrogen func­
tion and <pv a rare-gas function. 

Since 1$ is of order S2, J^ is needed only to order S° 
to find A0 to order S2. The result in atomic units is 

/«=itt|v»«-V»«|{). (5.8) 
This term arises from the kinetic-energy operator in 
Hamiltonian, and J# may be considered as a measure 

The spin-orbit parameters are important only for the 
g-shift calculations and always appear with coefficients 
proportional to S2. Thus, <£* is required only to order S°. 

For <p*, a rare-gas wave function i$ is given by 

*«=tt|x«'«(L-<0,19 
-Ettl«*L.a|,)(i,|xL.a|0, (5.11) 

n 

where % is the spin-orbit factor (}b2/^m2c2)r~ldV/dr. 
Since only 5° terms are considered; the sum on r\ runs 
over states centered on the same atom as <p*. 

This equation may be simplified by writing the wave 

of the kinetic energy added by the correction term v*<p*. 
The second approximation to A* is given by adding 

corrections in J^v, K^, and L^tVP. Since these cross 
terms are considered to order S° in finding A* to order 
S2, the term ^(J^+J^J^r1^ *s negligible because A7* 
is of order S2 in molecular crystals. 

The cross term K^^f1^ is zero for the case of <p*, 
a hydrogen Is function. The main reason is that the 
coefficient K^v consists of overlap matrix elements in­
volving the spin-orbit correction for a rare gas and an 
impurity state. These are of order S2 and consequently 
negligible. 

The cross term with the Van der Waals parameter 
£* ,*P(^ P +A ' "0 , is given by 

E £ £«.,P(X"+A") 
^ p>rj 

= £ (XH-X'«){ (fewl«<M^I fry) 

- Z £ (x^+X")(wk t f^y|Wy)^|^U), (5.9) 
where vy is the dipole-dipole interaction between elec­
trons with coordinates rt and r,-, centered on two dif­
ferent atoms. For our choice of ##*", both vi3- and u^9 

are the same and are given by Eq. (4.3). 
The first half of this contribution arises from the 

interaction of u^p and the normalized wave function 
as corrected for crystal field effects. The second term 
arises from the excess Van der Waals energy associated 
with the extent to which (1+AM)0* exceeds its nor­
malized value. 

C. Spin-Orbit Parameters 

The solution of the variational calculation for the 
spin-orbit parameters is 

functions as $>*= (R*(| r\)yi(6,<p)6(g), where (R€(|r|) is 
the radial part of <£>*, y^(6,<p) is its angular dependence, 
and 5(£) is its spin function. Then, since the spherical 
harmonics form a complete set for the angular-mo­
mentum operator, summing over closed shells in the 
second term leads to 

^={(^|x^l^)-E(^|^|(R^(6l''|x|^)} 
v 

X(y«8(*)|(L.«r)«|y«5($)). (5.12) 

Here the sum over rj runs over the non-.? subshells. 
The only appreciable terms in j ^ are those arising 

V^Z V V P>V 

£ { = _ _ _ _ . (5.10) 
hi hi 
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from the kinetic-energy operator in the Hamiltonian. 
The equation for j# may be reduced to simpler form as 
was i$ by using completeness for angular-spin operators. 
The result in atomic units is 

-Z^la -*! «')*(«,-««)} 

X(y«6(f)|(L-a)»|y«S(f)), (5.13) 

where the sum over 77 runs over non-5 subshells. Here 
the assumption that w* is an j-like function has been 
used. For this choice, 

V ( ^ L - < r ) - [ ( ^ V ^ ) + ( ^ A ) ] ( L - ( r ) r . (5.14) 

The cross term Y,ri*k\(Ju+Jn%)£*JtCl IS found to be 
less than a thousandth of the leading term for <£*, and 
may be neglected. The main reason for this is the small 
size of the function % where the wave function is appre­
ciable relative to the terms i n / ^ arising from the kinetic-

(X^+X7**) has a leading term proportional to 5°, that 
is, overlap is not essential for the Van der Waals inter­
action. The S2 terms are extremely complicated and 
give little understanding of the processes at work. 
Hence, only the direct terms will be presented here. 

Neglecting overlap, the term 11$, is given to order 
S° by 

n«,= fe^l^/^r1!^-). (5.16) 
This term represents the electrostatic interaction be­
tween the electrons in states <p£ and tp^ as modified 
by Uij^. I t can be put in a more familiar form by adding 
the quantity 

(toy 1 **«*(I R r - R / 1 - 1 - \*i- R / 1 - 1 - i ry-Rj | -*) | {*;), 

which is zero by the oddness of u^. The result is ex­
plicitly the matrix element of the interaction of two 
neutral charge clouds. This interaction may be ex­
panded in a multipole series and the usual expression 
for Van der Waals interactions results. 

The term T$,,$, is given by the matrix elements 
arising from the kinetic energy operators in the Hamil­
tonian. To order S° it is 

?**,**=£(toyIViUij^-V^Uij^+VfUi^-V3-Ui^\ toy). 
(5.17) 

No cross terms involving T^VtPV appear since these are of 
order S2, the S° terms vanishing because of the oddness 
of Uij**. This also holds for the cross terms Zp>$,Ap 

since, as we have shown, Ap is of order greater than 5°. 
While the cross term involving the spin-orbit inter-

energy operator. In addition, the cross term KVt^/j^ 
is of order S2 for molecular crystals because it contains 
A* and thus may be ignored. 

The final cross term, i f ^ ^ X ^ + X ^ ) , is similar to 
A,i7p(Vp+Ap,0> but with i>*(ry) replaced by w*(ry)Ly<ry. 

D. Van der Waals Pa ramete r s 

The solution of the variational calculation for the 
Van der Waals parameters shows that it is not possible 
to find a particular X^, but that the system of equation 
can be solved for the sum (X^+X'7*). This is, of course, 
physically reasonable since we are calculating the Van 
der Waals interaction between two atoms and the 
effect, being a property of the system, cannot be divided 
between the atoms independently. Hence, in our case, 
the sum of the Van der Waals parameters X*7? and \^ 
has meaning, but separated, the individual terms do not. 

The Van der Waals parameter for minimum energy 
is given by 

action is of order S°, it is found to be negligible com­
pared to the leading Van der Waals terms. This can 
easily be seen since both Eqs. (5.16) for 11^, and (5.17) 
for T$,,$, are roughly either sums or products of dipole 
matrix elements for the charge distributions | <p* |2 and 
I <^|2. For the ground state, these are of order unity. 
However, the spin-orbit correction may be shown to 
lead to matrix elements of order 10~3 or so. 

VI. CALCULATION OF ELECTRON SPIN 
RESONANCE PARAMETERS 

A. The Hyperfine and Magnetic Field 
Per turbat ions 

The magnetic energy levels for a 25i/2 state are ob­
tained from the Breit-Rabi formula,26 which gives the 
energy levels in terms of the magnetic field and two 
parameters: The hyperfine splitting in the absence of a 
magnetic field, A, and the electronic g factor. 

The g factor is a measure of the interaction of the 
spin of the electron with the magnetic field and in 
general is a dyadic. Since the experiments on impurities 
in rare gases are generally done with polycrystalline 
samples, only the isotropic part is considered. It is the 
coefficient of %fij&a in the interaction of the solid 
with the magnetic field. This interaction arises from 
the sixth and seventh terms in the Hamiltonian, Eq. 
(3.1). The hyperfine interaction is given by the last 
term in the Hamiltonian. For the present problem, only 
the Fermi contact interaction is important. 

26 G. Breit and I. I. Rabi, Phys. Rev. 38, 2083 (1931). 

n«, E E P^KT^P,+Tp,^)(\<-+x^+E £P.«,A'+£ M,,*^ 
P V>p p p 

X«»+x»«= . (5.15) 
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These terms in the Hamiltonian are all sums of one-
electron operators, and their expectation values may be 
written down in analogy with the terms in the expres­
sion for the crystal energy, Eq. (5.2). The result is a 
polynomial in the variational parameters. We shall use 
the same symbols for the coefficients in this polynomial 
as we did in Eq. (5.4), but with primes added to dis­
tinguish them from the crystal-energy terms. 

B. The g Shift 

For an impurity with an s electron having unpaired 
spin, the g shift arises almost exclusively from the spin-
orbit interaction correction to the rare-gas wave func­
tions and the fact that in the solid the wave functions 
of the impurity overlap the rare-gas atoms. A g shift 
corresponding to higher angular-momentum states ad­
mixed to the impurity ground state by the crystal field 
and the Van der Waals interactions exists, but is negli­
gible compared to the spin-orbit overlap effect. 

The constant term in the energy polynomial for the 
magnetic field interaction, e', includes a sum over all 
electronic states. The contributions of the closed-shell 
rare-gas states sum to zero, leaving only the impurity 
term which is identical to the interaction of the free 
impurity with the magnetic field. 

The A, X, X2, and AX contributions consist of terms 
of the form {v\Qhu\v)— (v\Q\ V)(V\}IH\V) or sums of 
terms multiplied by (v\hH\y), rj^v, where Q is an arbi­
trary operator and hit, the magnetic field interaction, 
is the sixth plus seventh terms of the Hamiltonian. 
Since Lowdin functions are spin eigenfunctions, these 
terms cancel identically or are zero by orthogonality. 

The g shift arises from the term linear in the spin-
orbit parameter, <£*, which is 

Af /-e'-4 = Ee<fi€C<S|w€L.cF&ff+AJffw€L.a|j) 

-En<£|w*L-or|ij>(ij|Aiy|£> 

-Z),<€|A^h><n|w«L.€F|f>"]. (6.1) 

Expanding the operator in the first term, we have for 
W* an s-like function 

w*L-<FAH+AflW«L-cr=i3w«(a.r-H+gL-H), (6.2) 

where T = i(LiLj+LjLi)j ] i, j=x, y, z. T is the opera­
tor corresponding to the g-shift tensor. 

Considering just those parts of Eq. (6.1) involving 
r , it is found on expansion to order S2, that the second 
two terms of Eq. (6.1) are cancelled in order S° by the 
first term. This happens because the sum over r} runs 
over a set that is complete for the angular operators. 
A term of order S2 remains, however. The result of 
simplifying this is 

X [ ( O | w « r | a ) - E ^ o 0 3 l w « r | a ) ] , (6.3) 

where a and /3 are rare-gas p states centered on the same 
atom. 

All contributions involving £2, <£A, and <£X may be 

treated in a similar manner, but because of the can­
cellation of 5° terms, no contribution results. 

The shifts due to higher angular-momentum states 
introduced to the ground state of the impurity by the 
crystal field and Van der Waals interactions, do not 
arise directly from the variational calculation, but 
come about naturally when the wave functions result­
ing from the calculation are considered as the correct 
starting functions for a perturbation calculation of the 
spin-orbit and magnetic field interactions. These g 
shifts occur in the second-order energy term and are 
proportional to the square of the variational parameters 
associated with the higher angular-momentum states. 
In the case of the crystal field, this leads to a change in 
g of order S4 which is negligible in the present approxi­
mation. The shift due to the Van der Waals interaction 
is not obviously negligible. However, numerical calcula­
tions show that its contribution is less than 1% of the 
observed shifts in the reported hydrogen-rare-gas sys­
tems and even less for the alkali metal-rare-gas systems. 

C. The Hyperfine Splitting 

The shift in hyperfine splitting arises from renor-
malization associated with orthogonalization of the 
one-electron wave functions and both the crystal field 
and the Van der Waals corrections. The spin-orbit 
interaction makes no contribution to the splitting. 

The renormalizing effect appears in the constant term 
and leads to the expression 

AA overlap (0 | a ( r -Ro) | / i ) 
= 1 ^ - 2 1 5 , 0 - — - — , (6.4) 

A « " ( 0 | 5 ( r - R 0 ) | 0 ) 

where A is the hyperfine splitting for atomic hydrogen. 
The contribution of the crystal field interaction 

appears as a normalization correction to the density of 
the hydrogen atom's wave function. The result is 

A^ crystal field/^ = - 2 A ° ( 0 | ^ | 0 ) . (6.5) 

The Van der Waals correction makes two contribu­
tions. The first is proportional to X and appears in 
order S2 since all S°\ contributions integrate to zero 
because of the oddness of u ^ . The result is given by 

AA VdW(X) 

= - 2 £ (X°H-X»0) 
0<i? 

( O i ^ l ^ / ^ C r y - R o ) ! ^ ) 

( 0 | 5 ( r - R 0 ) | 0 ) 

- (Otfy| V71*? A ) + L ' S«0(0iifoIUif>v\riiaj) , (6.6) 

where the symbol IC '*^ , indicates the sum over a 
where <p* and ^ are on the same atom, but are not the 
same state. The second contribution is proportional to 
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X2 and again represents a normalization correction. I t is 

AAvdWiv}/A = - £ (X° '+X*) 2 (0^ | {ui^Y10<i,y). (6.7) 
0<?7 

The A<£, <£A, and AX cross terms do not contribute since 
the X terms are zero to order S° because of the oddness 
of Uifr, and the A terms vanish to order S° since A 
itself is of order S2. 

VII. ORDER OF MAGNITUDE CALCULATIONS 
AND DISCUSSION 

As a sample of the calculations involved, the leading 
terms in the solutions for the variational parameters 
have been evaluated and from these the hyperfine 
splitting and the g shift have been predicted for a 
hydrogen atom trapped in the substitutional and the 
octahedral sites of an argon lattice.27 

A. The Variational Pa ramete r s 

The variational parameters for hydrogen as an im­
purity in argon were evaluated through terms in intra-
atomic exchange. Interatomic exchange was neglected 
for the approximate calculation of these parameters. 
The results are shown in Table I. 

TABLE I. Calculated variational parameters for the argon-
hydrogen system. 

Variational function 
Parameter values in 

atomic units 

Crystal field—variational form 
AVn (representative value at 
R = 6.5#0 for 77= hydrogen Is state) 

Spin orbit—variational form <C*rw/1 
(for 7] = argon 3p states) J 

Van der Waals parameter — X*= (\0l*-f A*0) 
(negligible for TJ— argon Is and 25 states) 

A° = 1.65X10-5 

n=4.5 

£3^ = 1.50X10"3 

^'=0.95 
X2^=0.0769 
A**=0.0701 
X3^=0.923 

The effect of neglecting interatomic exchange terms 
in calculating the spin-orbit parameter is negligible, 
since their only effect is to give S4 corrections to the g 
shift. 

The most pronounced exchange effects probably occur 
in the crystal-field parameter since the direct terms of 
this are of the same order of magnitude as the exchange 
terms. Phillips28 has shown that for systems such as 
this the exchange terms may be comparable to the 
direct terms and considerable cancellation should occur. 
A large uncertainty, therefore, accompanies the calcu­
lation of the numerator of the expression for A*, I& 
even if the exchange terms could be evaluated easily. 

The Van der Waals parameters, (X0,7+X7?0), are prob-

27 The argon ground state wave functions of D. R. Hartree 
and W. Hartree, Proc. Roy. Soc. (London) A166, 450 (1938), 
were used in these calculations. 

28 J. C. Phillips, J. Phys. Chem. Solids 11, 226 (1959) and 
M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961). 

ably given reasonably well in this approximation for 
internuclear distances greater than six Bohr units. 
However, at smaller distances the overlap terms be­
come increasingly important, but since the Van der 
Waals parameters have leading terms of order .5°, the 
overlap effects will not be as pronounced as for the 
crystal field parameter. 

B. The g Shift 

The g shift for a system of hydrogen in a rare gas is 
given by Eq. (6.3). The diagonal or isotropic elements 
are 

X C ( O | w « Z . » | a ) ~ ^ 5 ^ o 0 8 | w « i . 2 | a ) ] . (7.1) 

The corresponding result of Adrian's perturbation 
theory approach is 

Ag= (4/3EH)Sa<?\apa(a | L* \a) , (7.2) 

where EH is the average energy of the excited states 
of the hydrogen impurity, and \av<T is the spin-orbit 
splitting constant for the rare gas p orbital.5 

In both cases contributions to Ag come from rare-gas 
a states since the overlap integrals are nonzero only 
for states with projected angular momentum, mh zero 
along the line joining the hydrogen and rare-gas nuclei. 
The result of a calculation of the projected components 
of the angular momentum for arbitrary magnetic field 
direction shows that for both the substitutional and the 
octahedral sites two thirds of the neighbors are effective 
in producing a g shift. 

Figure 1 shows Ag for hydrogen in an octahedral site 
in argon as a function of internuclear distance. The 
agreement between the present result and Adrian's 
calculation is remarkable considering the vastly dif­
ferent theoretical techniques used. In addition to the 
theoretical curves, two "experimental" points are 
plotted using the assignments to undistorted lattice 
sites made by Foner et al? One is for the octahedral site 

o.o 

-0.5 A 

-1 .0 

6 7 8 

R (Atomic Units) 

FIG. 1. The g-factor shift for a hydrogen atom trapped in an 
argon lattice at an octahedral site versus the nearest-neighbor 
distance, R. The circles represent experimental points according 
to the assignment of resonances made by Foner et al. (see Ref. 2). 
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KEgE> 

Nodal planes for the composite excited state 

FIG. 2. A schematic plot of the charge density of the para­
magnetic electron for a hydrogen impurity atom at an octahedral 
trapping site in a rare-gas solid. The solid curve shows the density 
of the "ground state" for which the spin-orbit interaction has been 
neglected. The dashed curve represents the excited state to which 
the "ground state" is coupled by the spin-orbit interaction. The 
solid curve has no azimuthal nodes, whereas the composite excited 
state has eight. The excited state of the crystal, therefore, corre­
sponds to a diffuse g state centered about the impurity. 

and the other is derived from the data for a substitu­
tional site. The theory seems to agree reasonably with 
this assignment of trapping sites. Even better agree­
ment would be expected if the effect of argon 2p states 
were included since the g shifts predicted by the present 
theory would be increased at smaller internuclear 
separations. 

Both results are quadratic in wave function overlap, 
depend on the component of angular momentum parallel 
to the magnetic field, and are related to the spin-orbit 
effect in the rare-gas atoms by £a and \apa, respectively. 
The essential difference between the two points of view 
is that here we consider the crystal as a whole, while 
previously just excited states for the isolated impurity 
were included in the perturbation treatment. 

The result of making a perturbation-theory calcula­
tion for the crystal as a whole may be anticipated by 
considering the symmetry of the excited states admixed 
by the spin-orbit interaction to the electronic state 
having unpaired spin. The solid curve in Fig. 2 indicates 
schematically the charge distribution of the paramag­
netic electron as determined by orthogonalized atomic 
functions for a hydrogen atom trapped in an octahedral 
site of a rare-gas solid. The figure is drawn for a plane 
passing through the impurity and four neighboring 
atoms. The outer shell electrons for the rare gas are 
assumed to be in 2p states, for simplicity, and the lobes 
of the distribution are labeled according to the sign of 
the wave function. 

In the neighborhood of the impurity the distribution 
is spherically symmetric, but near the rare-gas atoms it 
has the character of a pa state centered on the individual 
rare-gas nuclei.29 The strong electric field near the rare-

29 pa- is used to denote the p function directed along the line 
joining the nucleus of the rare-gas atom and that of the impurity 
atom. 7r states are directed along lines perpendicular to the axis 
of the a states. 

gas nuclei cause a spin-orbit mixing with states having 
a 7r-like character centered on the same nuclei. These 
excited states are shown as dashed curves. The excited 
state of the crystal is the totality of these 7r-like states, 
and it has four aximuthal nodal planes intersecting at 
the impurity as indicated by the solid lines. This may 
be seen from a direct calculation or more simply from 
the symmetry of the site.30 The excited state, therefore, 
corresponds, at the very least, to an 1 = 4 or ^ state 
with the impurity nucleus as origin. 

The results of a second-order perturbation-theory 
treatment considering the entire crystal would be the 
same as Eq. (7.2), but with an energy denominator 
given by a weighted average of the excitation energies 
of the system of impurity plus crystal. The lowest 
"impurity-like" state to contribute to this average 
would be the g state for principal quantum number five 
which, in the case of the free hydrogen atom, has an 
energy of 24/25 of the ionization energy. 

The low-lying excited states of the impurity, there­
fore, cannot contribute to the perturbation theory sum 
over excited levels, and the energy denominator should 
be at least the ionization energy for the impurity in 
the crystal. Moreover, since the highly excited states 
of the impurity are spread out in the crystal they are 
probably more sensitive to the matrix material than to 
the details of the impurity, and a better choice for the 
average excitation energy denominator of Eq. (7.2) 
might be some energy characteristic of the rare-gas 
matrix. The latter conjecture is supported by the 
variational calculation since the " energy-denominator "-
like term, j#, in the expression <£*—•—zViss f° r the 
spin-orbit variational parameter is associated with the 
host atom, rather than the impurity.31 

A possible choice for the characteristic matrix energy 
would be the average excitation energy of the rare gas. 
For argon this is32 13.6 eV which is the same as the 
ionization energy of free hydrogen. Another choice is 
the energy of the first exciton peak of the rare-gas solid. 
Baldini finds this to be approximately 12.0 eV in argon.33 

All these energies are nearly the same as the average 
energy for hydrogen, viz., 11.9 eV, used in evaluating 
Eq. (7.2). Hence, for a hydrogen impurity no appreci­
able difference arises from the two points of view. How­
ever, the approximate equality between the excitation 
energies of the impurity and matrix atoms does not 
hold for the alkali metals, for which the average 
energies range from 3.62 to 2.64 eV.32 

It might be argued that the present model would not 
apply to alkali impurities since the ground states of the 
alkali atoms would be greatly perturbed by the field of 

30 For a pertinent discussion of the mixing of <r and ic states and 
the selection rules involved in the Vk center see Ref. 13. 

31 A further discussion of the perturbation theory and varia­
tional results and speculations as to their relationship to an energy 
band picture of the solid will be included in a subsequent paper. 

32 In Ref. 5 the average excitation energy is taken as the average 
of the energy of the first excited state and the ionization energy. 

33 G. Baldini, Phys. Rev. 128, 1562 (1962). 
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FIG. 3. The shift in hyperfine splitting for a hydrogen atom 
trapped in an argon lattice at an octahedral site versus the nearest 
neighbor distance, R. Curves 1, 2, and 3 summarize the present 
results. Curve 4 is Adrian's perturbation theory prediction. Curve 
1 is based on a model of overlapping atoms interacting with a 
dipole-dipole Van der Waals force. Curve 2 includes, in addition, 
the effects of the non-exchange-corrected rare gas crystal field, 
and Curve 3 includes the effect of exchange corrections to the 
dipole-dipole approximation. The circles represent experimental 
points according to the assignment of resonances made by Foner 
et al. (see Ref. 2). 

the rare-gas atoms and that, consequently, the un­
perturbed energy levels of the free impurity would have 
no significance in the solid. However, spectroscopic ex­
periments indicate that there is little perturbation of 
the impurity atoms by the crystal environment. For 
example, electronic transitions of sodium in argon corre­
sponding to the 25i/2 —» Sp and 4p 2Pi /2 3/2 transitions 
in the free atom generally show shifts of only a few 
percent.4 The largest fraction of these shifts doubtless 
arises from perturbations of the final p states, and it 
seems reasonable to assume that the ground state re­
mains atomic in nature. Preliminary calculations on 
these systems indicate that the agreement of the present 
point of view with experiment34 is better than the un­
modified form of Eq. (7.2). 

C. The Hyperfine Interaction 

The shift in the hyperfine interaction arises from the 
orthogonalization of the wave functions in the solid, the 
effects of the crystal field, and the Van der Waals 
interaction. 

The shift in hyperfine interaction due to orthogonali­
zation (overlap) is given by Eq. (6.4); it may be com­
pared with Adrian's result: 

A A overlap 

— £So«2 . (7.3) 
________ A a 

34 C. K. Jen, V. A. Bowers, E. L. Cochran, and S. N. Foner, 
Phys. Rev. 126, 1749 (1962). 

The two equations differ by the addition term - 2 ^ A o 
X (015 (r—JRO) I M)/(0 15 (r— R010) that occurs in the 
present result. The first part of Eq. (6.4) is just Adrian's 
result and arises from the increase in the hydrogen wave 
function at the nucleus, due to renormalization. The 
second part is the cross term between the hydrogen 
wave function, <p°, and the argon functions, <pM, admixed 
by orthogonalization. Calculations indicate that at 
small internuclear distances this new term is important. 
For example, in the argon-hydrogen system at R=5ao 
(the octahedral site nearest-neighbor distance) it is 
15% of the leading term, whereas at R=10ao it is 
only a 3% correction. 

The shift in hyperfine interaction associated with the 
crystal field is a normalization correction to the elec­
tron density at the nucleus of the impurity. It is given 
by Eq. (6.5). This term has no counterpart in Adrian's 
study which is essentially a "point-ion" approximation. 
Numerical estimates of the crystal-field parameter, A0, 
indicate that this effect is of order S2, because the 
crystal field is localized within the atoms. However, it 
is difficult to estimate because of the cancellation occur­
ring between direct and exchange terms in the expres­
sion for A* and many-body screening effects.28,35 

The Van der Waals, or correlation, effect produces 
two shifts. One is proportional to (X0r?+XT?0) and is of 
order S2. The other is a term of order S° in (X^+X"0)2. 
The first is given by Eq. (6.6). It does not arise in 
Adrian's study since it represents a cross term resulting 
from orthogonalization and the interaction between 
atoms. However, part of this term does appear in Jen's 
treatment of the hyperfine interaction.34 This may be 
shown by a second-order perturbation theory treatment 
of the 1/fij interaction using antisymmetric wave func­
tions. The result is a hyperfine-splitting shift propor­
tional to the repulsive or Coulomb-exchange interaction 
similar to the second term of Eq. (6.6) in which 
(X^+X^0) plays the part of the reciprocal of the energy 
denominator. The first and third terms are exchange 
terms not having as simple an interpretation. 

The (X°7?+X7?0)2 term arises from the renormalization 
of the impurities wave function caused by the Van der 
Waals correction. It is given by Eq. (6.7) and should be 
compared with Adrian's result which is 

AAym/A = -ll/(EH+EA)~}EYdW, (7.4) 

where EA is the average excitation energy of argon and 
Evdw is the Van der Waal energy for the interaction 
between a hydrogen atom and an argon atom. 

In addition the difference in the Van der Waals inter­
action for the various higher s states mixed into the 
ground state by the hyperfine interaction leads to a 
shift in the hyperfine splitting. From the work of 
Adrian5 and Herman and Margenau16 this is 

AAB/A = - (2/EH)EVdW, (7.5) 
35 J. E. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer. 

Phys. Rev. Letters 9, 215 (1962). 
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where EH is the average excitation energy of 
hydrogen. 

The numerical estimates for the shift in hyperflne 
splitting of a hydrogen atom in an argon lattice are 
given in Fig. 3 for both the present results and Adrian's 
treatment. Three curves are given for the present work. 
Each of these includes the shift due to orthogonaliza-
tion, Eq. (6.4), the "quadratic" Van der Waals hyper-
fine shift, Eq. (6.7), and the Bender-Herman term as 
calculated by the perturbation theory treatment of 
Adrian, Eq. (7.5). The sum of these shifts is shown as 
curve 1. Curve 2 contains, in addition, the crystal-field 
correction, Eq. (6.5), and curve 3 contains the "linear" 
Van der Waals correction, Eq. (6.6), but no crystal-
field correction. Curve 4 is Adrian's result. 

Both curves 1 and 4 are in reasonable agreement with 
the experimental points and tend to substantiate the 
assignment of trapping sites. Curve 2 does not fit at all 
for interstitials and predicts too large a shift for sub­
stitutional impurities. Curve 3 fits reasonably for sub­
stitutional sites and possibly for interstitials, but 
its behavior for small internuclear distances seems 
unreasonable. 

From the work of Phillips28 it is reasonable to expect 
that the crystal-field parameter is much smaller than 
the single direct term calculated here. In fact, the 
cancellation of direct and exchange terms probably re­
duces it by at least an order of magnitude if not more. 
This would explain the disagreement of curve 2 with 
experiment even at relatively large internuclear dis­
tances. If we assume complete cancellation, i.e., set 
A0 = 0 and include the linear Van der Waals term, there 
is reasonable agreement with experiment at the sub­
stitutional site (curve 3). However, the linear Van der 
Waals term, which is negative, increases rapidly below 
6 Bohr units as the exchange dipole matrix elements 
become large and causes curve 3 to reverse in direction. 

Thus, we find that both the relatively simple pictures 
of the hyperfine shift that neglect crystal field and 
linear Van der Waals terms give good agreement with 
experiment. Attempts to refine this simple picture only 
worsen the agreement, particularly at small inter­
nuclear distances. This indicates that at the substitu-
tional-site-distances corrections to an overlap-plus-Van 
der Waals force calculation are small, but that at 
smaller distances the corrections become the dominant 
terms, and the model is no longer applicable. 

At these smaller separations the solution to the 
problem of calculating the wave functions must be re­
examined. As previously pointed out by Adrian, the 
multipole expansion for the Van der Waals energy no 
longer holds. Furthermore, the simple idea of a crystal 
field is considerably modified by exchange and many-
body screening effects.28,35 The tight-binding model of 
atomic one-electron functions with small corrections for 
crystal field and electron correlation probably can be 
pushed further using more flexible variational functions 
in the general framework given here, but the l / r# in­

teraction must be treated in a better approximation 
and the exchange effects included at all steps. 

VII. CONCLUSION 

In this study a calculation correct to second order in 
wave-function overlap has been made for the ground-
state wave function and electron-spin-resonance pa­
rameters of a paramagnetic impurity in a rare gas. 
Starting from a one-electron, tight-binding, static-
lattice picture of the impurity-doped crystal, the Pauli 
principle is satisfied by using an antisymmetric crystal 
wave function. This wave function is then modified by 
the addition of variational terms of the correct sym­
metry to account for the perturbations on the tight-
binding approximation due to the crystal field, spin-
orbit, and Van der Waals interactions. 

The results show that, if there is no overlap, the 
effects of the individual perturbations due to the crystal 
environment are independent. If there is appreciable 
overlap, the individual effects are coupled and must be 
calculated simultaneously. In this case, the intra-
atomic potentials of the atoms neighboring the im­
purity must be taken into account as a crystal field, 
and the Van der Waals effect must be calculated for 
overlapping charge distributions. 

For a paramagnetic center in a relatively weak crystal 
field, the g shift arises because the electronic wave 
functions, centered on the impurity, overlap neighbor­
ing atoms in which there is appreciable spin-orbit 
interaction. The g shift is independent of crystal field 
and correlation effects, and appears to be the most 
reliably calculated parameter for a tight-binding center 
of known geometry in a molecular crystal. 

The shift in the hyperfine interaction arises from (1) 
the orthogonalization of the wave functions for the elec­
trons in the solid, (2) the crystal field, and (3) the Van 
der Waals interaction. Since this shift is the sum of 
three quantities, it is less reliably calculated than the g 
shift because cancellation occurs. Indeed, at small 
separations, the predicted shifts are the difference of 
two very large numbers which are, at best, known only 
approximately. 

It is found that the relatively simple picture of 
slightly overlapping atoms undergoing a multipole Van 
der Waals interaction gives good results for substitu­
tional sites in rare-gas crystals, but that at interstitial 
sites it breaks down; and the shifts in the hyperfine 
interaction cannot be accurately estimated without 
including crystal field and all exchange effects correctly. 

It should be noted that the difficulties encountered in 
making the crystal field and Van der Waals calculations 
for interstitial impurities have negligible effect on the g-
shift calculations. In the case of the crystal field, the 
primary effect is a change in the impurity's s-state 
radial distribution which, of course, doesn't affect the 
magnetic properties directly. Likewise, the electron 
correlation correction to the wave function leads to a 
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g shift only in the equivalent of fourth-order perturba­
tion theory and is negligible. Hence, although it is 
difficult to calculate the hyperfine interaction accurately 
for interstitial sites, the g shift should be given to a good 
approximation by Eq. (7.1) or Eq. (7.2) if EH is re­
placed by the appropriate average excitation energy for 
the system of rare-gas crystal plus impurity. 

At the present time the methods outlined here are 
being applied to the calculation of the g shift for the 
alkali metals trapped in rare gas solids. The results will 
be published as soon as the numerical work is completed. 
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APPENDIX 

As an example of the calculation of the energy 
equation coefficients, an outline of the derivation of the 
quantities determining A* will be given. The general 
method is to start with the Hamiltonian and replace 
the Lowdin functions by their series representations in 
atomic functions. 

To simplify the derivation, the Hamiltonian is 
written symbolically as 

W = W+T,iHi+i:'i<jGii, (Al) 

where W, Hi, and Gij are, respectively, those portions 
of the Hamiltonian depending on no electron coordi­
nates, on one coordinate rt, and on two coordinates r», 
and tj. The prime on the double summation indicates 
that all terms having the indices i and j equal are 
omitted. 

A. The h Term 

Using the expansion of Eq. (Al) and substituting 
in Eq. (5.3), we have 

—(wy|Gtf|p»&X]. (A2) 

Since we are mainly concerned with the impurity atom, 
we need only consider the case for £ the Is hydrogen 
state. Then we profit from the fact that since the 
hydrogen atom has only one electron, all exchange terms 
involving <p* are between electrons on different atoms 
and so are of order S2. 

Using these facts we find on substitution of the ex­
plicit forms for Hi and Gij and identification of atomic 
and crystal potentials the result 

Io=(0\v»2V0\0)-Z(0\v<>\ri)(v\2Vo\0) 

- i£So a {(OK2F a | a )+(« l* 0 2Fo |0) (A3) 
a 

-(0 |^|0)[(0 |2F«|a)+2(a|27o|0)] 

+[(0 A-1 vfnr11 <W - (0 A-1 vfnr11 a A)]}. 

Here the atomic eigenvalues have canceled, leaving only 
matrix elements of the crystal field potential. 

The first two terms of Eq. (A3) are just the "zero-
order" term in the Lowdin expansion. The next three 
terms and half of the sixth result from replacing <£° in 
the bra or ket of the term <O|v°0C'|O> and <0|3C'|0> 
with 0°= ^-£E.oSo«*>aH . The other half of the 
sixth term, (a|2Fo|0), comes from replacing ^ with 
01?= (p^—iSrjocp0 in the first matrix element of 2,(0 \iP\rj) 
X(ty|2Fo|0). The remainder of the equation results 
from expanding the bra of the second and third terms 
of Eq. (A2). Expansion of <j>v in the ket gives nothing 
since the resulting terms cancel identically. 

B. The Jiri Terms 

The leading term in 1$ is itself proportional to S2, 
so we need to find J# to order S°. During its evaluation, 
one term that arises is of the form 

+Z*&\nr1\&)+2tW|&)- (A4) 
* * € 

Expansion of the V2 term, integration by parts, and 
identification of the crystal field and atomic potentials 
gives 

T=e&\W*\0+i(S\Vvi.Vvi\Q 
+ a\v^V^\&, (AS) 

where e$ is the energy eigenvalue for the atomic state 
<p*. The terms involving the atomic eigenvalues cancel 
against similar terms in the complete expression, and 
the terms in the crystalline potential are dropped 
since they are of order S2. 

file:///iP/rj
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The final expressions are 

/«=itt|V*«-Vt>«|*), (A6) 
and 

Jtn—0 if £ and TJ are on different atoms, 

= (JsfljI vfljiT1— (jlkI ft*""1 \vk) 

- fe1 ryfc"11 &fe)>y' I £iw)+ (&»7y I ^ V I &?y) 

if £ and 17 are on the same atom. 

Since we are interested in the case for <p* an impurity 
function, the matrix elements on the right-hand side are 
either of order S2 because they represent exchange 
terms, or because w* for hydrogen is zero to order S2. 
An even more general argument holds for many of the 
terms which must vanish because of the sum over 
closed shells. The cross terms with £v, therefore, make 
no contribution to A*. 

D. The L^p Terms 

Since this term involves the function mfr approxi­
mating the Hamiltonian by (A7) would suppress terms 
involving the Van der Waals interaction. However, 
since we seek only a small correction to 1$ we can 
approximate the Hamiltonian as the sum of the atomic 
Hamiltonians and the interactions between electrons 
expanded as a multipole series. From the work of 
Brooks36 one would presume that the dipole-dipole 
term would be sufficient to estimate the correction. 
Thus, we shall use 

3C'«E;3Co(ri)+J E'u*</, (A9) 

where the interaction v# is the dipole-dipole interaction 
between different atoms. It has the same form as that 
chosen for «#$*. Notice that we exclude intra-atomic 
terms by requiring that r»- and ry be coordinates of 
functions centered on different atoms. 

36 F. C. Brooks, Phys. Rev. 86, 92 (1952). 

C. The KiV Term 

To evaluate this term to order 5°, the Hamiltonian 
may be approximated by the one-electron operator 
made up of approximate one-electron atomic Hamil­
tonians, 3Co, plus the crystal-field interaction without 
exchange, E ' ^ - Writing the spin-orbit term, hso, 
separately from the atomic terms, we have, 

X , - E ^ o ( r , - ) + ^ o ( r ^ ) + Z / V(ti). (A7) 

From Eq. (5.3) we have for this Hamiltonian 

In the "u" notation the cross term in the energy is 

Z E E 2L{,,PA«(X"+X«) 

= 2(ui 13C' I uz)-2(uo 13C' | «0)<«i | «3> 

— 4(^i I Uo)(u013C' I ud)—4(#31 u0){uo | 3C' | ui) 

+8(«i I Uo)(u01 uz)(u01X' I wo) • (A10) 

The free atomic energy eigenvalues, ev, will cancel in 
the first two terms except for the gradient term in the 
matrix element (ui\SCr\u^). However, these are zero be­
cause of the oddness of the undifferentiated part of 
Uifr. The e/s don't enter into the second set of terms 
because of the oddness of Uifr. Furthermore, the second, 
fourth, and fifth terms are zero for the same reason. 
The only terms that remain are in v^ and, after simpli­
fication, the final result for the Van der Waals correction 
to the crystal-field parameter is 

E E L*f,p(X"+X") 
17 P>V 

= E (X*'+X>«){ (ZiPjlurfOVijV* I fcpy) 

~ E E(X' p+X p , ) (wy|«*y '^lwy)t t l^ l f ) . (AH) 
v p>n 

L,^,£ '=£ { ia |V^-Vwf(L-ff)U)+£«($ |^«(L-a)3C'U)- i : ,£ ' ' (^ |^ 'L.<F|» ? ) ( 17|5C'U) 

-E,{£K«I^Mn)(n|w«L.a|{)-E,£K£|c«|p)(p|Kli»)(ij|«'a.a|S)+£«a|t>«|ii)(i, |aC'w«L.«r|f) 

+£'(i?|a"L.«rh)[(€U«3e'|€)-E»«|f«|p)(p|3e' |e)]}. (A8) 


