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The elastic scattering cross section for the scattering oi slow electrons by cesium atoms has been calculated 
for incident electron energies ranging from 0.0005 to 0.13 Ry. The model used is an adiabatic one which 
includes exchange. By means of a partial-wave expansion the problem is reduced to the solution of an 
integrodifferential equation for each partial wave. The results of the calculation show rough agreement 
with low-energy plasma resistivity experiments and with collision-time measurements, but do not support 
the microwave experiments of Chen and Raether. The results of the calculation are quite sensitive to the 
inclusion of exchange and to the form of the polarization potential; arguments are presented to show that 
optimum parameters of an adiabatic model have been used in the present calculation. 

I. INTRODUCTION 

CURRENT interest in thermionic converters using 
ionized cesium vapor has stimulated renewed 

interest in the transport properties of a cesium plasma. 
In particular, a number of recent experimental studies1-4 

have been directed toward a determination of the elec
tron-neutral cesium atom cross section, a quantity 
which controls the electrical resistivity of weakly 
ionized plasmas. Except for the results of Chen and 
Raether4 these experiments, together with earlier meas
urements by Boeckner and Mohler,5 give a coherent 
but rough picture of the scattering cross section at 
electron energies below 0.4 eV. The discrepancy between 
these experiments and those of Chen and Raether is yet 
to be resolved. The scattering cross section of cesium 
for electron energies above 0.6 eV is known from the 
early work of Brode.6 

The purpose of the present investigation is to provide 
a quantum-mechanical (phase shift) calculation of the 
elastic-scattering cross section. Although there have 
been extensive calculations of electron-hydrogen scat
tering,7 there has been only a limited amount of work 
directed toward the scattering of slow electrons by 
heavier atoms. We must mention, however, a recent 
calculation by Robinson8 of the elastic scattering of 
electrons by cesium atoms, which calculation was ex-
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tended to extremely small incident velocities. Robinson's 
work unfortunately suffers from several defects: (1) He 
did not have self-consistent wave functions for cesium, 
so he approximated by using Slater-type orbitals; (2) he 
did not include exchange; and (3) although his "polar
ization potential" was correct asymptotically, it was 
adjusted more or less arbitrarily at intermediate radii. 
We have found that the results of the calculation are 
quite sensitive to the effective scattering potential 
presented by the atomic system, and furthermore that 
the inclusion of exchange completely alters the low-
energy cross section. 

The model we have chosen to investigate is the 
adiabatic model, so-called because the atomic system is 
allowed to polarize in response to the instantaneous 
position of the bombarding electron. For the low-
incident energies in which we are primarily interested, 
the collision time is long compared to characteristic 
atomic periods, and the atomic wave function can 
readily adjust to the perturbing influence of the incident 
electron; this, of course, is just the basis for the adia
batic model. The model, thus, introduces a "polarization 
potential" in a natural way. 

We have investigated the adiabatic model both with 
and without exchange effects. In the no-exchange case 
the problem can be reduced (by expansion in partial 
waves) to the solution of an ordinary differential equa
tion, whereas in the exchange case the problem reduces 
to the solution of an integrodifferential equation. 
Although these equations can be solved by straight
forward numerical methods, the procedure here is some
what more complicated than in the case of electron-
hydrogen scattering. In the first place, many more 
particle waves are required, a fact already apparent 
from Robinson's work.8 Secondly, an iterative solution 
to the integrodifferential equation, which appears to 
work so well in the hydrogen-atom problem,9 was found 
unsatisfactory here, particularly for the lower order 
partial waves, so that a noniterative solution was re
quired. Finally, since the polarizability of the cesium 
atom is much larger than that of hydrogen, the "polar-

9 P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962). 
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ization potential" must be introduced into the problem 
with considerable case. 

II. FORMULATION OF THE PROBLEM 

The scattering of slow electrons by cesium atoms is 
essentially a two-electron problem (the bound electron 
outside the closed shell and the bombarding electron). 
The Schrodinger equation for the system may be written 
as10 

r 2Z(n) 2Z(r2) 2 i 
V! 2+V 2

2+£.+ + — kr(n,r2) = 0 , (i) 
L ri r2 ri2-l 

where ri and r2 are position vectors to electrons 1 and 2, 
respectively, and r i 2 = |r i—r2 | . Zir) is the effective 
charge of the cesium ion core at position r. We were 
fortunate in having a numerical tabulation of Z(r), as 
well as ground-state and excited-state wave functions 
of the cesium atom, from earlier work by one of the 
authors.11 In effect, Z(r)/r is a Prokovief potential, a 
modification of the Hartree potential of the Cs+ ion, 
which has been adjusted empirically to reproduce a 
large number of the term values in the spectrum of 
atomic cesium; it is described fully in Ref. 11. 

In order to solve Eq. (1) in a practical way, some ap
proximation must be introduced. One of the simpler 
approximations which has yielded satisfactory results 
for electron-hydrogen scattering is the static-exchange 
model in which \£ is approximated by ^0(^1)^(12) 
rbi^o(*2)F(ri), where \f/o is the ground-state wave func
tion of the atomic electron. Polarization effects can be 
effectively included by adding an appropriate polariza
tion potential term to the integrodifferential equation 
for F. This was essentially the approximation which we 
wanted to use, the only difficulty being that because 
polarization effects are much more important in cesium 
than in hydrogen, it is important that the polarization 
potential showing up in the equation for F be approxi
mately correct at all radii. In order to introduce this 
potential in a natural way, we go over to the adiabatic 
model: 

\I> (ri,r2)=rf/o (xi)F (r2), (adiabatic, no exchange) (2a) 

(adiabatic with exchange) (2b) 

where ^0 is the ground-state wave function of the 
atomic system, and \[/Q is a perturbed ground-state 
function, perturbed (adiabatically) by the presence of 
the second electron. 

The plus sign in Eq. (2b) refers to the symmetric 
(singlet) state of the two electrons, and the minus sign 
to the antisymmetric (triplet) state. The use of $0 
instead of ^o' in the ± term is a defect of the model 

10 We use atomic units (a.u.) throughout this paper; i.e., all 
distances are measured in units of Bohr radii, all energies in Ry. 
Cross sections will be expressed in units of ira^. 

11 P. M. Stone, Phys. Rev. 127, 1151 (1962). 

since it destroys the symmetry of the wave function, 
but the consistent use of \f/<{ would result in considerable 
complication: The radial equations resulting from the 
partial wave expansion would not decouple. We felt 
justified in using Eq. (2b) as it stands since the major 
purpose of substituting \[/Q for \p0 in the static model is 
to introduce the polarization potential in a natural way. 
Errors caused by the omission of the neglected terms in 
(2b) are discussed in Sec. V. 

The perturbed ground-state wave function i/V may 
be expressed as12 

*o;(ri) = M n ) + E ' 0»(r2)*»(ri) , (3) 
n 

where the summation is over the complete set of atomic 
functions. For the problem under consideration, we 
have found it sufficient to express i/V as 

^o ,(ri)=^o(r1)+|8i(r2)^i(ri)> (4) 

where \pi is a particular excited state wave function, 
namely, the 6p function. Therefore, we shall limit the 
discussion here to equations of the form of Eq. (4). The 
validity of this approximation and the form of /3 (r2) will 
be discussed in the next section. 

Equation (2b), with \(/Q' defined by Eq. (4), may now 
be substituted into the Schrodinger equation, Eq. (1). 
If this equation is multiplied on the left by 1̂ 0* and the 
result integrated over the coordinates of particle 1, one 
obtains 

(V22+ko2-Voo-vp)F(r2) 

= =F / " r fn^o* ( r i ) (w-£o W i ¥ o ( r 2 ) , (5) 

where the upper sign refers to the singlet, and the lower 
sign to the triplet state. Here ko2^E—Eo is the kinetic 
energy of the incident electron, EQ being the ground-
state energy of the cesium atom, and Foo is defined as 

/ 12 2Z(r2)| \ 
Voo(r2) = (M k ) • (6) 

\ Iri2 r2 I / 

The polarization potential, vp is defined to be 

/ I2 I \ 
Vp(r2)=pi{r2)V10=p1(r2){M—m). (7) 

Equation (5) can be reduced to a radial equation 
through the use of a partial-wave expansion: 

/7(r2) = £ r ^ i t o ^ ( c o s 0 2 ) . (8) 
1 

Both Foo and vp are spherically symmetric, so that 

12 See Ref. 7, p. 488. 
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Eq. (5) becomes 

ff+\kt-Vn-vp — A=±*o 

X| (E0-ko2)dlo[ Modr+l 1 
L Jo I (2/+1)1 

> < W fttxr-^dr+r-tw f fd<rldr 

-rl( fi<t>^l+l)drY\, (9) 

where r~Vo is the normalized radial part of the ground-
state wave function \f/o. The integrodifferential Eq. (9) 
may be solved in a noniterative fashion by the pro
cedure used by Marriott.13 We note that Eq. (9) has 
the form 

fi"+y(r)fi=±Z(r,fi)±rl4>oX(sum of 
definite integrals involving f{). (10) 

If we write 

fi(r) = gi(r)+AMr), (11) 

then gi and nt satisfy the following differential 
equations: 

gf+yWgi^dztfcgt), 

ni"+y(r)ni= dz%(r,ni)zkrl<l>o, 

= J (E0-ko2)5io I gi<l>odr+\ 

theory. Thus, 

(12a) 

(12b) 
provided 

A, 
(2/+l)J 

X I gfar^dr \ / 1 1 - (Eo-h^dm 

Jo 
X / ni<t>odr—\ / 

1(21+1) JJ0 

m<l>or-«+»dr . (13) 

The differential equations, (12a) and (12b), may be 
solved numerically, A can be calculated, and finally 
fi may be calculated by means of Eq. (11). 

III. THE POLARIZATION POTENTIAL 

The use of Eq. (3) for the perturbed ground-state 
wave function leads to a polarization potential of the 
form 

VP (ra) = T,ni3n (r2) Vn0 (r2). (14) 

When the bombarding electron is far from the atom, 
the coefficients pn may be evaluated from perturbation 

j8»(r2) = -

and 

Von(r2) 

(En—Eo) 

VP=-j:n\Von\2/(En-Eo). 

(15) 

(16) 

Now the ground state of the atom (both cesium and 
hydrogen) is an s state, so that at very large distances 
the dominant contribution to the sum in Eq. (16) comes 
from perturbing p states, and vp takes the form 

vp(r) = —2a/r*, (17) 

where a is to be identified with the polarizability of the 
atom. 

Castillejo, Percival, and Seaton14 have shown that 
the first excited state (2p) contributes 65.8% of the 
long-range polarization in hydrogen. In cesium the first 
excited state (6p) lies only 0.1036 Ry above the ground 
state, and we find that this state contributes 92% of 
the long-range polarization. At closer radii other excited 
states (particularly the 7s and continuum states) 
become more important, but we find that the 6p state 
is still the most important perturbing state at all im
portant radii (r>3 to 4 a.u.). At still closer radii, the 
potential Foo dominates the solution of the differential 
equation. We have, therefore, been led to consider 
Eq. (4) as an appropriate choice for the perturbed 
ground state, i/V. If we measure the polar angle 0i 
[where ^i(ri)=^i(ri,0i,pi)] from the axis defined by 
the instantaneous position of electron 2, we need con
sider only one of the 6p states, namely, that correspond
ing to m=0. 

One is tempted to use the perturbation solution for 
/?i(r2), namely, Eq. (15), at all radii. However, a nu
merical calculation of Vio shows that this is not justified 
at intermediate radii. We have, therefore, treated 
Eq. (4) as a trial wave function for ^o'(ri), with fii a 
variational parameter. In the spirit of the adiabatic 
approximation, 

H=H0(r1)+V'(r1,r2), (18) 
where 

ffo=-Vi2-2Z(rO/n, 
V'=2/r12-2Z(r2)/r2. 

The total energy is given by 

E= (l+iW)-i\:Eo+l3m+ Voo+Pi2Vll+2l3lV1o], (19) 

where Foo and Fio have been previously defined, and 
Fn is given by 

Vu(r2) = ty1\V'\t1). (20) 

If dE/dfi is set equal to zero, one finds, after some 
algebra, that Pi(r2) can be obtained from the equation 

(21) 
(1-fr2) (Ex-Eo+Fn-Foo) 

13 R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958). 
14 L. Castillejo, I. C. Percival, and M. J. Seaton, Proc. Roy. 

Soc. (London) A254, 259 (1960). 
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FIG. 1. Potentials for cesium. The negative of the potentials has 
been plotted; i.e., they are all negative potentials. The polarization 
potential of Robinson (Ref. 8) is apparently small by a factor of 
2 at large radii. 

which reduces to the perturbation theory result at large 
radii (i.e., large r2). 

We have calculated j8i(r2) numerically from Eq. (21) 
and used the result to calculate the polarization po
tential according to Eq. (7). Since this gives only 92% 
of the long-range polarization, we have scaled up the 
potential by a constant factor, so that asymptotically 
vp is given by Eq. (17) with a the experimentally ob
served15 polarizability (243 a.u.) of the atom. The po
larization potential so calculated is plotted in Fig.l 
along with the perturbation-theory result. 

In addition to the polarization of the valence electron, 
there is another polarization effect which is not con
tained within the two-electron picture. This is polar
ization of the Cs ion core, and this leads to a polarization 
potential of the form — 2ac/r*. The experimental value16 

of ac is 8.22 a.u., which is small compared to the atomic 
value. Thus, core polarization does not appear to be 
particularly important, but even so we have effectively 
included it by scaling our result to agree with the ex
perimental polarization of the atom (valence electron 
plus core) at large distances. 

15 G. E. Chamberlain and J. C. Zorn, Bull. Am. Phys. Soc. 5, 
241 (1960); J. C. Zorn and P. Fontana, ibid. 5, 242 (1960). 

16 F. S. Ham, in Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press Inc., New York, 1955), Vol. 1, 
p. 176. 

IV. NUMERICAL PROCEDURE 

The differential equations describing the elastic 
scattering problem were integrated numerically on an 
IBM-704 computer. The initial phase of the problem 
consisted of computing the radial functions #0 and <£i 
from the input data Z(r). Next, the potential integrals, 
Voo(r2), Fio(r2), and Vu(r2), were computed and stored 
in the machine. 

The solutions to the differential equations (12) for 
gi and n\ were started at the origin with a power series 
development which included terms through r6. The 
equations were then integrated forward by the Numerov 
method,17 which is an integration scheme accurate to the 
fifth power of the interval size. The integrations were 
carried out to r=40 at an interval size of &=0.02. At 
this point, Ai [defined by Eq. (13)] was calculated, the 
function fi formed, and the integration of fi continued 
at an interval size &=0.2 to r=92. During the last inte
gration the right-hand side of Eq. (9), as well as Foo, 
was set equal to zero, and the polarization potential was 
accurately approximated by 

^=-486 / ( r 2 +25) 2 ; r>40 . (22) 

Integrals of the type /Y q(rf)dr' appearing in the dif
ferential equation were calculated by the trapezoidal 
rule using the integration mesh h. 

At r=92 the phase shift 81 was determined directly 
from the code. 81 is defined by the asymptotic form of 
fi 

fi-*Cirji(kr)+C&ni(kr) 
-^(l/*)CCi.sin(*f-lfcr)-
= (Cz/k) s>m(kr+8i—J/T) , 

C 2 cos (A f - J f t r ) ] (23) 

The code determined Ci and C2 by comparing the nu
merical solution at the last two mesh points with the 
spherical Bessel functions (obtained by a standard 
subroutine. 

A check on the accuracy of the integration procedure 
was made by turning the integration around at r=40 
and integrating backwards to the origin. Comparison 
of the solutions shows that the functions agree to three 
significant figures. Round-off error propagating through 
the large number of mesh points of the integration de
stroyed the remaining digits. An over-all check of the 
effect of round-off and truncation error was determined 
by calculating the spherical Bessel functions using our 
code with all potentials set equal to zero. The resulting 
phase shifts differed from zero by the order of —0.0005 
rad in all cases. 

V. THE SCATTERING CROSS SECTION 

The elastic-scattering cross section may be calculated 
once the phase shifts are known. For the case of no 

17 B. Numerov, Publ. Observ. Astrophys. Cent. Russie (Moscow) 
11 (1923); Monthly Notices Roy. Astron. Soc. 84, 592 (1924). See 
also, G. W. Pratt, Phys. Rev. 88, 1217 (1952). 
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TABLE I. Calculated phase shifts.* 

0.08 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 

ENERGY IN UNITS OF 13.6 eV 

FIG. 2. Elastic-scattering cross section for slow electrons on 
cesium atoms. Brode's (Ref. 6) experiment measures the total 
scattering cross section so that the rise of his values above the 
first excitation energy is due to inelastic collisions. The part 
marked "plasma experiments,, is qualitative only. For details of 
this region, see Fig. 4. The data of Chen and Raether (Ref. 4) 
are also shown. 

exchange, the cross section (in units of wao2, with 
ao=Bohr radius) is given by the usual phase-shift 
expression, 

' - ( & 
E (2/+1) sin25j°. (24) 

Here the superscript 0 refers to the no-exchange case. 
When exchange is included, the cross section may be 
written 

o-=io-++fo-, (25) 

where o-+ and &~ are calculated from expressions of 
type (24) with 8i° replaced by 8i+ or $r, respectively. 
The superscript (+) refers to the singlet, and the (—) 
to a triplet state of the system. 

Phase shifts and cross sections were calculated for 
incident electron energies (ko2) ranging from 0.0005 to 
0.13. Enough partial waves were included to insure con
vergence of (24) and (25); at the highest energies we 
required seven partial waves. The numerical values of 
the phase shifts are tabulated in Table I, and the cal
culated cross sections are plotted in Fig. 2 along with 
some experimental results. It is apparent from the figure 
that the inclusion of exchange has a drastic effect on 
the cross section at low energies. The no-exchange case 
does not agree with experiment, but the calculation 
which includes exchange, while it by no means gives 
good agreement, does reproduce the trend of the experi-

& 
0.001 
0.003 
0.005 
0.007 
0.010 
0.013 
0.020 
0.030 
0.040 
0.050 
0.070 
0.090 
0.110 
0.130 

& 
0.001 
0.003 
0.005 
0.007 
0.010 
0.013 
0.020 
0.030 
0.040 
0.050 
0.070 
0.090 
0.110 
0.130 

& 
0.001 
0.003 
0.005 
0.007 
0.010 
0.013 
0.020 
0.030 
0.040 
0.050 
0.070 
0.090 
0.110 
0.130 

k2 

0.001 
0.003 
0.005 
0.007 
0.010 
0.013 
0.020 
0.030 
0.040 
0.050 
0.070 
0.090 
0.110 
0.130 

Phase shifts—No exchange 

cm 
1=0 
9.523 
9.349 
9.220 
9.103 
8.954 
8.837 
8.613 
8.367 
8.184 
8.027 
7.783 
7.613 
7.428 
7.343 

1=1 
3.323 
3.898 
4.410 
4.642 
4.773 
4.824 
4.826 
4.773 
4.713 
4.654 
4.549 
4.452 
4.370 
4.291 

Phase shifts—With exchange 
Symmetric case (8i+) 
1 = 0 
9.248 
8.996 
8.822 
8.673 
8.493 
8.353 
8.095 
7.818 
7.621 
7.456 
7.221 
7.045 
6.916 
6.810 

1=1 
3.241 
3.400 
3.531 
3.599 
3.655 
3.691 
3.699 
3.660 
3.621 
3.579 
3.531 
3.505 
3.505 
3.512 

Phase shifts—With exchange 

1 = 3* 
0.005 
0.015 
0.024 
0.034 
0.048 
0.065 
0.099 
0.138 
0.181 
0.217 
0.285 
0.340 
0.393 
0.437 

Antisymmetric case (8i ) 
1 = 0 
9.799 
9.648 
9.524 
9.410 
9.260 
9.146 
8.922 
8.665 
8.471 
8.302 
8.039 
7.821 
7.647 
7.493 

1=1 
6.336 
6.330 
6.301 
6.254 
6.156 
6.086 
5.910 
5.708 
5.562 
5.403 
5.177 
4.993 
4.841 
4.712 

Phase shifts for higher / 
5i°~8i+t 

J = 4b 

0.002 
0.006 
0.010 
0.015 
0.021 
0.029 
0.046 
0.062 
0.086 
0.104 
0.139 
0.167 
0.199 
0.225 

««r 
/ = 5 / = 
0.001 
0.002 
0.004 
0.008 
0.011 
0.015 
0.024 
0.034 
0.049 
0.059 
0.078 0.0 
0.095 0.0 
0.115 0.0 
0.131 0.0 

1 = 2 
0.014 
0.046 
0.077 
0.110 
0.152 
0.205 
0.311 
0.472 
0.638 
0.800 
1.128 
1.435 
1.695 
1.892 

1 = 2 
0.014 
0.046 
0.078 
0.105 
0.147 
0.183 
0.274 
0.371 
0.446 
0.508 
0.629 
0.755 
0.933 
1.155 

1 = 2 
0.017 
0.052 
0.086 
0.104 
0.181 
0.220 
0.428 
0.841 
1.289 
1.675 
2.080 
2.222 
2.314 
2.363 

6 1 = 7 

48 
59 0.039 
73 0.049 
84 0.056 

a An integral number of IT'S have been added to the I =0 and 1=1 phase 
shifts so that the phase shifts decrease with increasing I. 

b At energies above k2 =0.04 the exchange phase shifts begin to differ 
noticeably from the no-exchange phase shifts. The difference increases 
linearly so that at &2=0.13 the ds+ and dz~ are 14% below and above 
(respectively) the listed values. Similarly, 8i+ and 84~ are 2.5 % below and 
above the listed values. 
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FIG. 3. Effect of polarization potential on calculated elastic-
scattering cross section. The polarization potential obtained from 
perturbation theory gives a cross section with a smaller minimum 
and no peak at £2 = 0.04. Both calculations include exchange. 

ments (a minimum cross section at about 0.09 eV). At 
the higher energies (above 0.08) our calculation may be 
compared with Brode's experimental results. Brode's 
results are for total cross section and, therefore, include 
both elastic and inelastic contributions; the peak that 
Brode found at 0.17, and which drops off at higher 
energies, is presumably due to inelastic collisions 
(excitation). Thus, our higher energy results appear to 
be reasonable. As expected, the effect of exchange 
becomes less important at the higher energies. 

In order to determine how sensitive the results of the 
calculation are to variations in potential, the polariza
tion potential was varied. As a preliminary check, the 
no-exchange case was rerun with only 90% of the 
polarization potential. The cross section showed changes 
of from 10 to 20%,, but the basic form of the cross 
section versus energy curve was preserved. However, 
when the shape of the polarization potential was modi
fied, the cross section was altered rather substantially. 
Our calculation was repeated, both for the exchange and 
no-exchange case, using the polarization potential as 
determined from perturbation theory (see Fig. 1). The 
results with exchange are shown in Fig. 3, where it is 
seen that a substantially larger polarization potential 
at intermediate radii has almost completely eliminated 
the low-energy dip in the cross section. At energies 
above 0.08, variations in polarization potential have a 
relatively small effect. Furthermore, as noted, the 
effect of exchanges becomes less important at high 

energies, and our calculation appears to extrapolate 
smoothly into Robinson's high energy results.8 

An attempt was made to estimate the consequences 
of using \J/Q instead of ^</ in the db term of ^ , Eq. (2b). 
When \//Q is used, the equation for F(r2), Eq. (5), has a 
second term on the right side, namely, 

f / 2 2Z(r2)\ 
± / dr^o*(rM JfcCrOFCrOiMr*). (26) 

This term is smaller than the first term because j8(fi) is 
small at large radii where \pi is important, and ^i(r2) 
itself is smaller than 0̂(1*2) at the critical radii of about 
4-10 a.u. A comparison of the two terms by graphical 
integration—using F(x^) as calculated, i.e., without the 
second term—indicates that the second term is less 
than 20% of the first. Though this is not negligible, it 
implies changes in the phase shifts of only a few percent. 

A further attempt to determine the effect of this lack 
of full symmetry in the wave function18 was made by 
normalizing the ipo part of ^ . Thus, calculations were 
rerun using 

1 
*( r i,r2) = - - ^ o ' ( r i ) F ( r 2 ) ± ^ r 2 ) F ( r O , (27) 

[l+/3i2(ri)]1/2 

leading to Eq. (5) with the right side multiplied by 
£l+j32(ri)]1/2. This increases the right side by con
siderably more than the addition of Eq. (26), and so has 
an exaggerated effect. The result of the calculation was 
a decrease in the cross section of less than 4% at energies 
k2 < 0.20, a decrease of nearly 10% near &2=0.05 and a 
decrease of less than 5% at higher energies. It is clear, 
then, that the neglected term gives only a small 
contribution. 

Figure 4 shows our calculated low-energy cross 
section replotted on a different scale, together with the 
results of various groups of experimenters. Since plasma 
resistivity experiments really measure a momentum-
transfer cross section, defined by 

0"M 

fdcr 
= /—(l-cos0)(fi2, 

J da 
(28) 

we have calculated the latter quantity from our phase 
shifts, and this result is also plotted on Fig. 4 for a 
limited range of energies. Actually, the momentum 
transfer cross section is not very different from the 
elastic scattering cross section in this energy range. 

Finally, it is perhaps worthwhile to note that the 
rapid rise of the calculated cross section at low energies 

18 The choice between Eqs. (2b) and (27) is not clear-cut. Since 
^0 and \f/i are individually normalized, Eq. (27) is the natural 
consequence of using Eq. (4). On the other hand, Eq. (4) is not 
really correct at the smaller radii, since there is an appreciable 
admixture of excited s states. I t was felt, at least initially, that the 
unnormalized x//0

f is a somewhat better approximation to the 
correct adiabatic wave functions in the 2-4 A range, whereas at 
the larger radii the normalization is not important. 
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FIG. 4. Comparison with experiment. All except Brode's experi
ment are momentum-transfer cross sections and are averages over 
the electron velocity distributions of a plasma. The correct values 
of Flavin and Meyerand are shown (see Ref. 3). The results of 
Chen and Raether are not shown on this plot (see Fig. 2). 

implies that care is necessary when assigning energies 
to experimentally obtained cross sections. All the ex
periments referred to in Fig. 4, except Brode, involve 
electrons with a distribution of velocities, presumably 
Maxwellian. Thus, the slower moving electrons may 
contribute strongly to the over-all results in some ex
periments, but in others (such as plasma resistivity 
measurements) electrons with low-scattering cross 
sections will presumably contribute more heavily. 

VI. CONCLUSIONS 

The adiabatic model has been extended about as far 
as is possible. The model predicts an elastic-scattering 
cross section in rough agreement with most experi
mental results, although the lowest energy (plasma 
resistivity) experiments differ by about a factor of 2 
from our calculation. Because of the sensitivity of the 
calculation to the form of the polarization potential, it 

appears quite possible that a better estimate of this 
quantity could improve the agreement. One way of 
improving the polarization potential would be to go 
over to the close-coupling model7 in which only terms 
involving \po and \p± are retained in the wave function. 
Here \po is the ground state, and \f/i the first excited p 
state of the atom. Such a model should be better suited 
to cesium than to hydrogen; however, the model leads 
to coupled integrodifferential equations and is about 
an order of magnitude more difficult than the adiabatic 
model considered here. 

Note added in proof. Equation (17) should read 
vp(r) = — a/r*; i.e., the factor of 2 should not be present. 
Our calculation of the long-range potential is then a 
calculation of the polarizability giving a value of 
a=66.5X10~~24 cm3, in complete agreement with the 
calculation of Sternheimer19 but considerably greater 
than experiment.20 The small up-scaling mentioned near 
the end of Sec. I l l is not appropriate but can be con
sidered as including to some extent the effects of higher 
states and the polarizability of the core. In any case, 
the phase shifts are not sensitive to this up-scaling and 
the results are nearly unchanged. The authors are in
debted to Dr. Peter Bender and Dr. Thomas F. 
O'Malley for pointing out this error in the identification 
of the polarizability. 
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