
P H Y S I C A L R E V I E W V O L U M E 13 1 , N U M B E R 5 1 S E P T E M B E R 1 9 6 3 

Stable Longitudinal Oscillations in Anisotropic Plasma* 
TERRY KAMMASHJ AND WARREN HECKROTTE 

Lawrence Radiation Laboratory, University of California, Livermore, California 
(Received 3 April 1963) 

The dispersion equation for longitudinal oscillations in an infinite collisionless anisotropic plasma in a 
uniform magnetic field is analyzed. For a plasma in which the electrons are isotropic and the ions are aniso­
tropic with a velocity distribution given by a two-temperature Maxwellian, it is found that a purely growing 
mode (as in the case of Rayleigh-Taylor instability) with frequency of the order of the ion cyclotron fre­
quency cannot exist so long as the ion temperature perpendicular to the field is larger than its temperature 
along the field. This is demonstrated by showing that the dispersion equation has no solutions under these 
conditions. 

IT has been shown by Harris1 that anisotropy in the 
velocity distribution of a uniform plasma causes 

longitudinal plasma oscillations with frequencies equal 
approximately to integral multiples of the ion cyclotron 
frequency to be unstable. More specifically, if Txi and 
Tie are the ion and electron temperatures perpendicular 
to the uniform magnetic field, and Tui and TUe are 
their respective temperatures parallel to the field, 
Harris found that for Tu/Tm^Tu/Tue—^, waves 
propagating parallel (&i=0) to or perpendicular (&n = 0) 
to the field are stable; and that they are unstable when 
neither component of the wave vector is zero. A suffi­
cient condition for the instability was found to be 
a)pe>03ci, where a>pe is the electron plasma frequency 
and o)Ci is the ion cyclotron frequency. Recently, 
Ozawa et al? have shown that in an anisotropic electron 
plasma instabilities will occur when Tie/TUe>2. In this 
article we wish to show that a purely growing longi­
tudinal oscillation (as in the case of Rayleigh-Taylor 
instability) with frequency of the order of the ion 
cyclotron frequency cannot exist in a uniform plasma 
in which the electrons are isotropic (Tle=TUe) and the 
ions are anisotropic with Tu>Tui. 

We consider an infinite collisionless plasma in a 
uniform magnetic field B0, taken conveniently in the 
z direction. We assume that the velocity distribution 
function of both the ions and the electrons in the 
equilibrium configuration is given by the two-tempera­
ture Maxwellian distribution 

/»=-
r "x2 ^2"i 

(i) 

where ax= (2KTX/M)^ and a*= {2KTZ/M)1'* are the 
thermal velocities perpendicular and parallel to the 
field, respectively, K is the Boltzmann constant, and M 
is the particle mass. We further assume that the 
system under consideration departs only slightly from 
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an equilibrium configuration in which there is no 
electric field. In this case a dispersion relation can be 
readily derived from the linearized Vlasov equations by 
assuming that all perturbed quantities are of the form 
exp[ik .r+iuf\, where a> is the frequency and k is the 
wave vector. It can be shown1'3 that if the particles' 
thermal velocities («!,«*) as well as the wave phase 
(o)/k) are much smaller than the velocity of light c, the 
coupling between transverse waves and longitudinal 
waves can be ignored, and the dispersion equation for 
the latter can be written as 

1 = E — £ 2e-vin(\j) 
i k2 

r m)oi i & i 
X ~ - F ( - & ) + — F ( - & ) . (2) 
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In this equation the wave vector k is assumed to be 
in the x—z plane and the first summation is over the 
plasma species. The remaining quantities are defined 
as follows: o)p=4cirNe2/M= plasma frequency, o)c=eBo/ 
Mc=cyclotron frequency, X=§7W, Y=£p, ni=kx/k, 
nz—kz/ky p=particle radius of gyration, /„(X)=/_n(X) 
= the Bessel function of the first kind of imaginary 
argument, and £= {o)+n^c)/kzaz, The function F(—£) 
is the well-known plasma dispersion function4 usually 
given by 

r r+«>e-v
2dy 

F(-*H / 
J — 0 

y+Z 

where 

erfc(fl'£) = 

.*'to1/2«r«ferfc(#) 

2 2 r« 
e-^dy. 

(3) 

(4) 

We may note at this point that in the limit aZJ —> 0 
Eq. (2) reduces to Eq. (49) of Ref. 1. If we now restrict 
our analysis to a plasma in which the electrons are 
isotropic, i.e., a ^a ; ^ , and consider longitudinal 

3 1 . B. Bernstein, Phys. Rev. 109, 10 (1958). 
4 B. D. Fried and S. D. Conte, The Plasma Dispersion Function 

(Academic Press Inc., New York, 1961). 
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oscillations with frequency of the order of the ion we can write the first integral in Eq. (6) as 
cyclotron frequency, i.e., co/wCi~l, we can utilize the «, 
second of Eqs. (3) to rewrite Eq. (2) in the form Se-„ I e ^ [ - S s - H 2 / 2 » , V + i * cosx]dx. 

Jo 

l+k2di2-\ -(1-iw'g) = s E ^ n W / e x p [ - (S+in)x-lyH2nz
2x22dx. 

Te -00 Jo 
ft-2—\.\yH-2nz

2 l Following Bernstein,3 we now introduce 

X e x p [ - ^ ^ - i 7 A W ^ 2 - T ^ i 2 s i n 2 ( i x ) ] ^ , (5) a n d note that 

/

+00 

J « 0 ( « ) = 1 . 
-oo 

g= ( — ) ( — ) , < o ' = — , a n d ti= — . 
Jiflz \MiJ \ Te/ 00 C{ CtLi 

(8) 

(7r)1/2 /Me\
ll2/Txi\

1/2 o) aZi For j / > 0 w e observe that 

In view of the assumptions made earlier, g \ <J | is much 
smaller than unity and represents in effect the ratio = / <$>{u)du\ dxtx^[_—S—i{n-\-ku)~\x 
of the wave phase velocity to the electron thermal 7-oo Jo 
velocity. Letting io)'=S=iP+v, it is possible to f00 

demonstrate that if t? < 1 Eq. (5) has no roots for which = j gx e x p [ - (S+in)x— \y2t2nz
2x2~]. (9) 

/3=0 and v>0 and, hence, no waves which only grow J0 

in time To do this it is convenient to rewrite Eq. (5) S u b s t i t u t i E ( 0 ) ^ E ( 6 ) a n d k t t i ^ Q 
i n t h e f o r m i t becomes 

J- e 

ft2-\\y2t2n2 r00 

= S<n> f exVZ-Sx-h*tVx2+n cosx^dx = W * J ~ T ~ j 0 °° e x P C ~ ^ - ^ 2 ^ V 

Jo -Atsin2( ix)]^, (10) 

ft2—\\y2t2nz
2 f00 where we have utilized E q . (7) with x=Q. Recal l ing 

+ V T ~ } ~ T ~ 7 * e x p [ - 5 a ; - j 7 2 ^ V that 7»(/i)=J_nG*), the integral term on the left-hand 
0 side of the above equation is positive definite; the 

—ix sin (2#)J##, (6) integral over x is also positive. Since vg<&l, it is clear 
that Eq. (10) has no solution for 22<1 since the left-

where we have let fjL=y2n^=2\y and have dropped the hand side is always greater than the right. A solution is 
subscript i since there is no longer need for it. Noting possible, however, for t2>\. For t2=Tx/Te=l, and 
that /S^O^a similar argument can be employed to show that 

+00 as long as g \ co' | <Cl Eq. (6) cannot have roots with v> 0. 
e"cosa;= 53 Inip)einx, (7) We wish to acknowledge the many valuable discus-

n=-°° sions we had with L. S. Hall and R. E. Shafer. 


