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In this paper, a detailed analysis of NN and NN scattering on the basis of the Regge hypothesis is carried 
out. The Regge expansions of a set of ten invariant amplitudes describing NN scattering are presented, 
with residues expressed in factorized form. Expressions involving both the full Legendre functions and their 
asymptotic forms are given. Spin sums are carried out to obtain simple and convenient expressions for the 
contributions of the P, p, co, and Pr trajectories to the differential cross sections. The optical theorem has been 
applied to find the contribution of the P, P', p, and co trajectories to the spin-averaged total cross sections. 
Finally, we have analyzed the available data on the total and differential cross sections for NN scattering 
to extract information about the Regge-pole parameters. The possible effect of the spin structure of the 
amplitudes, and the variation with energy of the Legendre functions has been taken into account. We show, 
by a natural definition of helicity flip and no-flip couplings, that the amplitudes, and especially the cross 
sections, for NN scattering are very simple in the asymptotic limit. In an Appendix, the decay properties of 
a spin-2 meson associated with the Pomeranchuk Regge pole are discussed. 

I. INTRODUCTION 

IN this paper we shall discuss nucleon-nucleon and 
nucleon-antinucleon scattering at high energies 

(s—> oo) and low-momentum transfer — K<C/<0. I t is in 
this regime of momentum and energy that the Regge 
pole hypothesis, in terms of which we shall discuss 
NN and NN scattering, finds its most immediate 
application. 

The general features of the nucleon-nucleon problem 
have already been discussed in terms of Regge poles.1 

Simple expressions have been obtained for various differ
ential cross sections on the basis of an analysis which 
ignored the spin structure of the amplitudes. Perhaps 
the most characteristic result of such a simple Regge 
pole analysis, which should also come out of any more 
detailed Regge analysis, is the prediction of a diffraction 
cross section which, as energies become arbitrarily large, 
and momentum transfers remain small, has the func
tional form 

\dtJl \c 
••F(t)W*o) 

2 [<*«)-!] (1-1) 

Recent data2 on pp scattering in the range 15 <s/2niN2 

<25 , 0<~t/2mN2<3 have been analyzed3 in terms of 
Eq. (1.1), with the important result that at least the 
most general features of the Regge hypothesis (as ap
plied to nucleon scattering) seem to be consistent with 
experiment. 

The nucleon-nucleon system is of intrinsic importance 
in elementary particle and nuclear physics. The com
plicated spin structure of the amplitudes means that 

* This work was supported in part by the U. S. Atomic Energy 
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there will be many independent physical quantities in 
the NN and NN system which can be expressed in terms 
of Regge poles. With these, more detailed and precise 
experimental consequences of the Regge hypothesis can 
be deduced, and their investigation will lead to corre
spondingly more stringent tests of the Regge hypothesis. 
In terms of experimental feasibility, the nucleon-nucleon 
system appears to be the most suitable for further de
tailed experimental verification of the Regge pole con
jecture. For all these reasons, we feel that the nucleon-
nucleon system merits a thorough treatment based on 
the Regge pole hypothesis, which is given in this paper. 

Consequently, we present in Sec. IIA the leading 
terms in the Regge expansions of a set of ten invariant 
amplitudes, which are free of kinematic singularities, de
scribing NN and NN scattering. We discuss the possible 
transitions in NN and NN scattering between states of 
given parity, spin, and isospin. These are conveniently 
summarized in terms of rP [ = (signature) (parity)^] and 
(—)TGP. The selection rules which result reduce the 
number of independent amplitudes describing the scat
tering which arises from a given Regge pole. Regge 
expansions for the helicity amplitudes are also obtained 
in this section. In Sec. I IB we briefly discuss a high-
energy symmetry between reactions whose amplitudes 
are related by a reversal of external baryon lines.4,5 

The expansions we derive in this section are of interest 
regardless of whether the set of important singularities 
in the angular-momentum plane consists of poles only 
or contains also cuts. However, the usefulness of the 
Regge asymptotic expansion for data analysis will be 
seriously imparied if cuts play a very significant role. 

The functions bi(u) occurring in the Regge expansions 
are related to certain coupling strengths. In Sec. I l l we 
establish the precise relationships in a number of par-

4 M. Gell-Mann, in Proceedings of the 1962 Annual International 
Conference on High-Energy Physics at CERN (CERN, Geneva, 
1962), p. 533. 
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(1962). 

2226 

file:///dtJl


A S Y M P T O T I C B E H A V I O R O F N U C L E O N - N U C L E O N S C A T T E R I N G 2 2 2 7 

ticular cases by comparing the Regge amplitude to the 
corresponding Feynman amplitude at the pole. 

We should like to mention at this point that other 
discussions of the Regge expansions of the NN and NN 
amplitudes have also been carried out,4 ,6 -8 and some of 
the results of Sec. I I of our article are contained in these 
papers. In particular, Gell-Mann4 has presented his 
expressions for the amplitude in "factorized" form, as 
shall also be done in this paper. In addition, he has 
analyzed in a most interesting way the question of the 
presence of "ghosts" in these amplitudes. Muzinich,8 in 
his discussion of the Regge expansions of NN and NN 
amplitudes, considers a problem not discussed here; 
namely, he shows (on the basis of the Mandelstam 
representation) that the Froissart9 analytic continuation 
of the partial-wave helicity amplitudes can be carried 
out for the NN problem, where the particles are spinors. 

In Sec. IV we discuss in detail the cross sections for 
NN and NN scattering.10 The contributions of the P , p, 
co, and P' trajectories are all discussed. All spin sums are 
carried out explicitly. 

In Sec. V we turn to an analysis of existing data on 
NN and NN scattering in terms of the Regge pole 
hypothesis. Our analysis is based on the data of Diddens 
et al.,2* and of Lindenbaum et al.n We find that an 
analysis which includes the full variation of the 
Legendre functions with energy, as well as the spin 
structure of the amplitudes, does not change the basic 
conclusions12-13 of the Regge analysis of total cross sec
tions. A second vacuum trajectory, introduced by 
K. Igi,14 is consistent with the data. However, because 
the <TPp data11 are so far from satisfying the Pomeranchuk 
theorem, and because the anp data, containing the 
Glauber correction, are so unreliable, the conclusions of 
such an analysis must be regarded as rather tentative. 

The angular distributions have been expressed in 
terms of the Regge-pole parameters. If only the 
Pomeranchuk trajectory is included, the differential 
cross sections can be expressed in terms of essentially 
one function, a result which becomes clear when the 
differential cross sections are expressed in terms of 
helicity amplitudes.15 The available data have been used 
to determine this function; we find it has a linear be-

6 V. N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters 8, 
412 (1962); V. N. Gribov and D. V. Volkov (unpublished). 

7 Y. Hara, Phys. Letters 2, 246 (1962); and Progr. Theoret. 
Phys. (Kyoto) 28, 711 (1962). 

8 1 . J. Muzinich, Ph.D. thesis, University of California, Berkeley, 
UCRL-10331 (unpublished); Phys. Rev. Letters 9, 475 (1962). 

9 M. Froissart, Report at the La Jolla Conference on Weak and 
Strong Interactions, 1961 (unpublished); also Phys. Rev. 123, 
1053 (1961). 

10 In this connection, see also Ref. 7. 
11 S. J. Lindenbaum, W. A. Love, J. A. Niederer, S. Ozaki, J. J. 

Russell, and L. C. L. Yuan, Phys. Rev. Letters 7, 185 (1961). 
12 S. Drell, in Proceedings of the 1962 Annual International Confer

ence on High-Energy Physics at CERN (CERN, Geneva, 1962), 
p. 897. 

13 F. Hadjioannou, R. J. N. Phillips, and W. Rarita, Phys. Rev. 
Letters 9, 183 (1962). 
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15 William G. Wagner, Phys. Rev. Letters 10, 202 (1963). 

havior for 0 < —/<0.40 (GeV)2, and is a constant in this 
region if s0= 1 (GeV)2. 

Throughout this paper, our emphasis has been on 
exploring the detailed experimental consequences of the 
Regge hypothesis as applied to the nucleon-nucleon 
system. I t is hoped that this effort will instigate more 
elaborate experimental investigations, designed to test 
critically the predictions made here. We wish to check, 
as thoroughly as possible by experiment, whether this 
approach to elementary particle physics has a firm basis 
in the facts of nature. 

II. PROPERTIES OF THE AMPLITUDES DESCRIBING 
NUCLEON-NUCLEON SCATTERING 

A. Regge Expansions for Nucleon-Nucleon 
Scattering Amplitudes 

The Regge-pole contributions to the amplitude may 
be deduced from the partial-wave expansion of the 
amplitude in the cross channel according to the pre
scription of Frautschi, Gell-Mann, and Zachariasen.1,4 

To obtain them, we may employ the matrices of Gold-
berger, Grisaru, MacDowell, and Wong16 who have dis
cussed the application of the Mandelstam representa
tion to the NN problem. GGMW, and Amati, Leader, 
and Vitale17 have shown that only if the NN scattering 
amplitude is expressed in terms of Fermi invariants are 
the associated invariant functions free of kinematic 
singularities. 

In order to facilitate comparison with previous work, 
we shall adopt the notation introduced by GGMW. The 
nucleon-nucleon scattering amplitude is written as 

+FvI(s,u1t)V+FpI(s,u,t)P~], 
where 

S=u(p1
,)lu(p1)u(p2

f)lu(p2), 

T=^u(pl)(rfiVu(pi)u(p2)o-(iVu(p2) , 

A =u(p1
/)iy6yliu(p1)u(p2/)iyby^u(p2), (2.0a) 

V=u(p1
/)ytlu(p1)u(p2)yiiu(p2), 

P=u(p1
,)ybu(p1)u(p2)yzu(p2), 

P=iC(si'^i)' (*2"W2)+3(*r*i)(*2'*2)] , (2.0b) 

^°=iC— (*i"Wi) * (*2"W2)+ {si>si){s2>S2)~}, (2.0c) 
and 

u=-(p2r-pi)\ (2.0d) 

t=-(Pi'-pi)2. 

In the above, the Si represent isospinors. 
The inclusion of the isotopic factors, which we usually 

drop for the sake of simplicity, is accomplished quite 
16 M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and D. Y. 

Wong, Phys. Rev. 120, 2250 (1960). This paper will be referred to 
hereafter as GGMW. 

17 D. Amati, E. Leader, and B. Vitale, Nuovo Cimento 17, 68 
(1960). This paper will be referred to hereafter as ALV. 
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readily by making use of the matrix 

1/1 - 3 \ 
(An') = - ( J 

2 \ 1 1/ 
(2.0e) 

which relates the invariant functions F1, considered as 
a two-component vector in the isotopic spin index, to 
the relevant functions in the t channel with isospin / ' . 
The first row and column refer to I — Q, and the second 
to 7 = 1 . 

Throughout this paper, we shall suppose that the 
Regge pole is in the t channel. However, we may briefly 
indicate here how to pass from the / channel to the 
u channel, or vice versa (t^±u). This corresponds to 
interchanging pi and p2'. The following changes are 
thereby produced: (i) The full amplitude changes sign; 
(ii) the spinors of the final particles are interchanged, 
u(pi) ^ u(p2;); (hi) in the c m . system, the scattering 
angle changes from 0 to w— 6; (iv) finally, the isospin 
projection operator /3° changes sign while fil does not. 
The matrix (2.0e) then becomes 

1 / - 1 3 \ 
( A r r , ) = — ( ) . (2.0e0 

2 \ 1 1/ 

I t should be noticed that Eq. (2.0er) already includes 
the sign change mentioned in (i) above. 

The first part of the problem is to ascertain the con
tributions to the five invariant functions, Fs, FT, FA, 
Fv, and FP, resulting from a Regge pole characterized 
by definite values of G, I, P, and signature (r). This may 
be expedited by employing some of the formulas of 
GGMW. (In the following kinematic considerations, we 
shall omit the isospin factor.) With the aid of Eq. (2.6) 
of GGMW, we see that 

(S-s] 
T+T 
A-A 
V+V 

[P-Pj 

1 
= -

4 

-3 1 
6 2 
4 0 
4 0 
1 1 

S) 
T 
A 
V 
PJ 

, (2.D 

<?(/) = 

1/E2 

0 
0 
0 
0 

and, consequently, 

-3 
1 

[Fa') 
FT 

FA 

Fr 
[FP] 

1 
= -

4 

6 
2 

1 0 
1 0 
1 6 - 4 - 4 - • 

(Fi 
Ft 
Fa 

Fi 
, (2.2) 

where 

T=F1{S~S)+F2(T+T)+F,(A-A) 

+F,(V+V)+Fb(P-P). 

The set of invariant functions {F\,F\,F\,F\,F\) have 
nice symmetries under the interchange u <-> / due to the 
generalized Pauli principle, but in the Regge pole con
siderations, it is much more convenient to work with our 
unsymmetrized functions. Inverting Eq. (4.24) of 
GGMW, we have 

(2.3) 

and using Eqs. (4.27) and (4.28) of GGMW to relate 
d and G{, we obtain 

'Fi] 
F2 

^ 3 

F± 

F,j 

1 
= — 

2TT 

r I o 
0 4 

- 1 0 
0 0 

L 3 0 

4 0 31 
0 0 0 
0 0 1 
0 4 0 

- 4 0 1J 

fGi 
\G, 
G% 
G4 

IG6. 

F£ 
FT 

FA 

Fv 

FP\ 

1 
= .— 

2TT 

ro o o o l] 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
1 0 0 0 OJ 

fGi" 
\G* 
G% 
G4 

[Gb, 

(2.4) 

Thus, the Gi of GGMW are exactly the same as the 
choice of invariant functions convenient for our analysis. 

The partial-wave decomposition of the G's may be 
obtained by using Eq. (4.33) of GGMW, which in our 
notation reads 

0 m2/E2p2 

0 0 
0 - 1/p2 

0 0 
Alp2 0 

-z/E2 

-UP2 

0 
1/P2 

-zip2 

— z/m2 

-E2/m2p2 

0 
1/p2 

-z(E2+/fn2)/m2p2 

(2.5) 

E ( 2 / + l ) f 

where 4 ^ = ^ - 4 w 2 , 4 E 2 - / , and *= -[l+2s/(t-±m2)~], / 6 = - (m/p)(2J+l)P/(z)f12
J/U(J+l)J/2, 

together with equations which relate the fi to their 
partial-wave forms. 

The angular functions employed for this purpose were 
evaluated from the reduction formulas of Jacob and 
Wick18 with the following results: 

(2.6c) 

lf/+ ^ > 
2 P , _ x ' - / ( / - l ) P / 

/ i = - -\ I P/+- : — ifJ 

p J(J+l)[L 1-z2 

f1=(E/p)(2J+l)PJ(z)f/, 

f2=(E/p)(2J+l)Pj(z)fn
J, 

(2.6a) 

(2.6b) 

{ ]/22 J), (2.6d) 

18 M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959). 

/ 4 = / s ( / 1 ^ / 2 2 ' / ) . (2.6e) 

We can now easily obtain the Regge amplitudes corre-
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sponding to a given trajectory. Use of Eqs. (2.4) and 
(2.5) can be made to obtain the partial-wave expansions 
of the amplitudes Fs, • • •, Fp. These are summarized in 
Table I for states of the NN system classified by the 
quantum numbers TP, J, and (~)IGP. 

Mandelstam19 has shown that it is likely that the true 
asymptotic expansion of the amplitudes in the sense of 
Regge involves Legendre functions of the second kind 
rather than those of the first kind. The transition from 
the Regge expansion to the modified expansion 
amounts to the replacement4 of Pa(%) by (P«(#), where 
6>a(%) — —[X&nTraQ-a-i(%)~]/Tr. In this paper we shall 
write the expansion formally in terms of the Pa for typo
graphical reasons only; in practice, it makes no differ
ence in the data analysis whether one uses Pa or the 
more correct (?a. 

The next step is to factor out the threshold behavior 
in the functions / . We may do so by introducing the 
functions b{ according to the definitions: 

/n-(0= 
r a ly/ir / 

1 2«+1(«+i)!V 

!yV / ps \ / 2 * o \ 

X 

2 " + 1 ( a + i ) ! \ 2 7 r £ / W 2 / 

( ) — M O , (2.7a) 
\ 2*o / JL 2 s i i W / ) J 

/ l 2 « « I- a \yjn (j^rji) 
[a(a+l)J/2 ml 2«+1(a+h) \\2TEJ \\m2) 

X 
ft-^m2\a-W\+re-i7ra{t)-\ 

\ 2*o I JL 2 sin7ro:(/) J 

/22-w £2r 

2*0 / JL 2 sin7ro:(/) 

aXy/v / pz \ / 2 * 0 

\bi*(t), (2.7b) 

a(a+l) m2L 2« + 1 (a+l) ! \ 2TT£ / \4mV 

X 
/—4m 2 \ a nr l+r^ 7 r Q ! ( * ) 

a !\Ar 

2*n 2 sin7ra;(/) 
M f l , (2.7c) 

E2JT a ! \ /V (P*\f2s°\ 

~ A . 2**1 (a+i)! \2TTE) \4m2 / 

< : 

2 ^ ( a + 4 ) 

t—4w2\anrl+re_i ira{t) 

/l«(fl 

2*o / JL 2 sinra(0 

4m2 \ t 

\ 0 , (2.7d) 

/ 4m2 \ t 

a(a+l) \i-\m2)\m2 

r .v. /^ / . 
L 2«+1(a+h)l\2<7rE/\4 

/^-4w2\Q!nr1+^~'7raCOi 
X( ) — i i ( 0 . (2.7e) 

\ 2*n / JL 2 sinirafr) J 

r 2 * 0 \ 

The new expressions for the amplitudes in Table I may 

"~~i9 S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962). 

be written conveniently in terms of the hi and4 

Z«-(5,0 = CZ«(V)+rZ«(« ,0] / (H-re-* '«<«) , 

where 
a\\Zir /t-4m2\a 

2s \-\ 

ah/v /t—4m2\a 

Za{sfy = e-{™ 
2 « ( a - * ) ! \ 2*0 / 

XPJ-(I+ — V I . (2. 
L \ t-4mVJ 

:.8) 

The asymptotic behavior of these functions is inde
pendent of the signature: 

V 2*0 / 

a(a-l)(t-4m2)2 /2s+t-4m2\«-2 

2(2a- l )4* 0
2 \ 2*0 / 

/2s+t—4w2\T a(o—1) 1 
= ( 1 — -x2+--- , (2.9) 

V 2*0 / L 2 ( 2 a - l ) J 

where x= (t—4tm2)/(2s+t—4m2), and 

Za'(s,t) = dZa/d(s/So) 
= a [ ( 2 * + / - 4 w 2 ) / 2 * o ] 0 ( - 1 [ l - • • • ] . (2.10) 

Upon substituting the Za into the amplitudes of 
Table I, we obtain formulas for the Regge pole terms in 
the AW-scattering amplitude. 

Thus far in our analysis, we have not incorporated the 
hypothesis that the Regge pole terms are factorizable.20 

The effect of this property is to reduce the number of 
independent invariant functions, £>*(/), from three to 
two in the case where the Regge trajectory has the 
quantum number rP== + . I t results in no change for 
those contributions to the invariant functions arising 
from trajectories with TP= — , since there is only one 
invariant function, bo(t) or bi(t), associated with such 
poles. 

The relations 

and 
tFP+4m2FA+(2s+t-4m2)FT=0, 

(tFv+4:M2FT)L2Pa-1'(-l-2s/(t-4M2))-a(a--l)Pa~\ 

+FA(4m2-t)Z(l-z2)Pa
,+z(2Pa^-a(a-l)Pa)~] = 0, 

are valid for the contributions from Regge poles with 
TP= + , irrespective of whether the coupling to the pole 
may be factorized. The additional relation imposed by 
the factorizability of the pole contribution, however, 
may not be expressed in the simple form of a linear rela
tion between invariant functions. Rather, it leads to 
expressions for all the invariant functions as a bilinear 
form in two functions instead of as a linear form in three. 

20 M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. N. 
Gribov and I. Ya. Pomeranchuk, ibid. 8, 346 (1962). 
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TABLE I. Partial-wave expansions of the invariant NN scattering amplitudes associated with the exchange 
of an object in the t channel with quantum numbers rP, J, and (^tGP. 

Quantum numbers 
of object 

exchanged 
rP J ( - ) 7 GP Partial-wave expansion of amplitudes Fs, FT, FA, FV, Fp 

+ a + 

— a + 

2TrE(2a+l)\ T z{2Pa.l
f-a{a-l)Pa)' 

Fs = ; \fnaPa(z)+z\ P « ' + — 

FT = -

FA = 

Fv = 

2TrE(2a+l) 
| P « ' + -

z\ Pa'-\ 
1 - 2 

/« 

z(2Pa^
,-a(a-l)Pa)' 

Ja (a+1) 
/22

a E Pd 

1-z2 J a (a+1) m [> (G:+1) ] 1 / 2 

27rjE(2a+l) [ 2 ? f l . i ' - a ( a - l ) P a ] /22« 

w P ' 
-*(#/*»*+1) " /is 

£ [a(a+l) ] 1 / * 

-/»4 

a ( a + l ) 

2ir(2a+l) 
FP = 

pE 
FS = FT = FA = FV = 0 

Pp = [27r(2a+l)/^£]P«(2)/o«(0 
27r£(2a+l) 

T /w2 \ ( 2 P « - i ' - a ( a -
zPa'+ " + z 2 

L \^2 / 1-z2 

2 T T £ ( 2 Q : + 1 ) f r z ( 2 P « - i ' - a ( a - l ) P « ) " 
?„ — J I E> '_J 

/22a W P « ' 

|a(a+l) £ C«(a+l)]lj 

•1)P«)" / 2 2 a ^ / 1 2 « 
- 2 ~ P a ' -

J a ( a ! + 1 ) W [ a ( o : + l ) ] l j 

Fs = ~ 
p* 1-z2 

FT=Fs/z 
27r£(2a+l)f 

- [ 2 P « _ i ' - a ( a ! - l ) P a > 
/ i « 

a(a+l) 

PA = — P«'+-
z(2Pa-i~a(a~l)Pay 

1 - Z 2 

/ i " 

Ja(a+1) 

The functions / u ^ ( / ) , / i 2 ' ( 0 , and /22 '(*) of GGMW, 
which appear first in our Eq. (2.6) are the elements of a 
2X2 symmetric reaction matrix. The assumption that 
it may be factorized is equivalent to choosing the 
representation: 

hij(t)=Lh+
j(t)j, /» /«)=/i+ ,(o/»f r(o, 

hJ(t) = lf: *..-«?. 
I t is natural, therefore, to introduce the functions bi+(t) 
and b%+.(t) so that 

6n(0 = CM')T, 

M0=CMfl?, 
which when inserted into Eq. (2.7) yields the final form 

of the Regge amplitudes for NN scattering. These are 
given in Tables I I , I I I , IV in their exact form. The 
leading terms in the series, valid for £2>4w2—t, are to be 
found in Tables V, VI, and VII. 

I t has recently been shown15 that the Regge analysis 
of scattering problems involving spin may be decisively 
simplified if helicity amplitudes are introduced. To make 
use of these results (as we shall in Sees. IV and V), we 
wish to express the helicity amplitudes explicitly in 
terms of our factored residues &i+ and 62+. This is most 
easily accomplished by using first Eqs. (4.17a-e) of 
GGMW to relate the helicity amplitudes {^ i ,^ ,^ ,^ ,^} 
to the {Pi, • • • ,F5}, and then the inverse of our Eq. (2.2) 
to relate them to F8, FT, FAy Fv, FP. Use of Table I I 
then yields the desired results, which are the following: 
(T=STTS1I2(J), and we use MN as the energy unit) 

T2 

T,/2[:-st(s+t-4:)']^j 
f4(H-*-4) 

st 
X I 4 ( 5 + ^ - 4 ) 

— st 
1 

= 2*of/(*-4)4 

-2fc(H-/-4) 
— 2te(H-*—4); 
--2te(H-*-4) 

2ts(s+t-4) 
• J O H H - 4 J - 1 6 ] 

lZj{s(st+2t~S) + 2(t-^)2}-lsPYa 

%Zj(2s+t-4) (s+t-4:)-tYa(s+t-4:) 
lZj(st-~2t+S)(s+t-4:)-lst2Y<x 

-±Zj(2s+t-4c)(s+t-4)+t(s+t-4:)Ya 

lZ*(2s+t-4)t-ltYa 

bi+hz+Za 
?2+~ 

(2.11) 
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TABLE II . Regge amplitudes for a pole in the / channel with quantum numbers TP = -\~, (—)TGP = -\~. 
In the tables, f = (l+re~ i 7 ra)/2 SHITTO:. 

2*o [ r ( * + K ' - 4 m 2 ) ) a(it-2m2+s)2 / 2 [ ( / -4m 2 ) /2* 0 ] 2 

Fs = ̂  \±m*Za(s,t)[b^(i)J+1\ Z« 1 • Za^-(a-l)Za 1 l[>2+(/)]2 

(4m2)5 

25o f /t-4m2\YZa
f a(*+J(*-4m2) 

*(*+/-4m2) ( - 2a-1 

—r-)1 '*+i(7-4m2) 

\ r z « ' «(*+*(*-4m2) ) f 2 / / - 4 w 2 \ 2 1 1 / / - 4 w 2 \ 

/L^o *(*+/-4m2) L2«-l \ 2*o / J J \ 2*0 / 

FA = r -
2*o cd{t— 

Fv = -{-

r 2 ft-Am2\2 "1 
j z ^ ' - f o - D Z . b2+(/)]2 

L > - l \ 2*o / J 

[ Z«' « ( * + | ( / - 4 w 2 ) ) r 2 (t-Am2\2 "11 (t-Am2\ 
+ W y - ( a - l ) Z a h( 

*o *(*+/-4w2) L > - 1 \ 2*0 / J J \ 2 / 

(4w2)24*(*+/-4w2) 

2*o ( r z« «(*+i(^~4w 2 ) ) r 2 /*-4m 2 

(4w2)2(L *o *(*+/-4w2) 

2*o ( r ( * + i 0 ~ 4 w 2 ) ) a[w2(*-4m2) + (*44(*-4m2))2] 
77p = f (/-4m2) J Z a ' -

*l )B>2+»]2+4m2 

(4m2)2 I-' *o *(*+/-4m2) 

/ / - 4 m 2 \ —w* 
\ 2*0 / 

2 (t-A<m2\2 - | 1 
\ Za_y_ ( a_i)z a [MO]2 

:« - l \ 2*0 / J J 

bi+(t)h+(t) 

it-Am2) 

2*o 
-(2*+*-4m2)Z«,&14.M&2+(/) 

We have introduced the following abbreviations: 

Z=dZ/ds=Z,/so, 
f = (l+reriira)/2 sinira, 

F«=a{[2 / (2a- l ) ] [ ( / -4) /2^o] 2 Z a _ 1
/ - (a - l )Z a } . 

In the asymptotic limit s—» oo, /<0 the relation between the helicity amplitudes and bi+, #2+ simplifies to 

r2 

L^5 

= (*af/2) (*/*>)« 
4 
/ 

-4 

l—2(—oi/2 (-o^a+io -2(-o 1/2 

lab i_f.̂ 2-h (2.12) 

and a simple relation between the helicity amplitudes is carried into the amplitude for the reaction 

is revealed, tfrfff/ ?± tf.'+ff,, (2.11b) 

X 

B. A Symmetry of i\W Scattering 

The amplitudes which describe nucleon-nucleon scat
tering in two different channels are related, in the t s0a(s+i(t-4m2)) 
graphical description of these processes, by a reversal of Fs = ~~^—2 ~ ~ ^ + ^ 4 ^ ) ~ ~ 
the external baryon lines. For example, under line 
reversal the amplitude describing the reaction 

Nt+Ni^Ni'+N*', (2.11a) 

TABLE III . Regge amplitudes for a pole in the / channel 
with quantum numbers rP = — i (—) IGP = —. 

JFp = -r(2*o/4M2)Za&0W 

TABLE IV. Regge amplitudes for a pole in the / channel 
with quantum numbers TP — — , (—)/GP = + . 

2 / / - 4 m 2 \ 2 "1 
) Za-x ' - (a- 1)Z« \h(t) 

o : - l \ 2*o / J 

FT = -
-(/-

-Fs 
2s+t-4m2 

FA = -nt/Am2)Za%(t)-Fs 

Fy = — FT 

Fp^tZa'btQ+Fs 
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TABLE V. Leading terms in the expansion of the Regge amplitude for a pole in the / channel 
with quantum numbers TP — -{-, (—) IGP = + • 

2*o /2s+t-4:m2Y\ r a(a-l) ~| 

(4m*)s\ 2.o / L 2(2«-l) J 

XCMOMO] i-
( « - l ) ( t t - 2 ) 

2 (2« - l ) 
+«C&2+(03S 

( a - l ) ( « - 2 ) % 2 " 

2 ( 2 a - l ) _ 

2*o /2s+t-4m2\ 
F T ^ r - [ ) to[&i+(/)-aM0]M0 V 

(4m2)2\ 2*o 

25o /2s+*-4w2 ' o / 2 s + * - 4 w 2 \ a 

>?)2\ 2*o / 
HM*)? 

(4w2)2\ 2*o 

2*o /2s+*-4w2 ' 

' (4w2)2\ 2*0 ) ' 

2*0 / 2 5 + * - 4 i » V 
F P -> r ( a(t-4m2)b2+(t) \ -b1+(t) 

(4w2)2\ 25o / 
1-

( a - l ) ( a - 2 ) 

2 ( 2 a - l ) J 
+bi+(t) ( (a- 2)2 4w2 \ ~ | ] 

_l_ ) 
2(2a-l) 4 m 2 - / / J I 

in which x —> —x/(l+2x), s—> —s(l+2x). The ampli
tudes for these two processes are related,5 in the limit 
of high energies and low-momentum transfers, by a 
multiplicative factor re. They, therefore, satisfy a 
"generalized Pomeranchuk relation." r is the signature,1 

or orbital parity of the Regge trajectory, and in AW 
scattering e= (—)IGr. The resultant factor is therefore 
(— )TG which, for the neutral member of an isotopic 
multiplet, is the charge conjugation quantum number C. 

Examples of this symmetry are provided by the 
following reactions in which the p meson is exchanged: 

Pole Asymptotic amplitudes 

p T(Tr°+n-+ir-+p) (2.13a) 

-T(Tr++n->7r°+p) (2.13b) 

- T(r°+p -> T~+n) (2.13c) 

T(Tr++p->T0+n) (2.13d) 

T(p+n-> p+n) 

T(n+n—> p+p) 

T(p+p->n+n) 

T(n+p—>n+p). 

(2.14a) 

(2.14b) 

(2.14c) 

(2.14d) 

TABLE VI. Leading terms in the expansion of the Regge 
amplitudes for a pole in the t channel with quantum numbers 
rJP — , ( - ) ' G P - . 

FP-
2s0/2s+t-4m2\a T cc(a~l)xn 

4m2 \ 2s0 / L 2 ( 2 a - l ) J 

III. ASYMPTOTIC AMPLITUDES DUE TO THE 
EXCHANGE OF P, <o, 9, AND it MESONS 

In this section, we construct the contributions to the 
invariant amplitudes describing AW scattering arising 
from the exchange of the P , co, p, and TT mesons. We can 
then compare the asymptotic forms of these expressions 
to those given by the Regge theory applied to the corre
sponding trajectories, and identify the residues hi with 
appropriate coupling constants by comparing the ampli
tudes1 at t==mp

2
f m7T

2
1 

We shall first consider the Pomeranchuk trajectory, 
having the quantum numbers of the vacuum and 
OJP(0) = 1. I t is possible that there is a spin-2+ resonance 
occurring on this trajectory21 at t^l (GeV)2. We may 

TABLE VII. Leading terms in the expansion of the Regge 
amplitudes for a pole in the t channel with quantum numbers 

/2s+t-4m>\«-1 t 
Fs -* r a(a-1) h 

\ 2sQ / 4w2 w 

l)*2—h(t) 
4m2 

/2s+t~Am2Y~l 

FT —> _ M j a(a-
\ 2sQ J 

/2s-j-t~4m2\a-1 t 
FA-+-ti a2 h (t) 

\ 2s0 J 4m2 

FV = -FT 

/2s+t-4tn2\a-i T t 1 
FP -> -d a\ ( a -1 ) + 1 Ihit) 

\ 2s0 ) L 4w2 J 

21 For preliminary experimental evidence for such a resonance, 
see: W. Selove, V. Hogopian, H. Brody, A. Baker, and E. Leboy, 
Phys. Rev. Letters 9, 272 (1962); J. J. Veillet, J. Hennessy, H. 
Bingham, M. Bloch, D. Drijand, A. Lagarrique, P. Mittner, 
A. Rousset, G. Bellini, M. di Corato, E. Fiorini, and P. Negri, ibid. 
10, 29 (1963). 
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identify the Pomeranchuk pole residues with the 
coupling constants of this spin-2 resonance to the 
nucleon. To do this, we must first construct the con
tribution of a spin-2 meson, C, to the invariant ampli
tudes describing NN scattering. 

The propagator for a spin-2 meson must be a tensor 
of rank four. I ts most general form is, therefore, 

+ C (q\qadfiV+q&vh*)/™2 

+D(qPq<T8li\+q^q\8V(r+ q,q\dfl(T+ q&Xi) I m2 

+E(qiiqvqxqff)/m"} (q2+m2)~l, (3.1) 

where we have taken into account the symmetries 
DliV\<r=Dvy,\(T and D^x^^Dxa^. At the pole q2 = —m2, the 
propagator is divergenceless, qlxD(iV\(r=0, and traceless, 
Dfin\<r = 0. From these two conditions we find B = C 
= — f, D=l, and E=^. The factor a is determined to 
have the value J, so that if a polarization tensor eM„of the 
meson is normalized to 1, then e^D^a^Xa— 1. 

In the Born approximation, the coupling of the C 
meson to two nucleons takes the form 

(l/4w^2) (XCNN— SCNN)2P2P 

+ (i/4fnN)£cNN[2sYv+2pyn'] > (3.2) 

where SM = (p+pf)». 
From these results we readily see that the C-meson 

pole term in the amplitude has the form 

'(XCNN— £CNN) 1 r( 

t—ntc2 L 4MN2 
—2uu 2JV 

/ 7 M ) «2 

•'P Xui 
4ntN2 

(S,7V+2V7M)J 

~2M2^ 

\Ui~ 

1 1 

3 t—mc2 
-U2U1U1U1 

X\XCNN( 1 )-tcNN 1 , (3.2) 
L \4mN

2 J 4mN
2J 

where S / = ( £ 2 + K ) M , 2M= (pi+pi)^ 
Using Eq. (2.21) of ALV, which states that 

2imN[ui^^ylxUiU2U2+uiUiU2^^ylxU2~] 
= ^mN

2-t-2s)(S+P)-AmN
2V+tT (3.3a) 

and 

Ui'2lx'yfXUiU2f'2i,yvU2 

= - (2s+t-4:mN
2)V+tA-4mN

2P} (3.3b) 

we find that the C-pole terms in the invariant amplitudes 
are: 

(4mN
2)2(t-mci)Fs 

= *CNN(XCNN— £CNN) (kmN
2—t— 2s)2 

- KXCNN (t-4mN
2) - tUcNNj, (3.4a) 

(AmN
2)2(t~mc

2)FT 

= (XcNN-£cNN)&NNt(4tniN2-t-2s), (3.4b) 

{^mN
2)2{t-mc2)FA^ -2ZcNK2mN

2t, (3.4c) 

(4mN
2)2(t-mc2)Fv 

= -4XC Ar iv^^ivWiv2(4w iv
2-/-2^), (3.4d) 

(4wiv2)2(/- mc
2)FP= 8&NN2niN4+ (*CNN- £CNN) 

X^cNN^mN
2-t-2s)2. (3.4e) 

These expressions may be compared to those in 
Table VI. In particular, we can, at t = mc2, identify the 
Pomeranchuk Regge pole parameters a, bi+, and 62+ 
with various properties of the C meson. At the position 
of the resonance, t = mc

2, we must have Reap(wc2) = 2. 
Also ImaP(nic2)=Ip is related to the width,1 

mcTc = Ip/eCy (3.5) 

where ec=Re[dap(t)/dt\t^mC
2~], and we find 

b1^(mc
2)/LirecSo']1/2 

= L(XCNN— ^CNN)+^cNNfnc2/(^mN
2—mc2)~]/mN, (3.6) 

b2+p(nic2)/\jrecSo]l/2 = 2tnN£>CNN/{^mN
2—mc

2). 

In the Appendix we discuss the decay rate and branch
ing ratio of the C meson. 

In a similar way, we may compare the Feynman 
amplitude corresponding to p exchange with the associ
ated Regge pole contribution, to identify the residues 
bip(t) at t~mp

2. For thep-pole term in the amplitude, we 
have 

TaU\ [ /&NNP\ 
7A*— ( Wnp(pl—pl)y 

\ 2mNl 

U2[_yyL—(VNNp/2mN)aiiv(p2—p2)v~]TctU2 
X-

t — Mp2 
, (3.7) 

which can be reduced to the form 

2 \ 1 A t-m2 ) 

VpNN 

t—mp
2 

X\S[^mN
2-2s-t} 

r 2s+t-\ 
+P\ 1 UPNN(1+VPNN) 

L 4mN
2J 

VPNN(1-\-VPNN) 

4wiv2 
tT+(l+fxpNN)V\ , (3.8) 

using the relations 

— fipXTfxvip'—p)vUp = uP'[2mNyn+i(p,+p)n~iupJ 

(pi+pi)Ap2+p2)li^u-s=4?nN
2-t-2s, 

and Eq. (3.3b). In the column vector, the first row 
refers to 1=0 in the s channel, and the second to 1=1. 

(3.9) 
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Near the p-meson pole, therefore, we have (dropping 
isospin factors) 

-2yNNp
2\^mN

2-t-2s) /~ZyNN/\ 

\ t-m2 J 
-ftpNN , 

f-2yNNp
2\ t 

"= ( J MpiVAr(l+MpAW , 
\ t—mD

2 J^mN
2 

FA is not singular, 

-2yNN* 
Fv= 

/-2yNNp
z\ 

\ t~m2 J 
(1+MpiViv) , 

(3.10a) 

(3.10b) 

(3.10c) 

(3.10d) 

-2yNNP\^mN
2-t-2s) 

pp= I J AtPjvjv(l+Atpivj\r) • (3.10e) 
\ t—nip2 / 4cmN

2 

We compare these results to those arising from the p 
trajectory. At t = mp

2, Reap(mp
2) = l, and as before, we 

have 

JL p — VYlpJL p€p y 

where ap(mp
2) = l+ilp and ep = Re£dap{t)/dt | f=Wp

2]. We 
then find that the bip(t) are related, at t = mp

2, to the 
coupling constants yPNN and IXPNN as follows: 

[ 1 - (WpV^^lJ i+^Wp^EirJepJ- 1 / 2 

= 2ypNN[l+fjLpNNmp
2/4:mN

2'], (3.11a) 

[ 1 - (mp
2/4mN

2nb^(mp
2)lirhpT1/2 

= 2ypNN(l+iApNN). (3.11b) 

The corresponding formulas for the co Regge pole are 
exactly analogous to those of the p, since the only 
difference is that of isospin, which we take care of with 
the matrix A, (see Eq. 2.0e). 

Of those Regge poles associated with meson systems 
having zero spin, the most prominent contributor to the 
iVTV-scattering amplitude is likely to be that correspond
ing to the pion, since Rear(t) is zero for the lowest t, 
a7C(mnr

2) = 0. This trajectory has 7 = 1 , C = + , T=+, 
rP= —. Near t = m^2, 

T{s,t)^-gNN,2P/{t~mA J, 

and, therefore, 

Jo* (m^)/7reT = 2gNNT
2/ (2s 0)

1/2. 

In considering various trajectories which may con
tribute to AW scattering, we should like to mention 
briefly some recent speculations on the existence of 
another trajectory with C = + , for which a(0) lies in 
the region 0 to 1. Igi14 has shown that the data on ir+p 
and T~p scattering require some singularity in the / 
plane which lies in the region 0 to 1 for forward scatter
ing. Let this singularity, which has C = + and r = + , 
since it is coupled to the two-pion system, be labeled P'. 

As we shall see in Sec. V, and as suggested on the basis 
of a spinless treatment of AW scattering by Hadjioan-
nou et al.y

lz such a singularity is also needed to cancel 
the contribution of the co Regge pole in AW scattering. 
I t must, therefore, h a v e / = 0, and is a companion to the 
Pomeranchuk trajectory in that they both have the 
quantum numbers of the vacuum. Igi has suggested14 

that the P' be associated with the ABC anomaly,22-24 

but this seems inappropriate because the trajectory 
associated with the ABC anomaly must have a ~ 0 near 
t—0. If the P' singularity is a pole, rather than a branch 
cut, there exists the possibility of associating P' with a 
resonance with J = 2 in the region ty^m^2. We would 
look for such a resonance in the 1 to 1.5 GeV region, 
which still remains virtually unexplored.25 However, the 
P' trajectory may not reach the line R e a = 2, or even if 
it does, Ima may be large, so that a resonance would 
not occur. 

Mandelstam26 has recently investigated the contribu
tion of a class of multiparticle intermediate states to the 
partial-wave amplitude. He concludes that they give 
rise to cuts in the angular-momentum plane which are in 
general present up to 2 = 0. If this conclusion is correct, 
it appears to us much more plausible to regard the P' 
singularity as the cut associated with the P pole, rather 
than as a second vacuum trajectory. For further 
comments, see Sec. V of this paper. 

IV. CROSS SECTIONS FOR NUCLEON-NUCLEON 
SCATTERING 

A. Elastic Differential Cross Section 

In terms of the couplings rji and <j>i of the ith Regge 
trajectory to pairs of incident or outgoing nucleons in 
the states without helicity flip (rj) and with helicity 
flip (0), the elastic differential cross section takes the 
form15 

1 /sY*-1 

d r / ^ - L R e ^ f y ) -
4TT 

where 

and 

/ 5 X ^ - 1 

XI — 1 (VN W + 0 2 V W ' ) 2 , (4.1) 

W/ 

rf=bi+— (at/4rm2)b2+ 

<t>= (-t/4m2y!2(b1+-ab2+). 

22 N. E. Booth, A. Abashian, and K. M. Crowe, Phys. Rev. 
Letters 7, 35 (1961). 

23 J. Button, G. R. Kalbfleisch, G. R. Lynch, B. C. Maglic, A. H. 
Rosenfeld, and M. L. Stevenson, Phys. Rev. 126, 1858 (1962). 

24 B. Richter, Phys. Rev. Letters 9, 217 (1962). 
26 See, however, Ref. 21. 
26 S. Mandelstam, lecture given at the California Institute of 

Technology (unpublished) and private communication. 
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Using Eq. (2.12) we may easily construct the contribution to the differential cross sections for NN and 
AW scattering from the P} Pf, co, and p trajectories. For pp scattering, we find 

I6ws(s—4w 
do-pp r . 

N2)—=Dpp\ 
dt L 

2s+t-^mN
2 \2ap(t) 

+2D, 

2s0
p 

r2s+t-AmN
2-

a,\ 
L 2s,p . 

+2D* 
r2s+i-4:mN

2TpWr2s+i-^N2Tu(t) 

2s0* 

-Y*PWr2s+t-4tnN
2-l 

—I L. ZSQ —1 

ap^r2s+t-4:mN
2-jp'^ r2s+t-4mN

2-{2(X-w 

L 2s,pt +D0}0}\ -
2s0 

+ 2DwI 

•2sJ
rt-^mN

2'\aMr2s+t-^mN
2-

2s<? L 2$r J 

«p>{t) r2s+t-4mN
2-\2ap'^ 

+DP,p\ I . (4.2) ?'p'\ 
L 2scp 

hMN ~r' 

The result for pp scattering is the same except for a minus sign on the terms Dpu and Dp'U. Since no 7 = 1 pole is 
included, dcrnv/dt~ dapp/dt. 

The coefficients Z># are found to have remarkably simple expressions, 

7TQfp(0 

smz- • 0 p p ( 0 = (b1+
p)2-ap2-

ih+p)* 
(sop) 

and 
\ 4mN

2/ 

sin7rap sin7racoZ)pco 

[1 + rp C0S7rcep+rw C0S7raw+rpTa> COST (ap—<x(a)~\ 
— r . h+

pb1+» 
\m^2 

-apaJ)2+pb2+0} 

\ 4ntN2/ 

(4.3) 

(4.4) 

where TP, TW indicate the signature of the P , co trajec
tory. All the other D functions can be obtained simply 
by changing the indexes. 

The circumstance that the coefficients Dij are perfect 
squares is a result of the facts that the amplitudes can 
be factored and that all particles are nucleons. 

These same results have also been obtained directly 
by expressing the cross section in terms of the Fermi 
amplitudes Fr (I = S,T,A7V,P) and evaluating the rele
vant traces.27 

B. Polarized Cross Sections 

The helicity representation also allows a simple dis
cussion of polarization phenomena.15 In the scattering 
of unpolarized particles, it is possible to polarize the 
particles normal to the scattering plane. If the fraction 
of the scattered particles with spin up minus the fraction 
of particles with spin down is called P, when the 
particles have scattered at a given angle to the left, P is 
given asymptotically by 

da 1 / s V - 1 

only 1=0 poles), 

/ s yp-1/ s \ 

\sop) W V 

(?) 

da / s \ap~l 

2wP—=Lpp 
dt \SQ*~/ \SQ 

+Lt 

+Lt nrxT-(4.6) 

The coefficients Lij are again simple and have the form, 

4 sin7rap sin7rap'.Lpp' 

rp smwap—rp' sin7ra:p'+rprp' sin7r(ap—ap*) 

= (b1+
pb1+

p'+apaP< (-t/4mN*)h+pb2+
p') 

X (apbz+. pb1+
p'—ap'b2+F'bi+

p) 

X 
\ 4WJV2/ 2MN 

(4.7) 

dt 2w *j 

\s0 

s0\ 

X f — ] (VN^'+^N^N^N^N^ (4.5) 

As before, use of Eq. (2.12) allows us to evaluate 
Eq. (4.5) explicitly. We find, asymptotically (including 

27 D . H . Sharp, P h . D . thesis to be submitted to California 
Ins t i tu te of Technology (unpublished), 

The other coefficients are obtained by changing the 
labels appropriately. That polarization phenomena 
occur only as a result of the interference between various 
trajectories can be seen from Eq. (4.5). 

C. Total Cross Sections 

By the optical theorem, the total cross section is 
related to the imaginary part of the forward-scattering 
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amplitude, 

0"tot(V) = 
-1 

[s(s-4mN
2)l 1/2 

•lmT(s,t=0). (4.8) 

To apply this formula, we need to evaluate the spin 
average of each of the Fermi invariants in the forward 
direction. We shall do this by computing the two 
helicity amplitudes T(+ + , + + ) and T(+ —, — + ) for 
/ = 0, where the ± signs denote the helicities of particles 
(1 ' , 2', 2, 1). We find 

(+ + ,++) (+- , - + ) 
S 4:MN2 4:MN2 

T -AmN
2 4mN

2 

A -(2s-4mN
2) (2s-AmN

2) (4.9) 

V (2s-AmN
2) (2s-4:tnN

2) 

P 0 0. 

Since a trajectory with quantum numbers rP— —, 
(—)ZGP= — gives a contribution only to Pp, it makes 
no contribution to the total cross section. In particular, 
there will be no terms in formulas for the total cross 
sections arising from the 7r-meson and ?7-meson trajec
tories. The contributions to the spin-averaged, total 
cross sections from the P , P ' , co, and p trajectories are 

*pp={Bp-B»Ra(v)+Bp'RP>(v)-B>Rp(v)} 
X ( l - 1 / V ) - 1 / 2 , (4.10a) 

*nP= {Bp-B°R„(v)+Bp'RP,(v)+B>Rp(v)} 

X ( l - 1 / V ) - 1 / 2 , (4.10b) 

<rPp={Br+B»Ru(v)+Bp'RP>(v)+B>Rp(v)} 

X(l-l/v*)-li2, (4.10c) 
where 

B=(2mN
2/so)^-%b1+(0)JJ 

v=(s/2mN
2)-l, 

V»C«(o)]i 
R(v) = 

2«<0>[a(0)-£]k 
•Pa(w(v). 

V. AN ANALYSIS OF RECENT DATA ON NN 
AND NN SCATTERING 

We have analyzed the data reported by Diddens et at2 

on the total cross sections for pp and np scattering and 
those of Lindenbaum et al.u on the pp cross sections. We 
find that the presently available data indicate: 

P p = 3 8 m b , P p ' = 5 3 m b , £ " = 4 8 m b , £ ' « - 9 m b , 

ap/ = 0.3, 0^ — 0.3, a p = 0 . 4 . 
(5.1) 

We should like to make several comments on our 
analysis and its results: 

(i) The inclusion of the nucleon's spin does not give 
any appreciable modification of the structure of the 
Regge analysis of the total cross sections. 

(ii) A study of the Legendre functions, Pa(0) W, indi
cates that for a < 2, Pa is represented by its leading term 
to better than 10% for v>2. Since v= (Ei&h)/m, it is 
certainly sufficient, for incident energies above 2 GeV, 
to keep only the leading term in any practical analysis 
of data. Moreover, the replacement of the Legendre 
functions of the first kind, Pa(v), by Legendre functions 
of the second kind, (X_a_i(fl), does not alter the fact that 
only the first term, va, in the expansion of these func
tions need be kept in the analysis, even though the 
(X_a_i(?/) are singular at v= + l. This simplifies the 
analysis, but eliminates the hope that perhaps the 
introduction of a second vacuum trajectory with a in 
the range 0 to 1 could be avoided provided that one 
included the full contribution from the Regge poles on 
the Pomeranchuk, omega, rho, and "ABC" trajectories. 

(iii) Our analysis requires that the location of a 
possible second vacuum pole, ap'(0), be significantly 
larger than zero, so that it is unlikely that the trajectory 
could be associated with the ABC anomaly. 

(iv) Our results are different from those of Hadjioan-
nou et al.,n who arbitrarily assumed aa(0) =ap> (0) = 0.5 
and neglected the p trajectory. 

(v) The sign of the p term is opposite to that of the 
co term. If a pole analysis is to be taken at all seriously, 
this is puzzling since it should be positive. This dis
crepancy may well arise from present inaccuracies in the 
np data. Alternatively, this may mean that the cut 
associated with the p trajectory is not small near t = 0, 
and, indeed, overrides the pole part of the contribution. 

(vi) We can interpret our results for the P and P' 
trajectories as follows. The analysis of the data indicates 
the presence of an additional singularity besides the P, 
co, and p poles. This we attribute to a cut associated with 
the P trajectory. If the cut is approximated, near £ = 0, 
by a pole, then this pole is described by the parameters 
we have associated with the P\ and whose numerical 
values are as given above. In so doing, we have ignored 
possible cuts associated with the p and co. 

(vii) This analysis suggests a possible explanation 
for the apparent lack of shrinkage28,29 in the wp diffrac
tion peaks. Note that the pp cross sections receive con
tributions from the P , P ' , and co trajectories. (We sup
pose the p contribution to be small.) Each of these con
tributions is individually large, but the contribution of 
the P' is cancelled out by that of the o), leaving just the 
P as the dominant contributor. In irp scattering, on the 
other hand, the co can not contribute at all, which leaves 
the P' as a competitor of the P . These two contributions 
could well combine to give a resultant shrinkage which 
is much less rapid, over a given range of s, than that 
observed in pp scattering. Note that this explanation 
does not depend in any essential way on the supposition 

28 C. C. Ting, L. W. Jones, and M. L. Perl, Phys. Rev. Letters 
9, 468 (1962). 

29 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 
Russell, and L. C. L. Yuan, Phys. Rev. Letters 10,376 and 543 (1963). 
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FIG. 1. F(t)/a(t) versus t for s0 = l, 2, 3 (GeV)2. The experimental 
uncertainty in each point is typically about 15%. 

that the P' is a pole, rather than a cut associated with 
the P trajectory. 

Finally, we have analyzed the data of Diddens et al.z 

on the pp elastic differential cross sections. These data 
lie in the range 12<(s/2mN

2) — l = EL/mN<2S and 
0 < - / < 0 . 6 0 GeV2. 

Only the Pomeranchuk contribution was included. 
The cross section is then given by Eqs. (4.2) and (4.3), 

rda 

Vdt 

fda\ 

dt I i=o-

b1+
2(t)-a2(t)b2+

2(t) 
• [ ( • 

\ 4wW&i2(o)-IL 

- ) 

4m AT2/ 

1 -ff2s+t-4niN
2yai>M-2 

2s0 J 

(5.2) 

We note that in this one-pole approximation, the differ
ential cross section involves only one unknown function, 
namely, 

F(f) = bH
2(t) -a2(t)b2+

2(t) (t/4niN2) • (5.3) 

We assume for a(t) the linear behavior 

a(t) = l+t, (5.4) 

in accord with existing data. 
According to Gell-Mann's ghost suppression mecha

nism,4 the residue F(t) must contain a factor of a(t) in 
order to eliminate the possibility of a ghost at a = 0 

[t~ — \ (GeV)2]. The resulting quantity, F(t)/a(t), we 
expect to be nearly constant for small negative L 

The arbitrary parameter s0 is to be chosen so that 
F(t)/a(t) varies as slowly as possible with /. We try the 
values So=l, 2, 3 (GeV)2. Results are summarized in 
Fig. 1. We see from the figure that the function F(t)/a(t) 
has a linear behavior for t< — 0.40 (GeV)2. Beyond this 
point, F(t)/a(t) shows a marked increase reflecting a 
corresponding increase in the experimental value of 
da/dt. The graphs show quite clearly that the function 
F(t)/a(t) is most nearly constant for s0= 1 (GeV)2. 
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APPENDIX: DECAY RATE OF THE SPIN-2 
POMERANCHUK RESONANCE30 

The Regge approach seems to afford an explanation 
of the constancy of total cross sections at high energies 
if the existence is assumed of a Regge trajectory aP(t), 
having the quantum numbers of the vacuum, positive 
signature, and ap(0) = l . Accepting this, it is possible 
that a spin-2 resonance, C, having the same quantum 
numbers and mass mG

2^\ (GeV)2 may lie on the 
Pomeranchuk trajectory.31,32 Such a resonance should 
show up as a peak in T=0 irir scattering and in KK 
scattering. I t is the purpose of this note to discuss the 
two-body decay modes of this resonance. 

The graviton G is coupled universally to the sym
metrized stress-energy-momentum tensor T^. We as
sume, in complete analogy with Gell-Mann and Zach-
ariasen's treatment33 of the p meson, that the spin-2 
resonance is a slightly unstable spin-2 meson, that it 
couples strongly to baryon and pion pairs, and that it 
dominates the gravitational form factors.34 If we write 
a dispersion relation for the vertex shown in Fig. 2, 
assume the approximation depicted in Fig. 3, andfdefine 

J/2 
G = (87rGr < TTTT | T j O > (4E7rEir)

1 

FIG. 2. Decay vertex for C meson. 

1/2 

30 Murray Gell-Mann has also obtained these results inde
pendently. 

31 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8, 41 
(1962). 

32 C. Lovelace, Nuovo Cimento 25, 730 (1962). 
33 M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 

(1961). 
34 P. G. O. Freund, Phys. Letters 2, 136 (1962). 
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the coupling indicated in Fig. 4, we obtain 

(ZirGyizEv 

= (STGy^(mc"/XCG)(ET/mT)XClr^l/(q2+mc2)~]\q^ 
+ (contributions from higher 

mass intermediate states). (Al) 

Thus, XCTCTT^ (mv/mc)XcG> Replacing the pions by any 
other pair of external particles to which the C is strongly 
coupled gives the same relation, with the mass of the 
new particles replacing the pion mass. This is the 
principle of universality, which would hold rigorously 
if the C meson were massless. 

We shall now compute the decay rate for C ~-> 2T, 2K. 
The amplitude for the decay C —> 7r+, TT~ is 

T= (XCxj2niv)e{iV(p-p')ii{p-p')v, (A2) 

where p, p' are the momenta of the pions and €M„ is the 
polarization tensor of the C meson, which is at rest in the 
c m . system. With inclusions of isotopic spin factors, we 
find for the decay rate 

mcXc 
C-+27T ( _ i \ . (A3) 

80 4TT 

Similarly, we find for the decay C —» K-\-K the rate 

mcX CKK2 /wic\2/ 4CMK2\ 5/2 

C-+K+K 
60 4?r \mK/ \ mc

2 / 
(A4) 

If universality is approximately valid, XGirv(mc/mv) 
^XcKKimc/ntKJ^XcG, and the decay rates TC->T++T-
and TC-+K++K~ differ only by the phase space factor. 
Thus, for the ratio of the 2ir and 2K rates, we find 

r c ^ +
+ x7rc-*K + +K- = 9.6 if w c = 1.25 GeV 

= 2.6X103 if w c = 1.00 GeV, 
(A5) 

independent of the coupling constant XCG. 
We can now utilize the fact that the spin-2 resonance 

lies on a Regge trajectory to arrive at a crude estimate 
for its width. The contribution of the Pomeranchuk 
trajectory to the T = 0 KIT scattering amplitude is1,4,15 

M-J 
\SQ/ L 2 sin7ro;p(0J 

2s0vpjap(t) y (A6) 

where we have defined the coupling 7]PirTso that the ghost 
suppression factor aP{t) is explicit in the amplitude. At 
t equal to the energy of the resonance, the Regge pole 

FIG. 3. Dominance of gravitational form factor by C meson. 

>2— = (8irG)V2 m| / X c G 

FIG. 4. Definition of graviton-C-meson coupling. 

residue can be identified with the coupling constant of 
the unstable particle to two pions; 

r}pj{mc
2) 2m,v

2 

2 =XC„* (A7) 
irec so 

where ec=d (Reap)/dt at t = mc
2. 

From the optical theorem, the asymptotic total 7T7T 
cross section is equal to r)PTT

2 (0). I t is thus apparent that 
to make an estimate of the decay rate, one must know 
the quantity 2\j}P7r7

2(mc2)/vp^2(0)~](ecSQ)-1, to which 
the decay rate is proportional. Our estimate is crude 
because we assume that the above factor is 2, which we 
believe not to be off by an order of magnitude. From 
the analysis of the differential cross section for elastic 
nucleon-nucleon scattering, we know that 

€ P = d ( R e a p ( 0 ) / # | « - o « l (GeV)~2, 

and for the nucleon-nucleon channel we have found from 
our data analysis that So— 1 GeV2. I t is our conjecture 
that the scaling factor s0 is a property of the trajectory, 
rather than a different parameter for each reaction. The 
last consideration in making our assumption is the 
expectation, or hope, that the functions r}P„T(t) and 
d(Keap(t))/dt do not change drastically between 2 = 0 
and t = tnc2. 

From the factorization theorem, and the asymptotic 
TTN and NN total cross sections, it follows that crwv 

= rjprir
2(0)~12 mb.20 Inserting this into Eq. (A7), we 

are led to 
Xc„ 2 /4 i r« w.V7r7r/27r2 = 0.03. (A8) 

This value gives the following decay rates: 

rC-+27r = 32MeV for w o = 1 . 0 G e V 

= 66MeV for w c = 1.25 GeV, 

TC^KK= 10 keV for mc= 1.0 GeV 

= 8.9 MeV for w c = 1.25 GeV. 

I t is interesting to note that the universality concept 
formulated by Freund34 is identical to ours, but that the 
consequences for the meson-meson, meson-baryon, and 
baryon-baryon total cross sections are different. In both 
papers, the coupling of the spin-2 particle to another 
object is proportional to the mass of the object. How
ever, if the pole term has the Regge character, the 
coupling at 2=0, which regulates the asymptotic cross 
section, is proportional to -s0

1/2Xc(?/wc. Freund essen
tially assumes that s0

1/2 is reaction-dependent, and 
proportional to the mass of the particle to which the 
Regge pole is coupled, whereas we assume that the 
scaling factor So is a constant for each trajectory. 


