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to be of the same order of magnitude makes one suspect 
that they may be proved to be exactly equal, at least 
in a certain limit. Indeed, in a self-consistent model, 
such as that discussed by Cutkosky,3 the ratio between 
the mixing angles is in principle fixed by the self-
consistency requirement. 

In conclusion, the arguments presented above seem 
to prove that the predictions of SUz symmetry are 
not even qualitatively consistent with the experimental 
observations if no vector mesons other than the 
members of the octet are assumed to exist. The in­
consistencies can be removed by the introduction of a 
unitary singlet vector meson for which some empirical 
support is available. However, it might well be that 
other more complicated interactions, such as the ex-

I. INTRODUCTION 

BELOW 300 MeV/c the K~p interaction is strongly 
dominated by S waves. All channels have been 

found to be satisfactorily described by the 5-wave zero-
effective-range approximation.1 Above 300 MeV/c, 
higher partial waves begin to exhibit themselves in a 
spectacular fashion. Previous to this experiment, an 
analysis of 140 interactions at 400 MeV/c in the 15-in. 
liquid-hydrogen bubble chamber indicated a large cos20 
term in the elastic angular distribution.2 With this 

*This work was done under the auspices of the U. S. Atomic 
Energy Commission. 

t Present address: Aerospace Corporation, El Segundo, Cali­
fornia. 

{ Present address: CERN, Geneva 23, Switzerland. 
1 W. E. Humphrey and R. R. Ross, Phys. Rev. 127, 1305 (1962). 
2 L. W. Alvarez, in Proceedings of Ninth International Annual 

Conference on High-Energy Physics, Kiev, 1959 (Academy of 
Sciences, Moscow, 1960), and Lawrence Radiation Laboratory 
Report UCRL-9354, 1960 (unpublished); also P. Nordin, Phys. 
Rev. 123, 2168 (1961). 

change of members of other multiplets, could play an 
important role. 
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guidance, a much more detailed study of this region was 
begun in 1960. Over 10 000 events have been analyzed 
at K~ laboratory momenta of about 300, 350, 400, 440, 
and 510 MeV/c and form the source of the data pre­
sented here. Apart from the addition of 1000 more K~p 
elastic scatters and the inclusion of a "beam averaging" 
procedure, the data are essentially the same as reported 
in preliminary form earlier.3 Computer fits to the final 
data presented here yield resonance parameters very 
similar to those found in the precomputer analysis. 

In Sec. I I we discuss the K~ beam, and in Sec. I l l , 
the scanning and measuring procedure. The results of 
the measurements and remarks on experimental biases 
appear in Sec. IV. A simplified discussion of the reso­
nance is found in Sees. V and VI, where we establish the 
properties of the resonance and develop the argument 

3 M . Ferro-Luzzi, R. D. Tripp, and M. B. Watson, Phys. Rev. 
Letters 8, 28 (1962); R. D. Tripp, M, B. Watson, and M. Ferro-
Luzzi, ibid. 8, 175 (1962). 
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Analysis of F0* (1520) and Determination of the 2 Parity* 
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The interaction of K~ mesons on protons resulting in elastic and charge-exchange scattering and hyperon 
production are reported for a range of momenta from 250 to 513 MeV/c. About 10 000 events obtained in 
the Lawrence Radiation Laboratory's 15-in. bubble chamber were analyzed. Differential and total cross 
sections for all channels are examined. For 2+7r~, S°7r°, and A-n-0 production, polarization measurements are 
also available. A resonant state is identified with a mass 1519 MeV and a full width T = 16 MeV, decaying 
into KN, 2-7T, and ATTT in the branching ratio 30:55:15, respectively. The resonance is found to have isotopic 
spin 0 and spin §, and its parity is that of the KN Z>3/2 state. By use of the polarization arising from the 
A/2—5-wave interference, a strong argument for negative KN2 parity is obtained. All the data are fitted 
to a model based on a Breit-Wigner resonant amplitude and nonresonant S, P, and D amplitudes, parame­
trized by constant scattering lengths. An extensive search for X2 minima was done on an IBM-7090 computer 
under various assumptions for the spin and parity of the resonance. Only the D3/2 possibility in both K~p 
and 2-7T states yields a satisfactory (43% probability) fit. A Z>5/2 K~~p resonance (with S T in F5/2) is the 
nearest alternative possibility, with a likelihood of less than 1% of fitting the data. 
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concerning the KNX parity. The least-squares computer 
analysis is formulated in Sec. VII, and the results of the 
computer analysis under various assumptions for the 
quantum numbers of the resonance appear in Sec. VIII. 
In Sec. IX we discuss the approximations made in the 
computer analysis and the extent to which the 2-parity 
determination depends on these assumptions. 

II. BEAM 

The beam setup was designed and built by Murray 
and has been reported elsewhere.4 Here we shall recall 
only its main features. 

The beam was designed to provide K~ mesons with 
momenta up to 800 MeV/c. The momenta considered in 
this experiment were obtained by degrading the original 
beam. The K~ mesons were produced by the maximum-
energy proton beam of the Bevatron striking a copper 
target. The beam was extracted from the target at 0 deg, 
where the Tr~/K~ ratio was approximately 500 to 1. 
Once the beam was outside the Bevatron magnet struc­
ture, two stages of electrostatic separation were em­
ployed to select a narrow momentum interval while 
separating K~ from 7r~. Crossed electric and magnetic 
fields were adjusted so that the K~ mesons were un-
deflected, while the 7r~ were deflected vertically. The 
deflection of the w~ image at the first mass-resolving slit 
was about | in. from the K~ image. At that point, the K~ 
were directed through a | - in .X2j- in. opening into the 
second stage, while the T~ were arrested in the lead 
walls of the slit. The success of this method depends 
critically on the separation of the w~ and K~ images, 
which is limited by the electric and magnetic fields 
obtainable in the separators. 

This experiment was the first to utilize the heated-
glass-cathode technique due to Murray.5 This enabled 
us to reach a 50% higher electric-field gradient than was 
possible with previous separators. During normal opera­
tion 450 kV applied across a 2-in. gap between parallel 
plates in both of the identical 10-ft separators yielded a 
gradient of approximately 90 kV/cm. 

At the first slit the beam momentum was 800 MeV/c, 
with a spread of 1%, coherently focused across the slit 
in the horizontal plane. A beryllium wedge was placed in 
the beam so that the high-momentum side traversed the 
thick end, while the low-momentum side was only 
slightly slowed by the pointed end. After wedging, the 
momentum spread was reduced to ± | % . The second 
stage was then essentially free of chromatic aberrations. 

There were two main causes of K~ loss. The length of 
the beam was ^ 7 5 ft, so that only - 2 . 1 % of the 800-
MeV/c K mesons produced at the target lived long 
enough to reach the absorber in front of the bubble 

4 P. Bastien, O. I. Dahl, J. J. Murray, M. B. Watson, R. G. 
Ammar, and P. Schlein, in Proceedings of the International Con­
ference on Instrumentation for High-Energy Physics at Berkeley, 
I960 (Interscience Publishers, Inc., New York, 1961), p. 299-301. 

5 Joseph J. Murray, in Proceedings of the International Con­
ference on Instrumentation for High-Energy Physics at Berkeley, 
I960 (Interscience Publishers, Inc., New York, 1961), pp. 25-33. 

chamber. The second cause of K~ loss was through 
absorption in the copper absorber, which served to de­
grade the incident momentum. This loss depended on 
the amount of absorber, varying in our case between a 
factor of 4 and 5. This degrading also increased the 
relative momentum spread as the central momentum 
decreased. 

At 800 MeV/c, the K flux in the bubble chamber was 
15K~ per 1011 protons striking the target. At 400 MeV/c, 
there were about three K~ entering the chamber on 
each picture. There were approximately 30% back­
ground tracks, half of which were ir~. The TT~ contami­
nation was determined from w~~-p scatterings observed 
in the chamber. Since tf~ are not slowed down at the 
same rate as K~, the ir~ had a systematically higher 
momentum. The difference between the mean momenta 
of the K~~ and T~ ranged from 100 MeV/c at a K~ 
momentum of 510 MeV/c to 200 MeV/c at 300 MeV/c. 

The median K~ momenta for the various exposures 
were 292, 350, 387, 392, 434, and 513 MeV/c. The two 
exposures at 387 and 392 MeV/c are combined on 
occasion, as they differed by a small amount, and 
referred to as the 390 MeV/c run. 

III. SCANNING AND MEASURING 

The film was scanned for interactions and decays by 
a team of five technicians. When an event was found, it 
was classified according to the number of prongs leaving 
the production vertex. All F's that could have been 
associated and all subsequent decays were recorded. 
There were eight possible topologies: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

zero prongs 
zero prongs plus a V 
one prong 
two prongs 
two prongs with a positive decay 
two prongs with a negative decay 
two prongs plus a V 
three prongs 

0 
OF 
1 
2 

2+ 
2 -
2V 
3 

The efficiency for detection of an event varies, of 
course, with the type of event and its position in the 
chamber. To eliminate poorly illuminated areas in the 
chamber, a "fiducial volume" was chosen which pro­
vided a margin on all sides. 

The 0- and 1-prong events were not used in the 
analysis and will be neglected. 

In order to evaluate the scanning efficiency, about 
25% of the film was scanned twice. Table I shows the 
results of the comparison. The efficiency for detecting 
the events studied appears to be very high, obviating 

TABLE I. Scanning efficiencies for the different topologies, 
obtained from a double scan of ~ 2 5 % of the film. 

Topology 

Efficiency (%) 

OV 

98.3 

2 

97.1 

2db 

99.2 

2V 

100 

3 

97.0 
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200 

FIG. 1. Distribu­
tion of the x2 in the 
fit of 948 elastic 
scatterings. 

corrections for scanning losses in computing cross 
sections. 

A sketch was made for each event selected to be 
measured. This sketch served to specify to the measurer 
which two of the four pictures of each frame presented 
the best stereo pair. Once sketched, the event was 
measured by using a "Franckenstein." This machine is 
essentially a projection microscope which digitizes in 
Cartesian coordinates several points along each track 
of the event in the photograph. The coordinates are 
punched on IBM cards along with appropriate reference 
points and event-identifying information. The cards 
served as input to the event-reconstruction computer 
programs. 

Each event was reconstructed, track by track in 
space, from the digitized input cards by the IBM-7090 
program PACKAGE.6 This is the standard program in 
use by the Alvarez Group for event reconstruction and 
kinematical analysis. The same program subjects the 
measured variables on each track to the constraints of 
momentum and energy conservation for the entire 
event. The measured quantities were adjusted to give 
the best fit satisfying the constraints, as measured by 
a X2 calculated by the program. In most cases each event 
was subjected to several different interpretations. 
Usually, the X2 value unambiguously selected one 
interpretation. 

In order to study the X2 distribution, a large group of 
elastic scatterings was chosen randomly. Since usually 
all tracks are measurable in such events, the constraints 
of momentum and energy conservation left the "fit" four 
times overdetermined. The X2 for such a case should 
have a mean of 4. Figure 1 shows the observed X2 dis­
tribution and a theoretical curve normalized to the 
correct number of events for four degrees of freedom 
(solid curve). The observed distribution appears to be 
more spread out than expected. The dashed curve corre­
sponds to the case in which the error assignments are 
about 20% underestimated; this last fit is quite good, 
indicating that no serious distortions exist but only a 
misassignment of error magnitudes. 

As a measure of the contribution to the X2 discrepancy 
by each measured variable, the "pull" quantities Pi(x) 
were examined. The Pi{x) are defined by 

p . / T * \ _ („ .* „ .meaŝ j / / („ * „ .] .meas\2\l/2 .)»)!. 

where xj* is the adjusted value of a variable correspond­
ing to the measured value x;meas. The pull quantities 
should have a mean value of zero and a standard 
deviation of one if no systematic errors are made and if 
the measurement errors are correctly assigned. These 
quantities are discussed in detail in connection with the 

*-c.m. 
t.48 1.50 
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PK -513 *2MeV/c 

8PK «20MeV/c 

PK -434i3MeV/c 

8 P „ -26MeV/c 

PK »392*2MeV/c 

8 P «25MeV/c-
ft 

i.nn n, r l 

PK-387±2MeV/c . 

8P»27MeV/c 

• W 

^L 

PK-35013MeV/cl 

8P„ -3IM«V/c 

PK-293t4MeV/c 

8P„ ».42MeV/c 

FIG. 2. K~ momentum 
spectra from fitted r decays 
at thejix exposure settings. 
Here P& is the median mo­
mentum, and 8Pk the stand­
ard deviation. There were 
134 events at 293 MeV/c, 
97 at 350, 166 at 387, 128 
at 392, 81 at 434. and 59 
at 513. 

100 200 300 400 500 600 
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TABLE II. Cross sections for the different K~ momenta settings (in MeV/c) for K~-\~p reactions. 

Reaction 
products 

K-+p 
K°+n 
S+H-7T-
2 - + 7T+ 
so+ 7 ro b 
A+7T0 

A+7r°+7r° c 

A4~7r+_j_7r-

S0+7T++7T-
Z++7r-+7r° 
S-+ir++ir° 

Total 
(S7T)/=0 

CS^r)/-! 
TfA* 

Px = 293±42 

48.2 ±4.2 
8.0 ±1.2 

13.6 ±1.4 
10.0 ±1.1 
5.2 ±0.9 
5.2 ±0.9 
0.3 ±0.2 
0.15±0.10 
0 ±0.08 
0 ±0.05 
0.05±0.05 

90.7 ±4.9 
15.6 ±2.7 
13.2 ±2.5 
35.7 

350±31 

34.0 ±3.2 
5.1 ±1.1 

10.6 ±1.4 
6.9 ±1.0 
6.3 ±1.4 
4.5 ±1.0 
1.9 ±0.6 
0.9 ±0.3 
0 ±0.09 
0.06±0.06 
0 ±0.06 

70.2 ±4.2 
18.9 ±4.2 
4.9 ±3.3 

25.6 

387±30 

31.9 ±2.5 
8.1 ±1.0 

11.4 ±1.0 
6.0 ±0.6 
6.9 ±0.9 
2.9 ±0.5 
1.2 ±0.4 
1.2 ±0.3 
0.08±0.05 
0.09±0.05 
0.03±0.03 

69.6 ±3.2 
20.7 ±2.7 
3.6 ±2.2 

21.4 

Cross sections (mb) 
392±30 

34.0 ±3.0 
10.0 ±1.0 
14.0 ±1.4 
8.3± 0.9 
6.4 ±1.0 
3.3 ±0.6 
1.8 ±0.3 
2.4 ±0.4 
0.06±0.06 
0.21±0.10 
0.17±0.09 

80.6 ±4.0 
19.2 ±3.0 
9.5 ±2.6 

20.8 

390a±30 

32.7 ±1.8 
8.8 ±0.7 

12.5 ±0.8 
6.9 ±0.5 
6.7 ±0.6 
3.1 ±0.3 
1.5 ±0.2 
1.6 ±0.2 
0.07±0.06 
0.11 ±0.04 
0.12±0.05 

73.8 ±2.3 
20.1 ±1.8 
6.0 ±1.4 

20.9 

434±26 

30.6 ±3.4 
6.0 ±1.2 
8.2 ±0.9 
6.1 ±0.7 
4.9 ±1.3 
3.2 ±0.7 
0.8 ±0.4 
1.5 ±0.4 
0 ±0.08 
0.18±0.11 
0 ±0.06 

61.5 ±4.1 
14.7 ±3.9 
4.5 ±2.8 

17.3 

513±20 

26.5 ±3.3 
3.6 ±0.6 
7.5 ±1.1 
4.9 ±0.8 
1.7 ±0.3 
1.6 ±0.4 
1.1 ±0.3 
2.0 ±0.4 
0.3 ±0.15 
0.20±0.12 
0.14±0.10 

49.5 ±3.7 
5.1 ±0.9 
9.0 ±1.5 

13.0 

a Combined runs 387 and 392 MeV/c . 
b Derived from <r(2°7r0) =cr(2<>7r0+A7r°7r0) — %* (ATT+TT-) . 
c Derived from phase-space considerations; as they stand they violate charge independence when compared with A7r+7r~. 

predecessor program to PACKAGE called KICK.6 When 
these quantities are plotted for all the measured varia­
bles, the curves show normal distributions having in 
each case a mean value nonsignificantly shifted from 
zero and widths indicating an underestimate of the 
measurement errors by about 20%. At no point in the 
experiment was a major dependence placed on the 
proper distribution of X2, only on relative values. The 
errors introduced by deviations in the distribution of 
X2 function and the pull quantities were believed to be 
negligible compared with the statistical uncertainties 
inherent in the data. The output of PACKAGE was in the 
form of a binary magnetic tape which served as input 
to a series of short Fortran EXAMIN routines. These 
calculated and organized the pertinent physical quanti­
ties not directly measured. 

Finally, but not less important, there was the exami­
nation on the scanning table of all events that gave "bad 
fits." These were events where unexpected strong dis­
tortions in the chamber or bad illumination were re­
sponsible for completely false measurements. Further­
more, unnoticed small scatterings or just wrong meas­
urements also went into this category. Through repeated 
measurements with special precautions (not excluding 
hand analysis of the events), we were eventually success­
ful in assigning an interpretation to all events. 

IV. RESULTS OF THE MEASUREMENTS 

A. u Decays and Path Length 

Events of the type K~ —> 7r++7r~+7r~ (r decay) have 
the advantage over the one-prong decays of being very 
easily identifiable in the chamber and of allowing an 

6 See, for example, A. H. Rosenfeld, in Proceedings of the Inter­
national Conference on High-Energy Accelerators and Instruments 
(CERN, Geneva, 1959), pp. 533-541. This describes the separate 
PANG-KICK system. For more details see Reference Manual for 
KICK IBM Program, Lawrence Radiation Laboratory Report 
UCRL-9099, 1961 (unpublished). 

accurate measure of the incident K momentum. There­
fore, they provide a far better measurement of the in­
coming K flux than would the much more numerous 
one-prong decays. 

The incident K~ momentum determined from these 
events had a typical uncertainty of ± 5 MeV/c. Figure 
2 shows the K~ momentum spectra obtained from the 
r decay at each momentum setting. By use of a K~ life­
time of 1.224 X10~8 sec and a r-decay branching ratio 
of 5.77%,7 the flux of K~ at each interval was deter­
mined by the number of r decays observed. The momen­
tum spread of all incoming K's is identical to the decay 
spectrum after correction for time dilation. This correc­
tion consists of weighing the number of r 's in each 
interval around Pk by a factor equal to Pk/Pk, where 
Pk denotes the median momentum for the whole run. 

As expected, the shape of the spectrum at each mo­
mentum interval is approximately Gaussian, with a low-
momentum tail. All interactions and r decays whose 
fitted incident momentum was 100 MeV/c or more 
below the median Pk were discarded. Such events were 
usually not part of the low-momentum tail, but resulted 
from "off-beam" particles mainly produced in large-
angle scatterings in the absorber or final mass-resolving 
slit. 

The value of the median momentum Pk obtained from 
the r decays was then used in fitting all other types of 
events. This was done by averaging the measured inci­
dent momentum of each event with Pk, the two mo­
menta being weighted by the measurement error and 
by the variance 8Pk of the r-decay momentum spec­
trum, respectively. Each event was fitted both with and 
without this "beam-averaging" procedure, in order to 
recognize and eliminate off-beam events. The beam-
averaging procedure allowed a more precise determina-

7 The lastest summary of K^ branching ratios yields 5 ;7±0.2%. 
See F. S. Crawford in Proceedings of the 1962 International Con­
ference on High Energy Physics at CERN (CERN, Geneva, 1962). 
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i FIG. 3. Length of 
the recoil proton in 
elastic scatters for 
fixed cm. scattering 
angles (0c.m.) as a 
function of the in­
cident K~ labora­
tory momentum. The 
cos0c.m.=O.9O cutoff 
was adopted. 

200 300 4 0 0 500 

Momentum, P (MeV/c) 

tion of the incident momentum than possible by direct 
measurement only. For example, when the incident 
track was very short or hidden by other tracks, direct 
measurement often gave unlikely values. 

Finally, all the r decays have also been merged to give 
a single momentum distribution over the whole explored 
region. This over-all path length was then used to 
calculate values of the cross sections for momentum 
intervals smaller than those covered by the individual 
runs. 

Table I I gives values of the total and partial cross 
sections for each run; the values for smaller momentum 
intervals are displayed in Figs. 26 through 29. 

B. Elastic Scattering 

Elastic scatterings represent roughly one-half of all 
interactions. Those chosen for analysis were found 
entirely in the "two-prong" events. Obviously, for 
small-angle scatterings in which the recoil protons carry 
off little momentum, there is some minimum angle 
beyond which the protons are no longer visible. Such an 
event would be classified as a "one-prong" and lost 
among the thousands of K~ decays. Long before the 
recoil becomes completely invisible, the efficiency for 
observing the proton stub drops considerably. Rather 
than attempt to evaluate the detection efficiency, which 
varies rapidly with scattering angle, we eliminated all 
events with cosines of the scattering angle greater than 
0.9 in the center of mass. Figure 3 shows the length of 
the recoil proton versus K~ momentum for center-of-
mass scattering cosines of 0.9 and 0.95. The 0.9 cutoff 
should guarantee a high scanning efficiency. A uniform 
cutoff for all momentum intervals was desirable to sim­
plify merging the different runs. For the higher momen­
tum intervals, the 0.9 cutoff may seem too stringent. 
However, the pion contamination in the beam leads to 
7r~-proton scatterings which at forward angles cannot 
be separated from 7T~-proton scatterings. For cosines 
less than 0.9 this ambiguity essentially disappears. 
Thus, 0.9 was chosen both to eliminate short-recoil 
scanning losses and the ir~-p scattering contamination. 

If the plane of an elastic scattering were vertical, the 
camera might see only the edge of the plane. Thus, we 
might expect a scanning bias against detecting events 

in which the plane of scattering is nearly vertical. There 
are two factors tending to reduce the effect of this bias. 
The bubble chamber has four cameras. Whereas one 
camera might view only the edge of the plane, the event 
should be clearly seen in one of the other three views. 
Also, the magnetic field in the chamber deflects the 
scattered K~ mesons and protons in opposite directions. 
Therefore, even an edge-on view usually appears V 
shaped. Small-angle scatterings with short recoils and 
little momentum loss by the K~ meson would most 
likely be missed. Figure 4 shows the distribution of 
events for various orientations of the plane of scattering. 
This distribution should be and is isotropic. The 
cos0=O.9 cutoff is stringent enough to eliminate this 
source of trouble. 

Figure 5 shows the distribution of errors for the 
incident i£~-meson momentum resulting from the fit. 

E 
3 

100 

P K S 3 8 7 MeV/c 

2 0 4 0 60 80 

<£(deg) 

FIG. 4. Distribution of elastic scatterings versus the angle <f>, 
where 

(KinXKout) * (KinXSaxis) 
COS<f> — . 

|KinXKout||KinX 2?axis 

Here Kin and Kout are vectors in the incident and outgoing K direc­
tions, and the z axis is vertical; <j> is 0 deg for a vertical scattering 
plane. The distributions are folded about 90, 180, and 270 deg. 
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TABLE III . Least-squares fits to the angular distributions for K~p. 

PK 
(MeV/c) (mb) 

Order 
of fit 

Expansion coefficients (mb/sr) 
Ci C2 Cs 

Confidence 
Expected level 

x2 (%) 

293 

350 

390 

434 

513 

48.2±4.2 

34.0±3.2 

32.7±1.8 

30.6±3.4 

26.5±3.3 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

3.78=1=0.13 
3.79±0.13 
3.81±0.19 
3.78±0.19 
3.62±0.24 

2.36±0.11 
2.40±0.11 
2.10=1=0.16 
2.05=b0.l7 
2.12=b0.20 

2.16=b0.06 
2.19=1=0.06 
1.53=1=0.07 
1.50=1=0.08 
1.41 ±0.09 

2.12=1=0.10 
2.14=1=0.10 
1.82=1=0.14 
1.84=1=0.15 
1.95=1=0.19 

1.75=1=0.10 
2.01=1=0.11 
1.82=1=0.15 
1.84=1=0.16 
2.00=b0.19 

0.08=1=0.23 
0.07=b0.24 

-0.50=1=0.57 
-0 .32 i0 .59 

0.41=1=0.22 
0.60=1=0.23 
0.02=1=0.52 

- 0 . 1 2 i 0 . 5 6 

0.36=1=0.12 
0.87=1=0.13 
0.31d=0.26 
0.48=b0.28 

0.23=1=0.19 
0.37=1=0.20 
0.63±0.46 
0.46=1=0.48 

1.17=1=0.19 
1.33=1=0.21 
1.52=1=0.45 
1.14=1=0.51 

-0.10d=0.46 
0.09=1=0.49 
1.93=bl.67 

1.1S±0.45 
1.43=b0.50 
0.50±1.53 

3.12±0.23 
3.35±0.25 
4.61±0.76 

1.23±0.41 
1.14±0.43 

-0.31dbl.38 

0.72=b0.40 
0.63±0.46 

-1.20±1.33 

1.06±0.98 
0.56d=1.07 

1.20±0.95 
1.58±1.12 

1.19±0.49 
0.75±0.55 

-0.55±0.85 
-0.09±0.95 

-0.40±0.81 
0.42±0.98 

-2.43=1=2.10 

1.35=b2.09 

-1.83=i=1.04 

2.06=1=1.87 

2.54=bl.73 

11.8 
11.7 
11.6 
10.5 
9.1 

18.8 
15.3 
8.7 
7.1 
6.7 

214.4 
205.4 

25.2 
19.2 
16.1 

21.7 
20.4 
11.3 
10.8 
9.6 

49.8 
12.7 
9.5 
9.2 
7.1 

18 
17 
16 
15 
14 

9 
8 
7 
6 
5 

18 
17 
16 
15 
14 

9 
8 
7 
6 
5 

18 
17 
16 
15 
14 

84.7 
80.0 
74.4 
75.3 
83.1 

2.5 
5.9 

27.5 
31.2 
24.4 

<io-6 

<10~5 

7.0 
21.4 
31.3 

0.9 
1.0 

13.9 
8.8 
8.7 

0.008 
73.6 
86.7 
87.8 

1 93.5 

The double peaks can be explained as follows: For small 
angles the recoil-proton momenta are well defined, since 
the protons stop in the chamber. For very large angles 
the scattered K~ mesons stop. Since a momentum 
derived from range measurement is much more accurate 
than momentum obtained via curvature, both very-
forward and very backward scatterings yield better fits. 
In fact, an exact correspondence between stopping 
tracks and the first peak was found. 

In order to calculate cross sections for elastic scatter­
ing, the number of events with cos0^O.9 must be 
corrected to include all angles. This was done by fitting a 
power series in cos0 to each angular distribution; the 

PK=350 MeV/c 

FIG. 5. Incident-
K~ fitted momentum 
error for elastic scat­
terings. The double 
peaks are due to the 
different accuracies 
attainable in the mo­
mentum determina­
tions of the scattered 
particles for stopping 
and leaving tracks. 

10 20 30 ~0 10 20 

S P K ( M e V / c ) 

total number of events was then obtained by integrating 
the best-fit curve. 

Figure 6 shows the differential cross sections for each 
of the momentum settings individually. These distribu­
tions were fitted by a least-squares procedure to a 
polynomial of the form 

dcr/dti = C0+Ci cosd+C2 cos20H \-Cn cosn0, 

where 6 is the c m . angle between the incident and 
scattered K~ mesons. 

The results of these fits for orders n=0 through 4 are 
displayed in Table I I I , together with the values obtained 
for the elastic-scattering cross sections. 

The optical theorem relates the imaginary part of the 
forward-scattering amplitude to the total cross section. 
The square of the imaginary part gives a lower limit to 
the differential cross section in the forward direction. 
The square of this imaginary part is shown for each 
distribution in Fig. 6. Notice that in all cases the real 
part is consistent with zero. 

C. Sigma Production 

Most of these events were found among the "two 
prongs with a decay" topology, but severe biases would 
have occurred if the analysis had been restricted to only 
this topology. 

Examination of the kinematics of sigma production 
for this range of K~ momenta reveals a disturbing fact. 
Sigmas of both signs produced backwards in the center 

-0.32i0.59
-0.12i0.56
-0.31dbl.38
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FIG. 6. Differential 
cross sections for elastic 
scatterings; 0KK is the 
angle between the inci­
dent and scattered K~. 
The curves are best fits 
to the data. The points 
on the right-hand ordi­
nate represent the square 
of the imaginary part of 
the forward-scattering 
amplitude, as obtained 
from the optical theorem. 
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of mass have such low laboratory momenta that they 
stop, and, hence, decay or interact, before making a visible 
track. Such an event would be recorded as a two-prong 
event or possibly even as one prong plus V i.e., 

K~+p->?>-+>*+, 2~+p->A+n, A~^p+T~. 

The protonic decay mode of the 2 + hyperon may 

appear to be an elastic scattering if the production-pion 
ionization is not examined carefully or if the track is 
dipping steeply. In the examination of two-prong events 
during the analysis of the elastic scatterings, a group of 
events was found in which ionization and curvature 
indicated the outgoing tracks were a T~ meson and a 
proton. Furthermore, events in which the outgoing 
tracks appeared to be ir~ and x + were also found. Neither 
of these groups satisfied the elastic-scattering require­
ment that the incident and outgoing tracks be coplanar. 
These events may be interpreted as production of 
charged sigmas in which the 2 went backwards in the 
center of mass and had insufiicient energy to leave a 
visible track, or else decayed so quickly after production 
that no track was visible. This hypothesis was tested by 
the computer programs for all two-prong events. In 
each case the incoming Kr~ and one of the outgoing 
tracks was used in fitting to the 2-production hy­
pothesis. Energy and momentum conservation require 
four constraints to be satisfied in the fit. Since the 2 is 
not seen, three of the constraining equations were used 
to calculate the 2-production characteristics (its vector 
momentum, for example). This left the production fit 
with only one constraint. The 2 momentum so deter­
mined and the third observed track were fitted to the 
2-decay hypothesis. This fit is also once overdetermined, 
and was usually sufficient to identify the event. As a 
result, the invisible 2's usually satisfied the following 
criteria. First, they would fail to fit either Krp or -K~p 
elastic scattering; second, both the 2 production and 
subsequent 2-decay hypotheses gave consistent fits with 
the data. 

For those two-prong events where two final-state 
pions were observed, there were other possible inter­
pretations. In addition to invisible 2 * hyperons, these 
events could also be charge-exchange reactions with 
very short K° or A7r+7T" production with a neutral decay 
of the A. Of the several hundred events initially in this 
7r+7r~ group, most proved to be resoluble kinematically 
into their four possible interpretations; the remainder 
were kinematically ambiguous. However, subsequent re­
examination of the event on the scanning table fre­
quently disclosed unmeasurably short but visible 2 ± 

hyperons, or gaps corresponding to K° mesons and in 
the proper direction to satisfy the kinematic fit obtained 
from the zero-length assumption. Those that did not 
yield to this re-examination were assigned to various 
categories according to their most probably interpreta­
tion. Fewer than 1% of them fell into this truly 
ambiguous class. 

Another two-prong possibility arose from 2+—-> pw° 
with a very small decay angle between the 2+ and 
proton. These generally came from energetic 2 + pro­
duced in the forward direction. Initially they were 
classified as two-prong events, but kinematic analysis 
and subsequent reexamination of these events showed 
them to be 2 + . 

One further effect should be mentioned. Any 2~ 
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TABLE IV. Observed and predicted S~ absorptions for backward-produced 2 hyperons. 

Momentum 
PK 

(MeV/c) 

293 

350 

390 

434 

513 

Totals 

Interval 
of 

COS0K~T+ 

1.0 to 0.9 
0.9 to 0.8 
0.8 to 0.7 

1.0 to 0.9 
0.9 to 0.8 

1.0 to 0.9 
0.9 to 0.8 

1.0 to 0.9 
0.9 to 0.8 

1.0 to 0.9 
0.9 to 0.8 

Observed 
number of 

decays 

4 
11 
14 

1 
6 

17 
24 

14 
9 

9 
6 

Expected 
number of 

absorptions 

5 
2 
0 

1 
0 

10 
0 

5 
0 

1 
0 

24(16+8) 

Observed number 
of absorptions 

(visible A+invisible A) 

3(3+0) 
0(0+0) 
2(2+0) 

4(3+1) 
0(0+0) 

8(3+5) 
3(3+0) 

2(1+1) 
0(0+0) 

2(1+1) 
0(0+0) 

24(16+8) 

hyperon may interact with a proton according to 

or 

2r+p -> 2 ° + ^ - » K+y+n 

2~+-^ —» A+/z. 

The A would be visible only two-thirds of the time, when 
it would decay via its charged mode. 

In order to estimate the number of 2~ absorptions, 
the percentage of 2~ hyperons that would stop and 
interact was calculated. The possibility of in-flight 
absorption was neglected. On the basis of the number 
of decays observed in any angular region, the corre­
sponding number of absorptions may be estimated. 
Since the number of events considered is so small, large 
statistical fluctuations are not surprising. Table IV shows 
the comparison of observed and estimated absorptions. 
Although large fluctuations occur for the individual 
intervals, for the combination of all intervals agreement 
is quite satisfactory. Both the total number of absorp­
tions and the division into visible and invisible A decay 
modes agree with the estimates extremely well. 

Several checks can be made to verify that the effects 
of the biases seen above have been actually eliminated 
from our sample: (a) Figure 7 shows the distribution of 
observed times from production to decay compared with 
the known lifetimes. Agreement is very good, (b) The 

comparison of the pionic and protonic decay rates for 
the S + is shown in Table V. The over-all ratio of 0.51 
agrees with the expected value of 0.51rb0.02.1 (c) No sig­
nificant depopulation or overpopulation near COSOKT = 1 
can be found in the 2 angular distributions (see Figs. 9 
and 10) at any of the momentum intervals considered. 
This confirms the identification of the "zero-length" 
sigmas and justifies the confidence that no loss of such 
events has occurred. 

Figure 8 shows the distribution of errors on the inci­
dent —K~ momentum for 2)=*=. Although there is a slight 
variation with production angle, the resolution seems 
sufficient to warrant division into 10-MeV/c intervals. 

The angular distributions for each momentum setting 
are shown in Figs. 9 and 10. Again, a least-squares fit to 
powers of cos# was made to various orders. Tables VI 
and VII display the results of these fits. The curves 
drawn on Figs. 9 and 10 are the fits of order » = 2. Since 
no corrections were needed, the observed numbers of 
events were used to calculate the ^-product ion cross 
sections for each momentum exposure. These cross sec­
tions are shown in Tables VI and VII. 

The polarization of the 2+ hyperon was observed 
through the up-down asymmetry of the protons in the 
decay 2 0

+ —» M°- The normal to the 2 production plane 
was defined by the unit vector n=KKX&T/ | J^KXKV | , 

TABLE V. Number of events and decay branching ratios of S + hyperons. The last two rows give 
the number of Z~ and the S+ /2~ production ratios. 

2 0
+ ( 2 + - > H ^ ° ) 

2 +
+ ( 2 + ~> W+7T+) 

2,'o++2+
+ 

XoVCS+
++2o+) 

2T (all kinds) 
(2 0

+ +2 + +) / r -

293 

146 
126 
272 

0.54 
199 

1.37 

350 

78 
86 

164 
0.48 

106 
1.55 

387 

188 
190 
378 

0.50 
219 

1.73 

Momentum (MeV/c) 
392 

158 
169 
327 

0.48 
194 

1.69 

434 

68 
66 

134 
0.51 

99 
1.35 

513 

67 
44 

111 
0.60 

72 
1.54 

Total 

705 
681 

1386 
0.508 

889 
1.56 
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FIG. 7. Observed 
distribution of times 
from production to 
decay for S hyper-
ons in the reactions 
(a) i T - + ^ ; £ - + 7 r + , 
2 - - > T T - + W ; (b) K-

£+7r°; and (c) iC~ 

n+7r+. The lines are 
drawn with a slope 
determined by the 
known lifetime (in­
dicated on the graph 
in units of 10~10 sec); 
the vertical position­
ing is from an eye fit 
to the data. The 
shaded areas repre­
sent the two-prong 
events identified as 
S hyperons. 

where KK and KT are unit vectors in the K~ and x~ 
directions. The angle 8 is the angle between n and the 
proton direction qp; cos8=qp"n. 

K~+P — 2*+7r-

o5<cose„ aa 

n. 
A J Jii 

K~*P-^2" + 7r+ 

a5$cose„ <IJ3. .O.O$cos0 <0.5. 

10 20 0 10 20 

k).5scos0 <0.0j 

LA, 
|-I.O$cos0 <-0.5. 

Jj 
8 PK(MeV/c) 

FIG. 8. Error in the incident-iT" fitted momentum for Sir. The 
data are divided according to cm. production angles; &KT is the 
angle between the incident K~ and the pion. 

390 MeV/c 

K + p — 2 + TT" 

F„ » 5|3MeV/c 

P„ «434MeV/c 

0 

60 

0 

200 

FIG. 9. Differential 
cross sections for the re­
action K-+p-*2++7T-. 
The curves are best fits 
to the data. 

-1.0 -0,5 0 0,5 1.0" 

cos0 K r (cm.) 

The distribution of events versus 6 (where sin# 
=KKXKT) and p becomes 

d2<r 
—=Tl(e)ll+aoP(e) cos/3], (1) 

d cosdd cos/5 

where 1(6) and P(6) are the usual angular distribution 
and polarization functions of the production angle 0, 
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TABLE VI. Least-squares fits to the angular distributions for S+7r"". 

2257 

PK 
(MeVA) 

293 

350 

390 

434 

513 

(mb) 

13 .6 i l .4 

10.6=1=1.4 

12.5=1=0.8 

8.2=i=0.9 

7.5=1=1.1 

Order 
of fit 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 
0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

Co 

1.07=1=0.06 
1.07i0.06 
l . l l iO .10 
l . l l iO .10 
1.06=1=0.12 

0.80=1=0.07 
0.82=1=0.07 
0.70i0.09 
0.71=1=0.10 
0.66=1=0.12 
0.75i0.03 
0.76=1=0.03 
0.43=1=0.04 
0.42i0.04 
0.40=1=0.05 

0.54i0.05 
0.54i0.05 
0.35i0.07 
0.36i0.07 
0.33=1=0.09 

0.47=1=0.05 
0.50=1=0.05 
0.37i0.07 
0.36=1=0.07 
0.27=b0.08 

Expansion coefficients (mb/sr) 
Ci C2 CB 

- 0 . 0 6 i 0 . 1 1 
-0.06=1=0.11 
- 0 . 0 6 i 0 . 3 1 
- 0 . 0 8 i 0 . 3 1 

-0 .19 i0 .12 
-0.20db0.12 
- 0 . 4 7 i 0 . 3 0 
- 0 . 5 0 i 0 . 3 1 

-0 .21iO.07 
-0 .35iO.07 
- 0 . 2 2 i 0 . 1 6 
- 0 . 2 4 i 0 . 1 6 

- 0 . 0 2 i 0 . 1 1 
- 0 . 0 7 i 0 . 1 1 

0.13i0.23 
0.12i0.23 

- 0 . 2 2 i 0 . 1 0 
- 0 . 3 1 i 0 . 1 1 
- 0 . 0 3 i 0 . 2 7 
- 0 . 0 9 i 0 . 2 7 

-0 .13 i0 .22 
-0 .13 i0 .22 

0.50i0.90 

0.40i0.23 
0.39i0.23 
1.04i0.89 

1.70i0.14 
1.7li0.14 
2.05i0.46 

0.78i0.20 
0.78i0.20 
1.21i0.77 

0.53i0.18 
0.59i0.18 
2.16i0.72 

0.00i0.49 
0.02i0.49 

0.49i0.50 
0.53i0.50 

- 0 . 2 7 i 0 . 2 8 
-0 .24 i0 .29 

-0 .41 i0 .40 
-0 .37 i0 .41 

-0 .49 i0 .43 
- 0 . 3 6 i 0 . 4 3 

c4 

~0 .78 i l . 10 

- 0 . 8 4 i l . l l 

- 0 .47 i0 .62 

-0.57iO.97 

-2 .10 i0 .93 

Confidence 
Expected level 

X2 X2 (%) 

3.8 
3.1 
3.1 
3.1 
2.6 

7.9 
5.5 
2.6 
1.6 
1.0 

173.9 
165.5 

6.6 
5.7 
5.1 

23.9 
23.8 

8.5 
7.5 
7.2 

23.3 
18.6 
9.8 
8.4 
3.3 

7 
6 
5 
4 
3 

7 
6 
5 
4 
3 
7 
6 
5 
4 
3 

7 
6 
5 
4 
3 

7 
6 
5 
4 
3 

80.3 
79.6 
68.5 
54.1 
45.7 

34.1 
48.1 
76.1 
80.9 
80.1 

<10-6 
<10-* 

25.2 
22.3 
16.5 

0.1 
0.05 

13.1 
11.2 
6.6 

0.2 
0.4 
8.1 
7.8 

34.8 

and ao is the decay-asymmetry parameter (helicity) in 
2 0

+ decay.8 At an angle 0, the average value of cos$ is 
given by 

(cos/3}a 

cosp[l+a0P(6) cos/3]d cos/3 

[1+a0P(d) cos/3]d cos/3 

a0P(d) 
(2) 

The experimental quantity a0P(d) and its uncertainty 
is then given for N events by 

3 N 
aoP(0) = — Z c o s f t i 

N i-i 

\ 3 - ( a o P ) 2 l 

. N 

1/2 

(3) 

D. Zero-Prong-Plus- V Events 

Several interactions lead to the zero-prong-plus-V 
topology. Listed below are those energetically allowed 
at our momenta: 

> p+7T~ 
• A + 7 T 0 \ . 
•A+7T 0 +7r 0 / 

• 2°+7r°+7r0/ 
- A + 7 , A —> P+TT" 

(a) 

(b) 
(c) 

(d) 
(e) 

8 E . F. Beall, B. Cork, D. Keefe, P. G. Murphy, and W. A. 
Wenzel, Phys. Rev. Letters 1, 285 (1961). 

The S W cross sections are so small at the energies con­
sidered that these reactions were completely neglected. 

Although each of these interactions leads to the same 
topological appearance, the K°n events may be easily 
identified at the scanning table. The ir+ produced in the 
decay can be distinguished from the proton of a A decay 
because of its lighter ionization. In addition, the kine-
matical fit to the production and decay sequence de­
scribed by (a) was also sufficient to identify the event 
unambiguously. (Very short K° mesons, initially classi­
fied as two prongs, were subsequently identified by 
ionization and kinematics.) The K° direction and TT^ 
momenta result in accurate values for the fitted incident 
K~ momentum. The average fitted K~ momentum error 
was 4 MeV/c. In order to obtain detailed cross sections, 
events from all runs were merged together to construct 
an ideogram of events versus K~ momentum. A com­
puter program was employed which assigned to each 
event a unit area under a Gaussian curve centered at the 
fitted momentum and whose width was the fitted error. 
By this procedure the cross sections to be shown later 
were calculated in 10- and 20-MeV/c intervals over the 
resonance region. No finer division was made, since only 
a limited number of events was available. The average 
cross section for each of the beam-momentum exposures 
is displayed in Table I I . To account for the invisible 
decay modes of K°, the number of events was multiplied 
by 3 when cross sections were computed. Differential 
cross sections are given for each momentum run in 

-0.08i0.31
-0.19i0.12
-0.20db0.12
-0.47i0.30
-0.21iO.07
-0.35iO.07
~0.78il.10
-0.57iO.97
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. ,.!.,, I - I 

FIG. 10. Differ­
ential cross section 
for the reaction K~ 
-H>~*:£-+7r+. The 
curves are best fits 
to the data. 

-1.0 -0.5 
cos0„ (c.m.) 

Kir J 

Fig. 11. The 390-MeV/c data are shown fitted satis­
factorily through cos20. 

Although the charge-exchange reactions discussed 
above were not difficult to identify, analysis of the 
reactions involving a A was less straightforward because, 
after identification of the A decay, no production fit is 
possible except for reaction (b). Even in the latter case, 
a fit would not help much in disentangling the direct 

lambdas of reaction (b) from the decay products of 
reaction (d). 

The method followed was based on the "missing-
mass" distribution. First, only those events were chosen 
in which the incident K~ momentum as measured by 
curvature was not different from the known beam mo­
mentum (as measured from r decays) by more than 1.5 
standard/leviations. Those accepted were then averaged 
with their appropriate central beam momentum to ob­
tain a better measure of the Kr~ momentum at the inter­
action point. This averaged momentum was then used 
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FIG. 11. Differ­
ential cross sections 
for the reactions K~ 
+p-^K°+n; 0K-R° 
is the c.m. angle be­
tween the incident 
K~ and the K\ Be­
cause of the limited 
statistics no fit is 
shown except for the 
390-MeV/c interval. 
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to transform the A momentum into the center mass of 
the K^p system and to compute the total missing mass, 
/x, required to conserve four-momentum: 

M2=(£c.m.-EA)2~~PA2 , (5) 

where Ec.m, is the total center-of-mass energy and EA. 
and PA are the A total energy and momentum in the 
c m . system. Once the selected events were separated, 
the entire sample was divided in the same relative 
fraction. 

Figure 12 shows the distribution of /x2 at each momen­
tum interval, along with the allowed limits for each type 
of interaction. Because of measurement errors, occa-

Missing mass, / t (BeV) 

FIG. 12. Ideograms 
of the square of the 
missing mass, ju2, 
from the reaction 
K~-\- p —>A+neutrals 
(/JL) at the various 
momentum expo­
sures. Phase-space 
limits are drawn for 
the possible reac­
tions. 

UTi 

513 M e V / c 6 9 e< 

-hTrrrr SL 

FIG. 13. Differ­
ential cross sections 
for the reactions K~~ 
-\-p—>A-f-7r°andir-
+/>->2°+7r°. For the 
S°7i° events the 2° is 
assumed to go in the 
A direction in the 
Krp center of mass. 
Errors indicated are 
statistical. 

cos 8U- (cm.) 

mass squared, p. (10 MeV ) 

sionally one finds n2<0. Events giving /x2<0 are not 
shown on the graphs, but were added to the AT0 portion 
when the relative fractions were determined. The graphs 
shown are ideograms. This is a convenient form for 
subdividing the events among the various possibilities; 
events with the same fx2 value may have very different 
errors depending on their particular configuration. The 
effect of severe statistical fluctuations is also reduced. 

For the Air0 channel, /z2 is uniquely the square of the w° 
mass. These events produce a peak centered around 
(w^o)2 with a roughly Gaussian distribution due to 
measurement errors. For the A7r°7r° events, n2 is a dis­
tribution which begins at (2wx»)2, where the pions are 
at rest relative to each other, and extends up to a maxi­
mum value determined by the total energy available. 
For the SV0 events, fj2 also has a continuous distribution. 
The measured V is the A resulting from the decay of the 
2°(S°--> A + 7 ) . Here fj2 varies because the A has differ­
ent momentum and energy depending on the angle of 
its decay relative to the 2° direction. The shape of the 
A T V 0 spectrum might be expected to follow phase-space 
predictions. The 2°7r° spectrum can be shown to be 
rectangular, the uniform density being guaranteed by 
the isotropy of the 2° decay angular distribution. 

The Aw° peak may be reconstructed on the high side 
by requiring symmetry with the low side. The dashed 
curve drawn over the peaks indicates the right side of 
the area assigned to the A7r° fraction. At this stage the 
spectra have been separated into a pure 1=1 part (A7r°) 
and pure 1=0 part ( S V and ATTV). The values of the 
AT0 cross sections obtained at each momentum interval 
are shown in Table II . No subdivision into finer intervals 
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TABLE VII. Least-squares fits to the angular distributions for 2T~7r+. 

PK 
(MeV/c) 

293 

350 

390 

434 

513 

(mb) 

lO.Odbl.l 

6.9=1=1.0 

6.9±0.5 

6.1db0.7 

4.9=1=0.8 

Order 
of fit 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

Co 

0.73=1=0.05 
0.76±0.05 
0.92=1=0.09 
0.92=1=0.09 
0.88±0.12 

0.48=1=0.05 
0.52=1=0.05 
0.62=1=0.08 
0.61=1=0.08 
0.58=1=0.11 

0.52=1=0.03 
0.53=1=0.03 
0.52=1=0.04 
0.52=1=0.04 
0.51=1=0.05 

0.33=1=0.04 
0.34=1=0.04 
0.18=1=0.05 
0.18=1=0.05 
0.20=1=0.06 

0.24=1=0.03 
0.25d=0.03 
0.12±0.04 
0.11=1=0.04 
0.10=1=0.05 

Expansion coefficients ( 

0.25=1=0.09 
0.22=1=0.09 
0.28=1=0.27 
0.32=fc0.27 

0.23=1=0.08 
0.20=1=0.09 
0.18=1=0.24 
0.20=1=0.25 

0.06±0.05 
0.07±0.05 

-0.22=1=0.12 
-0.22=1=0.12 

0.10=1=0.09 
0.23=1=0.09 

- 0 . 0 8 i 0 . 2 0 
-0.10=1=0.21 

0.10d=0.09 
0.15=1=0.09 
0.10=4=0.18 
0.11=1=0.18 

-0.43=1=0.18 
-0.43=1=0.18 -

0.03=1=0.79 -

-0.24=1=0.17 
-0.24=b0.l7 

0.11=1=0.76 

0.02=4=0.10 
0.06=1=0.10 
0.12=1=0.39 

0.78=1=0.17 
0.82=1=0.17 
0.61=1=0.56 

0.80=1=0.16 
0.81=1=0.06 
1.10=1=0.05 

mb/sr) 
Cz 

-0.11=1=0.40 
-0.15=fc0.41 

0.04=1=0.37 
0.00=1=0.38 

0.5l=b0.20 
0.51=1=0.20 

0.63=1=0.37 
0.67=1=0.38 

0.11=1=0.34 
0.09=1=0.34 

c4 

-0.56=4=0.94 

-0.42=1=0.90 

- 0.07=1=0.47 

0.29=1=0.76 

-0.36=4=0.74 

X2 

17.1 
8.8 
3.4 
3.3 
2.9 

11.4 
3.6 
1.6 
1.6 
1.4 

15.7 
13.9 
13.9 
7.2 
7.2 

31.8 
30.5 
9.3 
6.4 
6.2 

28.1 
26.7 

1.6 
1.6 
1.3 

Confidence 
Expected level 

X2 (%) 

7 
6 
5 
4 
3 

7 
6 
5 
4 
3 

7 
6 
5 
4 
3 

7 
6 
5 
4 
3 

7 
6 
5 
4 
3 

1.7 
18.5 
63.9 
50.9 
40.7 

13.9 
73.1 
90.1 
80.9 
70.6 

2.5 
3.0 
1.6 

12.6 
6.6 

0.004 
0.003 
9.8 

17.1 
10.2 

0.02 
0.01 

90.1 
80.9 
72.9 

is possible in this case because of the large uncertainty 
associated with the unfitted K~ momentum. 

Further separation of the two 7 = 0 reactions is more 
uncertain, since the spectra overlap considerably. The 
AxV0 distribution extends beyond the 2°7r° distribution, 
which provides a means for this division. If the A-zrV 
events are distributed according to phase-space pre­
dictions, such a curve may be normalized to those events 
beyond the S V limit. All remaining events are then 
attributed to the S V channel. 

At each momentum interval, the A7r°7r° cross sections 
obtained in this way appeared to violate charge inde­
pendence when compared with the A7r+7r~ cross sections. 
For A7T7T production from the 1=0 state, the ratio of the 
A7r°7r° to A7r+7r~ is J. From the 1=1 state, only A7r+7r~ 
can be made. Thus, the maximum allowable cross sec­
tion for A7r°7r° is one-half the A7r+7r~ cross section. This 
limit is represented on the spectra of Fig. 12 by the 
dashed curves labeled |A7r+7r~. The values obtained for 
the A x V cross sections are shown in Table I I where also 
the A7r+7r~ cross sections can be seen. This violation can 
probably be attributed to a relatively few poorly 
measured S°7r° events which fall beyond the DV0 limit 
and are, thus, misidentified as A7r°7r°. Nevertheless, the 
persistence of the violation at all momenta indicates 
that the A7T7T channel proceeds predominantly through 
the 7 = 0 state. In order to better estimate the S°7r° cross 
section, the ATTV* cross section subtracted was assumed 
in all cases to be |o-(A7r+7r~). The values are shown in 

Table I I . Here, again, no finer momentum subdivision is 
possible. 

Since neither the 2° nor the ir° are seen directly or 
indirectly in the Z°7r° channel, angular distribution and 
polarization are considerably less reliable than in the 
other channels. The S° has a typical momentum of 265 
MeV/c in the K~p center of mass. Hence, the A resulting 
from the decay may be expected to deviate from the 2° 
direction by at most 15 deg. In all the angular distribu­
tions and polarizations recorded for Z°7r°, we assume that 
the 2° and A directions are identical. However, unless 
we are dealing with a very complicated angular dis­
tribution involving many partial waves, the smearing 
effect is small relative to the statistical uncertainty. The 
polarization of the 2° is deduced from the A polarization. 
The relationship is oi\.Pk= — (1/3)QJAPS0. The angular 
distributions for 2°7r° and A71-0 are shown in Fig. 13. 

E. Two-Prong-Plus- V Events 

For these events (K~+p —> A+7r++7r"; A —» p+w~), 
all tracks are measurable directly—such as the ir+ and 
7r~—or indirectly—like the A; thus the computer fit for 
each event is subject to four constraints. The average 
error on the K~ fitted momentum is 7 MeV/c. The first 
line of Table VIII shows the average cross section for 
each of the beam momentum settings. To obtain the 
cross sections in 10-MeV/c intervals, all events were 
fed into the Gaussian error ideogram routine also used 

-0.08i0.20
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TABLE VIII. Cross sections for A7r+7r~ from visible 
and invisible A-decay events. 

Momentum Cross section (mb) 
<MeV/c) §[o-(A7r + 7r- ,A->^7r)] 3[<r(AirV-, A -> mr 0 ) ] 

293 
350 
390 
434 
513 

0.1Sd=0.10 
0.9 ±0.3 
1.6 ±0.2 
1.5 ±0.4 
2.0 ±0.4 

0.9±0.3 
1.3±0.2 
0.7±0.3 
1.9±0.5 

for the K°n events. A factor of § was used to account for 
the neutral decay mode of the A. 

For each two A7r+7r"~ events observed, there should be 
one event in which the A decays via the neutral mode 
and is not seen. Such events are two prongs. All two 
prongs were subjected to this hypothesis during the 
fitting procedure. Since both final-state tracks are pions, 
candidates for these events may easily be separated from 
K~p and w~p scatterings. Table VIII also shows the 
cross sections obtained from those events in which the 

FIG. 14. Differential 
cross section for the reac­
tion K~~{-p—>A+7T++7T~ 
at 390 MeV/c. The angle 
is that between the in­
cident K~~ and the A. 
The curve shows a least-
squares fit. 

& 

K~+ p — - A + 7T + 

P„ =390MeV/c m 

-1.0 -0.6 -0.2 0.2 0.6 1.0 

cos# _ (cm. ) 
K A 

A decay was not seen. The consistency of the two cross 
sections is quite good. 

Figure 14 shows the angular distribution of the A in 
the K~p center of mass. The data are consistent with 
1+3 cos20 expected from a J—§ angular distribution if 
the dipion is assumed to be in the S state. 

Figure 15 is a Dalitz plot of events in the 390-MeV/c 
runs. The other intervals have too few events to show 
any effect that might be present. If the distribution of 
pion energies were to follow phase space, this plot would 
be isotropic. The points are certainly consistent with 
this hypothesis. In addition to the Dalitz plot, the 
projections of the events on the two axes are shown in 
the same figure; the cm. kinetic energy of each pion is 
divided by the total energy available, Q, to eliminate the 
effects of the incident-momentum spread. The threshold 
for Fi*(1385)+7r production is 405 MeV/c. Because of 
the width (T«50 MeV) of Fi*, this threshold is diffuse 
and extends over more than 100 MeV/c. Production of 
Fi* would appear as broad bands parallel to the axes 

Number of events f / Q 

FIG. 15. Dalitz plot and projections for 87 reactions K~-\-p —> 
A+x++7r~, from the combined 387- and 392-MeV/c runs. Here Q 
is the total available kinetic energy in the K~p center of mass. The 
curves on the plots represent phase space. Points A and C mark the 
vicinity where YL* (1385) production would occur, with the dashed 
lines corresponding to Fj* of mass a half-width below 1385. At 
points D and B the A cm. kinetic energy is maximum and mini­
mum, respectively. 

and centered outside of the phase-space curve, extending 
into the plot in the regions A and C. The lines indicate a 

mass JT below the Fi* mass. An enhancement is 
suggested at A, but the data neither prohibit nor de­
mand Fi* production. 

A diagonal projection of the Dalitz plot on a 45-deg 
line, or equivalently a plot of the cm. kinetic energy of 
the A, would display any TTTT correlations. This is shown 
in Fig. 16. Although it is tempting to dismiss this dis­
tribution as being in accord with phase space, the 
situation is perhaps somewhat more involved. As dis­
cussed later, the A7T7T channel proceeds largely from the 
K~~p, 7=0, Dz/2 state. Since the 1=0 state is symmetric, 
Bose statistics require the TTT system to be in an 5 or D 
state. Energetics favor the 5 state since the maximum 
di-pion relative momentum is 150 MeV/c. In either case, 
for negative KNA parity, the A must be in a P orbital 
state relative to the dipion. Consequently, a P-wave 
centrifugal barrier should suppress low energy A. This 

Phase-space prediction 

FIG. 16. Distribu­
tion of the A cm. 
kinetic energy for 87 
K-+P-^A+TT++TT-
reactions, from the 
combined 387 and 
392 MeV/c runs. 
Various distribution 
shapes are drawn. 

Enhanced high T^ 
77-77" correlation 

J3 
E 

cm, 

16 24 

(MeV) 
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is not observed. On the other hand, recent evidence 
from other experiments suggest a strong dipion effect in 
J = 0 in the vicinity of MTT=400 MeV.9 This would tend 
to populate the region of low-kinetic-energy A hyperons 
and obscure the centrifugal-barrier effect. The net result 
experimentally is a phase-space-like distribution. This 
justifies the use of a phase-space curve in the 2°x°—AA0 

separation. 

V. IDENTIFICATION OF THE RESONANCE 

A. The 390-MeV/c Anomaly 
It is clear from the data contained in the graphs of the 

previous sections and from Table II that there is a 
marked deviation in the behavior of the Kr~p interaction 
in the vicinity of 390 MeV/c which disappears rapidly 
below and above this momentum. Significant enhance­
ments are found in the K°n, AW^T", 2+7r~, and S-^4" cross 
sections. Even more striking variations are seen in the 
angular distributions in most channels. The presence of 
a large cos20 term in the K~p channel at 400 MeV/c was 
observed in earlier experiments and reported by Alvarez 
and by Nordin.2 Capps has conjectured that this arises 
from a K~p interaction in the D3/2 state.10 

Using the large amount of data around this anomalous 
region, we have been able to explain the phenomena in 
terms of a resonance of the Breit-Wigner form occurring 
in a pure state of isotopic spin, angular momentum, and 
parity; in what follows we shall describe how this reso­
nance, interfering with well-behaved nonresonant back­
grounds, gives a very satisfactory fit to all the data. 
Confirmatory evidence for the existence of a resonance 
of this mass, width, and isotopic spin has been found in 
recent experiments involving three-body processes at 
higher K~p and w~~p energies.11 These experiments also 
agree roughly with our branching ratios, but yield no 
information on the phase of the resonant amplitude nor 
on the spin and parity of the resonant state. 

In this section and in Sec. VI we shall discuss the 
identification of the quantum numbers and other charac­
teristic properties of this state in a simplified way, leav­
ing to Sec. VII a discussion of the least-squares com­
puter fit to the data. This discussion will parallel closely 
the preliminary account published earlier,3 with occa­
sional differences in notation. 

B. Resonance Theory—Elementary Remarks 
There are several simple properties of a resonance 

which follow directly from the assumption that they are 
9 N. P. Samios, A. H. Bachman, R. N. Lea, T. E. Kaloger-

opoulos, and W. D. Shephard, Phys. Rev. Letters 9, 139 (1962); 
C. Richardson, R. Kraemer, M. Meer, N. Nussbaum, A. Pevsner, 
R. Strand, T. Toohig, and M. Block, in Proceedings of the 1962 
International Conference on High Energy Physics at CERN (CERN, 
Geneva, 1962); R. I. Kurz, Lawrence Radiation Laboratory 
Report UCRL-10564, 1962 (unpublished); J. Kirz, J. Schwartz, 
and R. Tripp, Phys. Rev. 130, 2481 (1963). 

10 R. H. Capps, Phys. Rev. Letters 6, 375 (1961). 
11 L. Bertanza et al., W. A. Cooper et al., J. Button-Shafer et al., 

M. H. Alston et al., G. Alexander et al., and D. Colley et al., in 
Proceedings of the 1962 International Conference on High Energy 
Physics at CERN (CERN, Geneva, 1962). 

of the Breit-Wigner form and which are of great value in 
fixing the characteristic parameters of the resonance 
without recourse to an elaborate computer fit. 

The resonant cross sections for elastic scattering and 
reactions are written as12 

c r e = 7 r X 2 ( / + | ) 

err = i r X 2 ( / + * > 

r 2 

(£B-£)2+rV4 
r.rr 

' CE«-£)2+ry4: 

(6) 

(7) 

where J is the total angular momentum of the resonant 
state; Te, Tr> and V are the elastic, reaction, and total 
decay rates of the resonant state; F = r e + r r ; E is the 
center-of-mass total energy; and ER is the resonant 
energy. Clebsch-Gordan coefficients appropriate to the 
isotopic spin state will be introduced later. If there are 
several reaction channels, Yr may be further subdivided 
among these various channels. The V are not constants, 
but have an energy dependence that varies slowly over 
the region of the resonance and which, for the moment, 
we shall disregard. 

Equations (6) and (7), expressing a resonant cross 
section behavior, are those appropriate to describe the 
phenomenological properties of an excited hyperon (F*). 
We may visualize the process of F* formation and decay 
as illustrated in Fig. 17. The K~p system comes together 
to produce a metastable state which then decays either 
back into K~p or into any of the other possible final 
states. The probability of formation of F* is propor­
tional to its coupling to the incident K~p channel. The 
probability of F* decay into any channel is proportional 
to that channel width. Hence, the cross section in any 
channel a will be proportional to the product TeTa) lead­
ing to creoc re

2, <rroc reT r, as in Eqs. (6) and (7). For con­
venience, let us introduce the notation € = (2/F) (ER — E) 
and x=Ye/Y, where e is the number of half-widths re­
moved from the resonant energy, and x, which we shall 
call the elasticity of the resonance, is the branching 
fraction into the elastic channel which plays an impor­
tant role in its identification. With r r / r = l — x, the 
equations may be written 

<re=47rX2t/+i)-

and 

<rr= 4 ^ ( 7 + 1 ) 

€2+l 

x(l—x) 

2 +l 

(60 

(7') 

Channel ot FIG. 17. Formation 
and decay of the F*. 

12 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & Sons, Inc., New York, 1952). 
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The total cross section is < r r ^ 4 7 r X 2 ( / 4 4 ) [ V ( ^ + l ) ] . 
Notice that the ratio of the elastic cross section to the 
reaction cross section is independent of energy as long 
as Te and Yr have the same energy dependence, and is 
simply <re/crr=x/(l — x). For Ve—Tr, o> is maximum, so 
x= J represents, in a sense, the condition for impedance 
match between the incident and the reaction channels. 

For a simple two-channel resonance, the complex 
scattering amplitudes called the T matrix elements are 
given by 

1 / x [_x(l-x)Ji\ 
r-^-(r V (s) 

e—i\[x(l—x)2 1/2 1-

with O-=47TX2(.7+1/2) | r(2 .1 3 For example, the diagonal 
elements may represent Kp and Xw elastic scattering, 
while the off-diagonal elements represent the processes 
KP^XTT. All elements of T have the same energy 
dependence, Joe (e—i)~l. I t is easily seen that this 
energy dependence requires that the T vector describe a 
circle in the complex plane, as illustrated in Fig. 18. 
Thus, all resonant scattering amplitudes pass through 
4>—in" at resonance. These properties of the Breit-
Wigner resonance formula are not limited to a linear 
dependence of e upon energy. 

Let us consider now the general behavior of the elastic 
and reaction cross section in terms of the partial-wave 
amplitudes and connect them with the behavior of the 
Breit-Wigner amplitudes. An incident plane wave may 
be decomposed into incoming and outgoing spherical 
waves summed over all angular momenta. The nuclear 
interaction in a given partial wave alters only the 
outgoing wave, shifting it in phase and, if there is 
absorption, reducing it in amplitude. This is represented 
by a coefficient rje2i8, where 8 is a real phase shift and 
rj^l. In terms of these parameters the elastic cross 
section for each partial wave is given by12 

cr6=47rX2(/+|) 
ye* -1 

2i 
(9) 

while the reaction cross section, obtained from conserva­
tion of probability (unitarity), is 

c r r = i r X * ( / + J ) ( W ) . (10) 

The relationships between i}, 8 and the elastic and 
reaction cross sections are illustrated in Fig. 19. The 
unitarity limits on <re and <rr are given by the ordinate 
and the curves labeled 5 = 0 and 90 deg. 

Since for a resonance the ratio <re/ar is independent of 
energy, a resonance is depicted as a straight line of slope 
x/(l—x). As a function of e, one moves up the line, 
reaching the maximum at resonance where e=0 and 
then, beyond resonance, returns down the line. Notice 
that for an elasticity x greater than J, the elastic phase 

13 For a discussion of the T and K matrices for multichannel 
strange-particle processes, see R. H. Dalitz, Strong Interaction 
Physics and the Strange Particles (Oxford University Press, New 
York, 1962). 

FIG. 18. The reso­
nant T matrix am­
plitudes describe cir­
cles in the complex 
plane. Here we have 
T « (e—i)~l and tan^ 
- e - 1 . The Wigner 
condition (Sec. VIB) 
requires that the 
circle be traversed 
counterclockwise as 
the energy increases. 

shift 8 at resonance is J T , while for x< \ at resonance 
we have 5=0 . The latter condition exists for our reso­
nance where #=0 .3 , which is shown as a dashed line in 
Fig. 19. One can understand this somewhat peculiar be­
havior of 8 for x< § by reference to Fig. 20. 

I t is important for the experimental identification of 
resonances by means of scattering processes such as the 
one considered here that the elasticity be not too small. 
If so the resonant effects may appear rather small, 
particularly in the elastic channel, since we have aeccx2 

and <rr <* x. This is especially true for strongly exothermic 
K~p reactions at low energies, where a small bump may 
be obscured by a rapid 1/v falloff of the total cross 
section. However, although the elastic bump (oc #2) may 
be small and statistically not significant for small x, the 
elastic amplitudes will display interference effects in 
angular distributions which will be proportional to x and 
will, therefore, be more easily observed. This is the situa­
tion which prevails for the resonance discussed here.14 

FIG. 19. Relationship be­
tween the elastic and reac­
tion cross sections for a 
given partial wave. The 
region inside 5 = 0 and 90 
deg is allowed by unitarity. 
The line # = 0.3 is the path 
followed by the resonance. 
The points e = ± l and ± 2 
are indicated by the vertical 
marks. 

0.0 0.2 0.4 0.6 0.8 1.0 
<rr / { J + I /2 )TTX 2 

14 A higher-mass resonance, F!*(1660) [see L. W. Alvarez, 
M. H. Alston, M. Ferro-Luzzi, D. O. Huwe, G. R. Kalbfleisch, D. 
H. Miller, J. J. Murray, A. H. Rosenfeld, J. B. Shafer, F. T. Sol-
mitz, and S. G. Wojcicki, Phys. Rev. Letters 10, 184 (1963) and 
P. L. Bastien and J. P. Berge, Phys. Rev. Letters 10, 188 (1963)], 
seems to have an even smaller #<0.1 , which makes difficult its 
identification by means of scattering, whereas F0*(1815) [see 
O. Chamberlain, K. M. Crowe, D. Keefe, L. T. Kerth, A. Le­
monick, Tin Maung, and T. F. Zipf, Phys. Rev. 125, 1696 
(1962)] has # > | and was identified easily by total-cross-section 
measurements. 
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• l ) . / 2 i « x / U - i ) 

v Re 

FIG. 20. Resonant scattering-amplitude circles given by 
T = x/(e—i) for a purely elastic resonance (#=1) and for 
F0*(1520), where # = 0.3. The amplitude T can also be expressed 
as T = (rje2iS — l)/2i, where rj and 5 are as shown. When the reso­
nance is purely elastic we have 17 = 1, otherwise rj depends on e. 
For x = l (or for any #>f ) , we have 5 = x/2 at resonance, while 
for x<if 5 reaches a maximum angle and then returns to zero at 
resonance. The phase of the resonant T amplitude, on the other 
hand, passes through t/2 for all cases. When expressed in terms 
of the eigenstate of the resonance (that linear combination of 
elastic and reaction states which is preserved through the inter­
action), one has by definition # = 1, and the eigenstate phase shift 
always passes through 7r/2 at resonance. But, as noted above, in 
terms of the physical states this is only so for x> J. 

C. Resonance Parameters 

Further on, in Sec. VIII, we assemble the entire 
graphic account of the data as viewed by the computer. 
Figures 26, 27, 28, and 29 in that section show the cross 
sections for the various channels divided into finer 
momentum intervals to enable better study of the 
resonance. Several features of the resonance are immedi­
ately apparent from the behavior of the cross sections. 

The mass of the resonance, taken as the cm. energy 
corresponding to the momentum where the enhance­
ments reach their maxima, is approximately 1520 MeV 
(394-MeV/c K~ laboratory momentum). 

The resonance width T lies between 15 and 20 MeV 
(40 to 50 MeV/c). 

No enhancement is noticeable in the Ax° cross section 
(pure 7=1); furthermore, roughly equal enhancements 
occur in the 2+7r~, 2~~7r+, and S°7r° cross sections. This is 
precisely what one would expect if the isotopic spin of 
the resonance were equal to zero. [We assume charge 
independence; the Clebsch-Gordan coefficients for the 
various channels are given subsequently in Eq. (26).] 
Furthermore, experimental data show that we have 
A7r°7r0/A7r+7r"~J> \ at resonance. This again supports a 
7=0 assignment since for 7=1(0) the ratio should be 
0(1/2). One should note that in the reactions K~p—>A7r°, 
2°7r°, or A7r°7r° which are topologically identical, a 
division of the reaction cross section into 7=1 and 
7=0 can be achieved by separation of A7r° (7= 1) from 
2°7r° and A-TrV* (both 7=0) without further subdivision 
of the latter two. 

The spin of the resonant state can be deduced by 
inspection of the angular distribution at each momen­
tum setting for the various channels by referring back to 
Figs. 6, 9,10,11,13, and 14. A strong cos20 term appears 

in all channels coupled to the resonance. This anisotropy 
is generally strongest at 390 MeV/c and usually dis­
appears below and above the resonance. (The exception, 
S~7r+, follows from the analysis, as will be seen later.) 
One is, therefore, led to the conclusion that the resonant 
state has a spin J>%. Furthermore, since analysis 
through cos20 is generally sufficient to obtain a good fit, 
we conclude that the spin is most likely f. A value of 
/ = § would give rise to terms in the angular distribution 
up to cos40. A further argument, based upon unitarity 
and discussed later, also favors / = f . A more quantita­
tive evaluation of the resonance spin, containing both 
the angular distribution and unitarity requirements, is 
made in Sec. VII, where computer fits are discussed. 

The assignment of J = f allows two possibilities for 
the incident orbital angular momentum of the resonance: 
P3/2 or P3/2. The following argument strongly favors the 
latter case. Below 250 MeV/c, the K~p interaction has 
been carefully studied in the 5-wave zero-effective-range 
approximation.1 It is found to within the accuracy of the 
experiments, that all cross sections and angular distribu­
tions agree very well with this approximation. The data 
at 293 MeV/c also agree with nearly pure 5-wave inter­
action, while the 390-MeV/c angular distributions dis­
play a large amount of cos20 with very little cos0. The 
angular-distribution coefficients An, expressed in terms 
of the partial wave amplitudes 5, Pi, P3, Z>3, and 7}5, are 
found in Eq. (18). Inspection of these equations reveals 
that a P3/2 resonance interfering with a dominant 
S-wave nonresonant interaction would result in large 
amounts of cos0 appearing in the angular distribution; 
also the amount of cos20 predicted in such channels as 
K~p where the resonant component is fractionally small 
would be quite insignificant. On the other hand, a 7)3/2 

resonance leads naturally to the observed behavior. (We 
discuss this point more quantitatively in Sec. VD.) No 
cos0 term results, since it requires interference between 
even- and odd-parity states. 

The final resonance parameter to be fixed is x, the 
elasticity of the resonance given by x=Te/T. The 
resonating part of the K°n channel appears to be about 

394 

373 FIG. 21. The Sand Z>3 
amplitudes for K~p and 
K°n in the vicinity of 
the resonance. The reso­
nance is taken centered 
at 1520 MeV with a con­
stant width r = 16 MeV. 
Momenta (in MeV/c) 
are indicated on the pe­
riphery of the 2D3 circle. 
The imaginary axis is 
vertical and the ampli­
tudes are dimensionless. 
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FIG. 22. The 
(P-E)/(P+E) and 
( F - £ ) / ( / ? + £ ) data 
for K~p and J5% as a 
function of momen­
tum. The solid curves 
correspond to a Dz 
resonance as con­
structed from Fig 21. 
The dashed curves 
are calculated for a 
P3 resonance. 
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5 mb on a 5-mb background. The K~p channel also 
shows about a 5-mb enhancement on a 30- to 35-mb 
background. (With such a large nonresonant back­
ground, however, the statistical significance of the en­
hancement is largely obscured.) Introducing the appro­
priate Clebsch-Gordan coefficient for a 1=0 resonance 
into Eq. (6'), and taking J = f , one finds for the reso­
nant state in the elastic channel <TK~p=<?K0n:=2irX2x2. 
Since 7rX2 equals 20.8 mb at resonance, a 5-mb resonant 
cross section yields #=0.35. By inspection of Fig. 19 we 
see that for a value of x in this region, the elastic 
channel, compared to the reaction channel, is a very 
sensitive function of x (note that in the figure the 
ordinate and abscissa are to different scales). Thus, the 
elastic channel cross section, and, in particular, K°n 
where the nonresonant background is small, gives an 
immediate and sensitive measure of x. The best com­
puter fit to the data in all channels, including angular 

distributions, reduces this estimate to £=0.29zb0.03 for 
a / = f resonance. 

The reaction channels available to an 1=0 resonance 
are 27r and Aww. The A7r+7r~ enhancement is about 2.5 
mb, leading to an enhancement of about 4 mb for 
A7r+7r~+A7r°7r°. The various S7r channels yield an en­
hancement of 5 + 3 + 4 = 1 2 mb for 2+x-+2-7r++2°7r°. 
These should all be equal if there is no / = 1 background 
in the A/2 state. The experiment thus suggests that 
there is present some nonresonant DS/2I= 1 background. 
Another possibility is that charge independence is 
violated to some extent, due perhaps to mass differences 
in the various Xw charge states (this is discussed in 
Sec. IX) . Using the over-all computer fit, the branching 
ratios for the resonant state become KNi^ir'AwTr 
= 30:55:15, where the symbols signify the sum of the 
rates into all charge states. The uncertainty on each 
number is about 5. 

The value of #=0.35 obtained from the enhancement 
in the cross section predicts, through unitarity, a 
definite enhancement in the reaction cross section. 
With the inclusion of the Clebsch-Gordan coefficient, 
a / = ! resonance gives ar=2ir\2(J+^)x(l — x) = 19 
mb. The / = f possibility would require, for the same 
size of the elastic bump, an enhancement of 25.4 mb. 
Since the enhancement appears experimentally to be 
approximately 1 6 ± 3 mb this can be considered as a 
fairly strong argument favoring J = f . 

D. K—p and K°n Differential Cross Sections 

In Sec. VC above, we have seen how nearly all the 
properties of the resonant state can be inferred from an 

FIG. 23. Diagram showing the nonresonant S wave S T ampli­
tudes and the resonant 2Dz amplitude. The data demand that 5 s + 

and Dz be in phase at resonance as shown in order to yield a large 
cos20 in the angular distribution. This leaves two possible Sx~ 
directions as shown, differing in </><sr0_s1 = dbl04 deg. Since the X~ 
angular distribution goes from sin20 below resonance to cos20 above 
resonance, the right-hand orientation is correct. The angle <f>Si-D 
= 124 deg. Momenta are indicated on the periphery of the 2Z>3 
circle. 
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Resonant 

FIG. 24. Graphic definition of the phases used in the computer 
fit to the data. Note that, except for the So amplitude, all non-
resonant phases are defined relative to the real axis. 

Since the squares of the small P waves contribute 
negligibly to the cross section, we may disregard them in 
this approximate treatment. Subtracting the 5-mb en­
hancement coming from the resonant Z>3 state we then 
obtain, using 30 mb and 5 mb for the nonresonant K~p 
and R°n cross sections, respectively, 5^- p=0.60i , S^n 

= 0.25i16 The momentum dependence of these ampli­
tudes in the vicinity of the resonance is described quite 
satisfactorily by a constant complex scattering length. 
We also have DK~P^DR\^= 0.175/\e—i). 

The angular distribution resulting from S and Z)3 

waves is 

/ = — ( |^+2Z) 3 ! 2 cos 2 ^+ |5- / )3 | 2 s in 2 6/ ) . (11) 
K2 

inspection of the behavior of the various partial cross 
sections plus the observation that only even powers of 
cos0 appear strongly in the K~~p and K°n angular dis­
tributions at resonance. Let us now investigate these 
angular distributions more quantitatively within the 
framework of a simple model. 

Assume that the S-wave interaction is given by a 
constant scattering length A. The phase shift 5 is then 
written K cot£= l/A, where K~ 1/X Absorptive proc­
esses lead to a complex A — a~\~ib. The elastic-scattering 
amplitude for complex 8 is Te^ (e2^—l)/2i, which can 
be written as Te=KA/(l — iKA). For low-energy Krp 
interactions, b is found to be large, and because of this a 
becomes difficult to determine. This is especially true 
for the strongly absorptive 7 = 0 where a for both 
Humphrey-Ross solutions is consistent with zero. Al­
though an oversimplification, it is instructive to set 
a=0. Then we have Te=iKb/(l+Kb); thus, Te is 
always imaginary. For Kb^-1 we have Te^i/2. From 
Fig. 20 this corresponds to the real phase shift 5 = 0 or 
|7r. Accordingly, the elastic and reaction cross sections 
as a function of momentum, follow the right-hand 
boundary of the region illustrated in Fig. 19.15 

A predominantly imaginary scattering amplitude 
is also inferred from the optical theorem Im/(0) 
= (K/4W)<TT. Here / (0) and <rT are, respectively, the 
forward K—p scattering amplitude and the total cross 
section. These are displayed on the right side of Fig. 6. 
To a fairly good approximation we may then take the 
5-wave amplitudes to be purely imaginary. 

We can calculate the 5-wave KN magnitudes from 
the experimental cross section data. From Eqs. (16) 
and (18) one obtains through / = § , 

a= / / ^ = 4 7 r X 2 [ | ^ | 2 + | P i | 2 + 2 | P 3 | 2 + 2 | Z ) 3 | 2 ] . 

15 Note that for the Humphrey-Ross solution 1, we have 5 » 3 F 
in 7 = 0 ; so Kb=l occurs at a very low momentum of about 100 
MeV/c. Where we are situated Kb is ^>1; so <rr approaches 0 and 
a-e approaches 4ir\2, i.e., the 5 wave appears always in "resonance" 
at higher energy. Of course, the scattering length will not remain 

Both S and D% amplitudes have already been fixed from 
the cross sections so the K~p and K°n angular distribu­
tions can be calculated and compared with the data. 
One can obtain the coefficients of cos20 and sin20 most 
simply by the graphical construction shown in Fig. 21. 
The circles represent the amplitudes 2Z)3 and ~pz, and 
the amplitudes SK~P and_ Sg*n are vectors from the 
points labeled Erp and K°n to the point S. Since the 
resonance is narrow, let us for convenience fix the S 
amplitudes to be constant in the momentum range 
where the resonance is appreciable. One immediately 
sees that at resonance the 6* and Z>3 waves interfere con­
structively to produce a large cos20 and destructively to 
reduce the sin20. Thus, a small enhancement in the cross 
section can alter the angular distribution in the striking 
way observed. Expressing the angular distribution in 
terms of the number of polar (|cos0| >0.5) , equatorial 
(|cos0|<O.5), front (cos0>O), and back (cos0<O) 

Sin B 

-0.6 

FIG. 25. Sin0, sin0 cos<9, and sm0 cos20 plotted versus cos0. The 
shaded area between 0.95 > |cos0| >0.30 is the angular interval 
where sin0 cos0 is large and is the region used to obtain the average 
value of this polarization term. 

constant, and nonzero values of a will also cause deviations from 
this simple behavior, but the data suggests that this picture is 
reasonably correct. 

16 In terms of isotopic-spin scattering lengths, these yield 
6o = 4.6 F and 6i=0.44 F. These may be compared with the 
Humphrey-Ross solutions in Table XII. 
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events—abbreviated P, E, F, and B—one can write 

P-E A2 
1.46 1.48 1.50 1.52 1.34 1.56 1.58 1.60 1.62 

and 
P+E 4C4„+i42) 

F-B Ax 

F+B 2(A0+iAt) 

(12) 

(13) 

where A n are coefficients of cosn0 in the differential cross 
section. Figure 22 shows the K~p and K°n data com­
pared with this simple calculation for a Z)3 and also a 
P3 resonance. The data clearly prefer a Dz resonant 
K— p state. The rising F-B ratio can be attributed to 
the gradual appearance of nonresonant P waves 
neglected in this calculation. 

VI. KNi: PARITY 

In this section we shall discuss the arguments that 
lead to the establishment of the 2 parity. Approxima­
tions to the experimental situation will occasionally be 
made so as not to obscure the simplicity of the reasoning 
with nonessential details. A more elaborate treatment 
of the problem will be found in Sec. VII dealing with 
the computer analysis. 

In Sec. IV we have shown that the experimental data 
strongly favor an incident K—p resonant D state, with 
the most likely angular momentum being / = § . With 
the parity of the incoming angular-momentum state 
identified, the determination of the 2 parity becomes a 
matter of measuring the orbital angular momentum of 
the 27r state; Z)3/2 for negative KN2 parity, P3/2 for 
positive KNX parity. 

We shall now consider the various ambiguities that 
may be present in the problem and how they can be 
resolved. 

1.46 1.48 1.50 1.52 1.54 1.56 t.58 1.60 1.62 
—i 1 r~ 

FIG. 26. Cross sec­
tions for K~p charge 
exchange and elastic 
scattering as a func­
tion of momentum. 
The solid line corre­
sponds to solution I 
for negative KNX 
parity; the dashed 
line corresponds to 
solution V for posi­
tive KNX parity. 
These two solutions 
are shown in Figs. 26 
through 38. The only 
significant difference 
between them ap­
pears in connection 
with the polarization 
effects. 

FIG. 27. Cross sections 
for 2+TT- ; 2-7T+, 2°7r° as a 
function of momentum. 
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A. The Minami Ambiguity 

The simplest and least elegant way of seeing the 
Minami ambiguity is by direct inspection of Eqs. (18) 
and (19).17 Restricting consideration to / = J and J= f , 
we see that under an interchange of parity of each state, 
i.e., S<=zPi, D$<=±Pz, the coefficients An in / remain 
the same, while the coefficients Bn in IP change sign. 
Thus, all angular distributions remain invariant while 
polarizations change sign. This is a general statement 
valid for the parity interchange of all amplitudes 
through whatever / . Where new particles are produced 
in the final state, the Minami transformation can be 
carried out on the initial or the final state or both, 
leading to a fourfold ambiguity if only angular dis­
tributions are measured. The two-fold ambiguity involv­
ing the incoming KN state is, as we have seen, resolved 
by continuation of the KN amplitudes from the low-
energy region, where they are known to be purely 5 
wave, to the 400-MeV/c region. Thus, the S+±Pi 
ambiguity is not present for the incoming state. 

Since the Kp —> 'Ew reaction is exothermic (for K~p 
at rest we have P s=180 MeV/c), no argument analo­
gous to the one for the incoming state can be constructed 
for the Sx state. Within the iT-matrix formalism, 
differences do exist between S and P outgoing states, 
but the effects are not large and, furthermore, are sub­
ject to the assumption of constancy of the iT-matrix 
elements. 

200 300 400 

Momentum, 
500 6 0 0 

PK (MeV/c) 

17 For other discussions of these ambiguities, see M. Nauenberg 
and A. Pais, Phys. Rev. 123, 1058 (1961). Yang-type ambiguities 
as applied to this problem are considered by R. H. Capps, Phys. 
Rev. 126, 1574 (1962). 
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The polarization in certain channels can, however, be 
measured, and this provides the means of resolving the 
remaining ambiguity. Beall et al.,8 have measured the 
helicity a0 of protons in the decay mode S 0

+ —» pT°, and 
find it to be a 0 = — 0.78+o.osT0"08- Alpha is related to the 
asymmetry of the decay protons from polarized 2 
hyperons by / = 1+aq- Ps, where q is the direction of the 
decay proton in the S center-of-mass system and Ps is 
the 2 polarization. The decays X+

+ —> nir+ and 2~ —> mr 
are known to have small asymmetry parameters, so 
these events cannot be utilized as analyzers of S 
polarization. If one assumes the validity of the AT=% 
rule in 2 decays, then18a0 = — 1; we shall assume a 0 = — 1 
in our calculations. The A resulting from 2° have a 
polarization given by P A = — § P S , and the subsequent 
decay k->pir~ has an asymmetry parameter aA 

= +0.67_o.i8+0,24,19 which is used in our calculations. 
The factor of 3 loss in polarization in 2° decay coupled 
with previous mentioned problems associated with these 
events allows little more than a consistency check from 
the 2° data. The crucial measurement is then the 2 + 

polarization from that half of the 1300 2+ events which 
decay through the 2 0

+ mode. 

B. Complex-Conjugation Ambiguity: 
The Wigner Condition 

Let us refer again to Eqs. (18) and (19) for the coeffi­
cients ^ , Bn and observe that if one takes the complex 

1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 

FIG. 28. Cross sec­
tions for A7r+7r~ and 
A7T° as a function of 
momentum. 

200 300 4 0 0 5 0 0 6 0 0 

Momentum, P „ (MeV/c) 
K 

18 R. D. Tripp, M. B. Watson, and M. Ferro-Luzzi, Phys. Rev. 
Letters 9, 66 (1962). 

19 E. Beall, B. Cork, D. Keefe, P. Murphy, and W. Wenzel, 
Phys. Rev. Letters 8, 75 (1962). J. W. Cronin and O. E.Overseth, 
in Proceedings of the 1962 International Conference on High-Energy 
Physics at CERN (CERN, Geneva, 1962), have more recently 
determined aA to be 0.62±0.07. 

1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 
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sect ion 

•fl 
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FIG. 29. The K~p total cross section plotted 
as a function of momentum. 

conjugate of each partial-wave amplitude, then the 
cross section is again invariant, while the polarization 
changes sign. This is an additional ambiguity; thus, it is 
not sufficient to measure the polarization in order to 
establish the parity. A further condition is needed in 
order to resolve the problem. 

For the nonresonant amplitudes, there is no way of 
deciding whether an amplitude or its complex conjugate 
is to be chosen. However, for the resonant state, 
causality in the form of the Wigner condition prescribes 
the appropriate energy dependence of the resonant 
amplitude. Wigner20 has shown that the amplitude of a 
narrow elastic resonance must as a function of energy, 
traverse the complex plane in a counterclockwise direc­
tion (see Fig. 18). His causality argument can be sum­
marized as follows: Consider a wave packet resolved into 
its incoming and outgoing spherical waves and incident 
on a scattering center of radius R. The group velocity is 
given by doo/dK, where K is the wave number and co is 
the frequency. The radial dependence of the incoming 
wave is then n= — (dai/dK)t. After scattering, the wave 
suffers a phase shift 28, and the outgoing radial depend­
ence is given by ro= + (do)/dK)t—2db/dK. If the out­
going wave is not to leave the scattering region before 
the arrival of the incoming wave on the surface R, then 
for rf^Rwe must have r0<R. This yields the inequality 
d8/dK>—R. Hence, the phase shift cannot decrease 
with arbitrary rapidity as a function of energy. The 
width of the 1520 resonance gives a value of dd/dK 
^12X r . The radius of interaction R would have to be 
larger than 12XT in order to have the resonant amplitude 
describing a clockwise circle and still satisfy the Wigner 
condition.21 This result can be generalized for inelastic 

20 E. P. Wigner, Phys. Rev. 98, 145 (1955). 
21 Slow decrease of amplitude, through 5 = TT/2 do occur in particle 

physics. A well-known example occurs in zSi np scattering at about 
15 MeV. Another case might perhaps occur in 5 wave K+p 
scattering above 1 BeV/c. These, however, should not be con-
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FIG. 30. Polar-equatorial and front-back ratios for K~p scatter­
ing as a function of momentum: 

P-E A2 F-B Ax 

P+E 4(A0+iA*) F+B 2(A0+iAd 

processes as well, and if we are dealing with a simple 
isolated resonance, as appears to be the case, then the 
result must still hold.22 The ambiguity associated with 
complex conjugation is thereby removed. 

C. Diagrammatic Analysis of the £ * Data 

For the sake of fixing the notation during the subse­
quent discussion, we shall here assume that, as the data 
will show later, the KN2, parity is negative. The incident 
K~p S state then feeds the 2TT S state, etc. The discus­
sion would follow similarly for the other parity assump­
tion except for the final polarization argument. 

The S7r partial cross-section data indicate a mono tonic 
decrease with momentum characteristic of an exo­
thermic reaction proceeding through the incident S 
wave. Superposed on this behavior there appears a 
sizeable enhancement in all three channels at the 
momentum corresponding to the 1520-MeV resonance. 
Thus, as in the incident channel, S waves appear to 
dominate the behavior, apart from the resonance. How­
ever, P waves are clearly evident through their inter­
ference with even parity states. This is seen in the 
significant cos0 terms in the angular distributions and 
sin# term in polarization. Nevertheless, as the computer 
fits show, the S waves still play the dominant role. To 
fix them in the framework of charge independence one 

sidered resonances in a strict sense. Typically they occur when a 
negative reciprocal scattering length is cancelled by a positive 
effective-range term. 

22 We are indebted to Professor R. H. Dalitz for a discussion 
concerning this point. 

must determine the T=0 and T= 1 magnitudes, So and 
Si, and their relative phase, (I>S=<I>SQ—<I>SI- These can be 
extracted from the charge-independence relationships: 

1 
2±: |S | 2 = i |S 0 | 2 + i |S i | 2 =F |5ol|5i|cos^ 

V6 

2°: |S|2=i|S0|2. 

Here So is fixed by the nonresonant 2 V cross section. 
Then Sx can be obtained from the S++S"-2S° non-
resonant cross section and finally <t>s from the S+—X~ 
nonresonant cross section. At low energy this phase 
angle is well determined from K—p captures at rest to 
be $£= ±60 deg and has been found to increase to about 
90 deg at 250 MeV/c (with a discontinuity in the energy 
derivative theoretically predicted at the K°n threshold). 
Our experiment indicates, from the behavior of the 
nonresonant S+ and 2~ cross sections, that this phase 
angle continues to increase with momentum, reaching 
about 105 deg at the resonance. Beyond this momen­
tum, P waves become sufficiently large that its behavior 
from there on is uncertain. The best computer fit to the 
data yields, between 250 MeV/c and 513 MeV/c, an 
average angle <t>s~ —104 deg (the sign is discussed 
below). The 5-wave S T magnitudes at the resonance are 
given by the computer analysis to be | So | = 0.405 and 
| Si | =0.405. 

The S-wave parameters are now fixed by the non­
resonant cross sections with the exception of the over-all 
S-wave phase angle of the 27r channels. This can be 
determined by a study of the interference between the 
S amplitude and the resonant D3 amplitude whose 
phase is fixed by its resonant form. The interference 
results in a cos20 term in the angular distribution [(see 
Eq. (11)]. The 2 + reveals a large cos20 at resonance fall-

.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 

FIG. 31. Polar-equa­
torial and front-back 
ratios for K°n scattering 
as a function of mo­
mentum. 

'.00 300 400 500 600 
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ing rapidly on both sides (Fig. 9). This implies that the 
S and Z>3 amplitudes must be approximately in phase 
at resonance for the S+TT" channel, as illustrated in Fig. 
23. The -S-wave amplitude for 2~7r+ is fixed in magnitude 
and has now two possible orientations consistent with 
our previous considerations. These are shown in the 
figure and correspond to 0s =±104 deg. Inspection of 
the S~7r+ angular distribution allows a choice between 
these two alternatives: <££= —104 deg requires a sin20 
below resonance changing rapidly to a cos20 above 
resonance; 4>s— + 104 deg demands the opposite be­
havior. The experimental data in Fig. 10 clearly require 
the negative sign.23 The 2°7r° angular distribution is also 
predictable. A complete vector diagram of all ampli­
tudes obtained in the computer fit appear later (Fig. 39), 
as well as these fits to the data (Figs. 26 through 38). 

All S and resonant D3 amplitudes have now been fixed 
by the cross-section and angular-distribution data. 
The sin0 cos0 polarization coefficient given by Bi 
= 6 Im(5*I>3) is then predicted. From Fig. 23, a^Bi for 
for S+ must be positive below resonance, passing 
through zero and becoming negative above resonance. 
Referring ahead to Fig. 36, we have plotted the experi­
mentally measured quantity representing the average 
value of the sin# cos0 term times ao= ~ 1. The behavior 
of this term is just as predicted from the angular dis­
tribution for S—Dz interference. If the parity assign­
ment had been KN2 even, then the dominant S7r states 
would have been Pi and P3 rather than S and D%. This 

Ec.m.(BeV) 

1.46 1.48 1.50 1.52 1,54 1.56 1.58 1.60 1.62 

1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 

FIG. 32. Polar-equa­
torial and front-back 
ratios for 2*V~ as a 
function of momen­
tum. 

23 The low-energy K—p experiment of Humphrey and Ross is 
sensitive to this sign in a somewhat indirect way involving charge-
dependent effects near the R°n threshold. Their solution 1, which 
fits their and our data somewhat better, has however a positive 
sign for <j>s while their solution 2 has a negative sign in accord with 
our experiment. This was first pointed out by T. Akiba and R. H. 
Capps, Phys. Rev. Letters 8, 457 (1962). 

FIG. 33. Polar-equa­
torial and front-back 
ratios for 7Tir+ as a func­
tion of momentum. 
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would have led to the opposite sign for the interference 
term. The solid curve in the figure is obtained from the 
computer fit for the assumption of negative KN2 parity 
and contains in addition to the dominant S~Dz 
amplitudes, small amounts of Pi and P3 amplitudes re­
quired by the least-squares fit. This yields a very satis­
factory x2= 14.6, when about 13 is expected. The dashed 
curve for positive parity has a X2 value of 65, or a 
probability of less than 10~6 of being correct. This leads 
to the conclusion of negative KN^L parity. 

A further argument involving Pz~-Dz interference 
and leading to the same parity conclusion is presented 
in Sec. VIII. The degree to which these conclusions 
depend on the assumptions made in the analysis is 
discussed in Sec. IX. 

VII. COMPUTER ANALYSIS 

A. Partial-Wave Equations 

The differential cross section I and the product IV of 
the differential cross section and polarization can be 
written as / = | / | 2 + | g | 2 and /P=2Re/*gA, where 
^=K;X<K//|KiXK/| is the normal to the scattering 
plane, and / and g, expanded in partial waves, become24 

/ ( ^ - i ? — £ {2l+\)~^L{l+\)Tl++lTl~-}Y{ 
K i-o 

a n d 

(47I-)1'2 sinfl d 
g(6) = i-

(14) 

K d(cos0) 

xE(2/+i)-1'8[r,+- •TrlYl«. (15) 

24 J. V. Lepore, Phys. Rev. 79, 137 (1950). His choice of normal 
is opposite to ours, leading to the opposite sign for g(6). 
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FIG. 34. Polar-equa­
torial and front-back 
ratios and the sin0cos0 
and sin0 polarization 
terms for 2°7r° as a func­
tion of momentum. 
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Here Tfi represents the partial-wave amplitude for an 
orbital angular momentum / = f c b | . In the elastic 
channel this is Ti— (rjie

ii8l—l)/2i) while for a reaction 
channel Ti± represents the complex amplitude for that 
/ and / . The normalization chosen here (different from 
our previous letters3) is such that the maximum value 
of Ti is 1 for the elastic channel and 0.5 for a reaction 
channel. The incident cm. wave number is K—l/X 
— P/fi. We may express / and IP by a power series 
in cos#: 

1 00 

/ = — £ 4nCOSn0 (16) 

A sin0 * 
7P= D Bn cosnd. 

K2 n~0 
(17) 

Expanding Eqs. (14) and (15) through S, Ph P3, A , 
and Z>5 amplitudes, where 6*= To, Pi=TY~, Ps=Ti+, 
D^=T2~y Db= T2

+ yields the coefficients: 

Ao=\S~Dz\*+\P1-Pz\> 
- 3 Re(S~Ds)*Db+9/4\Db\* 

At=2 Re(5+2Z>8)*(Pi+2P8) 
-18ReP**D3-9RePi*Di 

A2~\S+2Dz\*-\S-D,\*+\Pl+2P,\2 

- | . P 1 - P 8 | 2 + 9 R e ( 5 - 4 D 8 ) * A - f | A 
^3=18 ReP3*Z>3+12 ReP3*£>5+15 ReP^D, 

^4=4SReZ>8*A+4S/4|Z?6|2 

(18) 

Po -2 I m ( 5 - P 8 ) * ( P i - P a ) - 3 ImDftPi-Fz) 

Bi=6 Im5*Z>3-~6 ImPi*P3~~6 ImS*Z>5 (19) 

P 2= 18 ImP3*£>3-15 ImPl*Ds-3 ImP3*Z>5 

Bs=-45ImD3*D6. 

Generally, the analysis is extended only through the 
Dz amplitude, except for the case where a D& resonance 
is investigated. This is justified, since the K"p cm. 
momentum at resonance is only 245 MeV/c. 
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FIG. 35. Polar-equatorial and front-back ratios and the sin0 cos0 
and sin0 polarization terms for AT0 as a function of momentum. 
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B. Resonant Amplitudes 

We express the / = 0, / = f resonant amplitudes in the 
Breit-Wigner form: 

e— i 

(rxiyr2)1'2 

e— i 
(20) 

where e=(2/T)(ER—E). The various partial widths 
have an energy dependence, which nonrelativistically is 
given by12 

K(KRY 
roc , (21) 

9 + 3 (KRY+(KRY 

where R corresponds to the channel radius. One power 
of K in the numerator arises from phase space, while 
the remaining momentum dependence is due to the 
Z>-wave centrifugal barrier. For the first pion-nucleon 
resonance, iV*(1238), the corresponding formula for a 
P-wave resonance yields remarkably good agreement 
with experiment for a radius i^=0.88X^.25 Compared to 
N*, the F0*(1520) data are sparser, background effects 
are large, and multichannel complications are present. 
Thus, we cannot hope to extract the several channel 
radii from the experimental data. We have instead con­
sidered two extreme cases: TozK5 and T&K. Both 
extremes give adequate fits to the data, although the 
first case is significantly better. Therefore, we have used 
Foe j£5 in all subsequent fits for a Dz resonance. For 
investigating the possibility of a P 3 resonance in the KN 
system, we have taken Y cc K3. Since in the vicinity of 
the resonance the cm. momenta in the various channels 
are quite comparable, we have in all cases taken K as 
the K~p cm . wave number. 

C. Nonresonant Amplitudes 

Dalitz and Tuan26 have developed the iT-matrix 
formalism to be applied to low-energy K~p interactions. 
They show that, to the extent the iT-matrix elements are 
constant and to the approximation that one can neglect 
the energy dependence of phase-space factors and 
centrifugal barriers in the exothermic reaction channels, 
the complex scattering length A = a+ib is a constant in 
the expression K2l+1 cot8= 1/A. This corresponds to the 
zero-effective-range approximation. The scattering am-

25 M. Gell-Mann and K. Watson, Ann. Rev. Nucl. Sci. 4, 219 
(1954). 

26 R. H. Dalitz and S. F. Tuan, Ann. Phys. (N. Y.) 3,307 (1960). 

FIG. 36. The sin(9 cosfl 
and (sin0, sin0 cos20) 
polarization terms for 
2J+7T-, 20

+->i>7r° as a 
function of momentum. 
The solid curves corre­
spond to negative KNX 
parity (solution I) and 
yield a satisfactory fit. 
The dashed curves cor­
respond to positive KNX 
parity (solution V) and 
for the sin0cos0 term 
is approximately a re­
flection of solution I, re­
sulting in x2 = 65 when 
about 13 is expected 
(probability <10~6). 
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plitude in the KN channel then becomes 

K2l+lATtl 

r r . i = -
l-iK2l+1Aifl 

(22) 

The square of the absorption amplitude for a two-
channel process is given by 

\Tr, 
K*^bi,i 

(l+Kn+iblay+(Kn+iaily 
(23) 

In general, however, there are several absorption 
channels, S T , A7T, and A7T7T. T O accomodate these we 
introduce branching fractions, r into each channel. In the 
A7r channel, terms through cos0 are necessary and per­
haps sufficient to describe the angular distribution. For 
simplicity we limit this channel to S and P i amplitudes, 
both with 1=1. 

In the S T channels nonresonant amplitudes are intro­
duced into all partial waves through D% with the excep­
tion of the 1=0, Dz state. This is excluded because the 
superposition of a nonresonant amplitude in the same 
spin, parity, and isotopic spin as a resonant amplitude 
presents certain additional problems. They are not 
merely additive, since this would violate unitarity. Con­
sider first a one-channel process. The S matrix element 
may be written27 S=e2i8(e+i)/(e— i), where now 8 is a 
real nonresonant phase shift and clearly | 5 | 2 = 1 . With 
S= l-\-2iTy the scattering amplitude becomes T= ei8 sin5 
+ e2i8/(e~i), consisting of a nonresonant term plus a 
resonant term that is shifted in phase by 28. If now we 
extend this to a multichannel resonance, but with the 
nonresonant term still elastic (real scattering length), 

27 L. I). Landau and E. M. Lifshitz, Quantum Mechanics, 
Nonrelativistic Theory (Pergamon Press, Inc., New York, 1958). 
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the elastic and reaction elements of the T matrix become 

and 

Taa=ei8sm8-\ 
xae

L%0 

e—i 

(xaxp)112 
(24) 

€ - 1 

where xa=Ya/T. We have employed this procedure for 
introducing a nonresonant Z)-wave amplitude into the 
1=0 state where the resonance appears. Extending this 
to a more general case with a three-channel (KN, 2TT, 
A7T7T) complex nonresonant scattering length superposed 
on a three-channel resonance complicates the formula­
tion if one wishes to preserve unitarity.28 Since the 
nonresonant D waves have been found to be small, we 
feel justified in simplifying the situation. We, thus, take 
the 1=0, Dz scattering length to be real. For the 1=1 
state this problem does not arise, so the scattering 
length is allowed to be complex. 

The expressions for the squares of the nonresonant 
amplitudes in the 27r, AT, and ATT channels are then: 

So* 

]Sis*12=-

Kb0 

(l+Kbo)2+(Kao)2 

(l+KhY+iKay 

K*bQ,2J 

(l+K*b0,2jy+(K*ao,2j)2' 

tf8ii,2j(l-rpi,*/') 

,2JJ 

A>.»z" * = 0 ; 01. ,***=-
( l + i ^ x ^ + C ^ i . s ) 2 

Kb* a* 
l-Jl 

| P i . i A ' ! 

| P I . » A T I 

| 5 7 A " | 

| A u A " j 

| D i . , A " ' 

' (l+Kbtf+iKo!)*' 

| 2 _ 

' (1+^61.0*+(^ffLl)* 

| 2 = 0 ; |Z>i,,A'|*=0; 

|2 = 0; |P / .w A " |*=0; 

|2 = 0; for 7 = 0 , 1 ; 

^ * » l , l ( l - f i > l , S 2 ' ) 

1 2 — 
' (H-iTB61,3)

2+(ir%1,3)2 

(25) 

28 The general problem can be treated using the K-matrix 
formalism, the simpler two-channel case being only slightly more 
involved than the restricted problem which we treat [R. H. Dalitz 
(private communication)]. 

The phase angles associated with these various non­
resonant amplitudes are not calculable theoretically in 
any elementary way. They have been introduced as 
free parameters to be determined by the experimental 
data. In the spirit of the constant-scattering-length 
approximation they are assumed to be constant over the 
250- through 513-MeV/c momentum region. Figure 24 
shows how these phase angles are defined relative to the 
resonant D amplitude. 

D. Isotopic-Spin Composition 

Having calculated the isotopic spin amplitudes in the 
various channels, we may combine these with the proper 
Clebsch-Gordan coefficients to form the complete 
amplitude for each charge state. For a partial-wave 
amplitude T, these are written: 

TK-p=i(ToKN+T^N) 

1f1 

T V . - — - T V 
V2\VJ v2 ft J 

1 / 1 1 
T2-r+=—[—To**+—T1* 

v2 \v3 v2 

T&vo=—( To**) 

(26) 

v2 / 

1f1 

1 
TAro=—(T^). 

y/2 

E. Representation of the Data 

In this section we discuss the manner in which the 
experimental data were introduced into the computer 
program. 

The cross-section data for each channel were generally 
divided into 20-MeV/c intervals. The ATT0 and S V 
channels could not be so divided for reasons discussed in 
Sec. I I I . In the K°n and A.ir+ir~ channels, the incident 
momentum was more precisely determined so that, in 
the resonance region where sufficient data were ob­
tained, finer intervals could be used. Since path lengths 
were established by the number of r decays per momen­
tum interval, in channels with large cross sections the 
statistics on r decays were the dominant uncertainty 
(the r "cross section" at 390 MeV/c is 5.6 mb for a 
hydrogen bubble chamber). 

Because of the narrowness of the resonance, the 
angular distributions were divided into 10-MeV/c 
intervals so as not to lose information on the rapid 
momentum dependence of the resonant amplitudes. For 
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FIG. 37. Coefficients of 
cos30 arising from Pz—D3 
interference. They are ob­
tained from a least-squares 
fit for the angular distribu­
tions for K~p, S+7r~, and 
S~7r+ taken over wider 
momentum intervals than 
the preceding figures. The 
dashed curve (positive 
KN2 parity) for 2 V " fits 
poorly with x2 = l7.5, when 
about 4.4 is expected (prob­
ability «2X10~3). This is 
the second experimental 
result favoring negative 
KNX parity. 
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example, Fig. 33 shows that the 2 V1 angular distribu­
tion changes strikingly from mainly sin20 to cos20 within 
40 MeV/c. Typical measurement uncertainties on the 
momentum of each event are about ± 1 0 MeV/c, so we 
are justified in subdividing to this extent. 

However, divided in such fine momentum intervals, 
the data in many channels becomes rather sparse, and it 
is difficult to analyze in a power series expansion through 
cos30. In our initial efforts, therefore, we analyzed only 
through cos20 with some success, but the Pz—Dz inter­
ference is sufficiently large as to yield significant distor­
tions of the cos0 term in certain cases. To overcome this 
difficulty one could either take larger momentum inter­
vals and lose momentum information, or analyze the 
angular distribution in terms of polar-equatorial and 
front-back ratios, the front-back ratio being a combina­
tion of A\ and Az. The latter course was chosen, al­
though it resulted in the appearance of a number of 
ambiguities involving even-odd angular momentum 
interference terms. The expressions for these ratios in 
terms of the angular-distribution expansion coefficient 
through A 4 are 

F-B 1 Ax+hAz 

and 
F+B 2 ^ 0 + ^ 2 + ^ 4 

P-E 1 A2+iA, 

P+E 4 i 0 + l i 2 + p 4 

(27) 

(28) 

Notice that in Eqs. (18) the P3—J93 interference is 
opposite in sign for Ai and As, and that it nearly cancels 
when the data are expressed in terms of front-back 
ratios. Thus, we have, in effect, suppressed most of this 

interference in the fitting procedure. To restore this 
information we introduced into the program the coeffi­
cient Az for K"~p, S+7r"~, and 2~7r+, and J32 for 2+7r~ 
obtained from data averaged over considerably wider 
momentum intervals. This sufficed to resolve many of 
the ambiguities among the small P i and P 3 amplitudes. 
There is a redundancy in utilizing this PZ-~DZ inter­
ference data twice, but it is felt that a more realistic 
evaluation of the various amplitudes entering into the 
problem is thereby obtained. Fits were also made with­
out this additional data, with very similar results. 

The polarization data were handled in the following 
manner. Limiting the maximum complexity in 0 to that 
obtainable from / = f , one has 

7(0)P(0) = x2 s in0 [P o +#i cosO+B2 cos20]. 

Figure 25 shows these three angular dependences. 
Integrating over all production angles, one obtains a 
measure of B0 and B2 only since the average value of 
sin0 cos0 vanishes. If we average over all 0, we have 
(sin0}av—7r/4 and (sin0 cos20)av=7r/16. The computer 
calculates the average value of the polarization from 

< / > ( ^ ) ) a v -
</(fl)P(*))« 7T/ B2 

---{Bo+— 
4 \ 4 

A: 
A0+-

) • 
(29) 

This is then compared with the experimental data ob­
tained from Eq. (3) summed over all production angles 
0. A measure of Bx was obtained by summing Eq. (3) 
over the angular interval 0.95 ^ cos0^ 0.30 and subtract­
ing from it the sum over the interval — 0.95 ^cos0 
^ —0.30. The interval from 0.95 to 0.30 was chosen to 
eliminate regions where the sin0 cos0 polarization is 
small. Over this interval we have (sin0 cos0)av=0.429. 
The computer then calculated the average value of this 
polarization term from 

(P(0))av=O.429^1/(^o+O.426^2). (30) 

In order to investigate the / = f resonance possibility, 
the experimental data were handled in the same way 
with the computer calculations extended in the obvious 

manner. 

F . The x2 Minimization 

The computer program calculated each measured 
quantity for a given set of parameters. The calculated 
quantities d and observed quantities Oi were compared 
and the X2 obtained from X2=y£i(Ci-Oi)2/80i*, where 
SOi is the statistical uncertainty. The X2 function was 
minimized by the "method of ravines," using a program 
written by W. E. Humphrey. Briefly, this procedure 
involves the following steps. From a point A compute 
the gradient. Move along the gradient direction a 
predetermined distance to point B. At B compute the 
gradient and determine the projection of this gradient 
on the hyperplane perpendicular to the line AB. Move 
in the direction of this projection a predetermined dis-
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TABLE IX. Parameters at the minima obtained by the computer for various assumptions, 

Parame te r b Meaning 

ao 
bo 
ai 

61 

rsiA* 

<t>80-Sl 
aoi 
boi 
o n 
bn 

r p , A i r 
/ Pli 

4>PQ1 

4>p\i 

ER 

V 

VK 

T2 
4>Sl-D 

4>8P1 

aoz 
fc03 

a i 3 

bi3 

0PO3 

0P13 

az>03 

&X>03 

OZ>13 

bDl3 

<}>D0Z 

4>DlZ 

V D l ^ 

s scat ter ing length 
5 scat ter ing length 
5 scat ter ing length 
s scattering length 

J J 
\ i r (Ai r )+f f (STr) /B 1 

So — Si 2 — r angle 
Pi scat ter ing length 
Pi scat ter ing length 
Pi scat ter ing length 
pi scat ter ing length 
/ <r(Ax) \ 
( I 
\<r(ATr)+a(2T)/Fll 

P01 phase angle 
Pu phase angle 
Resonant energy 
Ful l width 

K—N par t ia l width 
2 — 7r par t ia l wid th 
Si— D relative phase 

5 — P i phase Air channel 
pz scat ter ing length 
P% scat ter ing length 
Pz scat ter ing length 
pz scat ter ing length 
P03 phase angle 
Piz phase angle 
d3 scat ter ing length 
dz scat ter ing length 
dz scat ter ing length 
dz scat ter ing length 
D.03 phase angle 
D13 phase angle 

( ___ ) 
\cr(27r)+^(A7r7r)/i>1 3 

I 

0.081 
3.133 
0.017 
0.459 

0.287 

- 1 . 8 0 8 
0.0350 
0.0042 

- 0 . 0 4 2 0 
0.0092 

0.501 

3.897 
1.521 

1519.41 
16.426 

4.806 
8.967 

- 2 . 1 5 8 

0.154 
0.0996 
0.0062 
0.0409 
0.0041 
1.026 
2.859 
0.0168 
0 
0.0016 
0.0021 
0 

- 1 . 0 9 2 

0.089 

I I 

0.043 
3.351 
0.037 
0.473 

0.289 

- 1 . 7 8 4 
0.0471 
0.0056 

- 0 . 0 3 7 3 
0.0106 

0.425 

4.104 
1.496 

1518.85 
16.829 

4.840 
9.349 

- 2 . 0 9 0 

0.150 
0.0833 
0.0079 
0.0296 
0.0039 
1.271 
3.093 
0.0142 
0 

- 0 . 0 0 4 1 
0.0023 
0 

- 1 . 4 7 2 

0.138 

I I I 

- 1 . 7 0 0 
1.722 

- 0 . 1 2 4 
0.432 

0.303 

- 1 . 8 5 6 
0.1431 
0.0045 
0.0412 
0.0117 

0.392 

4.243 
1.810 

1519.34 
15.522 

4.596 
8.988 

- 1 . 9 1 1 

0.151 
0.0565 
0.0132 
0.0030 
0.0063 
1.504 
2.991 
0.0154 
0 
0.0078 
0.0031 
0 

- 1 . 0 4 6 

0.258 

IV 

0.561 
3.210 
0.016 
0.460 

0.290 

- 1 . 8 4 6 
0.0180 
0.0038 

- 0 . 0 2 8 3 
0.0090 

0.489 

4.105 
1.701 

1518.50 
17.297 

4.910 
9.755 

- 2 . 0 2 4 

0.150 
0.0926 
0.0073 
0.0309 
0.0048 
1.190 
2.963 
0 
0 
0 
0.0020 
0 
0 

0 

Solutions'* 
V 

- 0 . 4 5 0 
3.000 
0.030 
0.469 

0.268 

- 1 . 8 1 4 
0.0478 
0.0065 

- 0 . 0 3 7 6 
0.0083 

0.673 

4.616 
2.468 

1518.46 
16.955 

4.430 
9.304 

- 2 . 1 5 2 

0.179 
0.1021 
0.0068 
0.0424 
0.0011 
2.417 
0.361 
0.0139 
0 

- 0 . 0 0 0 7 
0.0022 
0 

- 2 . 5 5 2 

0.239 

VI 

- 1 . 7 4 9 
1.429 

- 0 . 1 3 0 
0.428 

0.296 

- 1 . 6 2 7 
0.1655 
0.0132 
0.0476 
0.0121 

0.413 

4.583 
1.810 

1517.53 
17.936 

5.139 
10.059 

- 2 . 1 7 5 

0.161 
0.0408 
0.0067 

- 0 . 0 0 0 2 
0.0079 
2.611 

- 0 . 8 5 7 
0.0224 
0 
0.0060 
0.0028 
0 

- 1 . 9 7 3 

0.343 

V I I 

- 1 . 7 1 7 
0.669 

- 0 . 2 1 7 
0.377 

0.318 

+ 1.545 
0.1597 
0.0494 
0.0360 
0.0261 

0.201 

3.961 
1.167 

1516.45 
10.358 

3.292 
5.332 

4-3.254 

0.163 
0.0658 
0.0115 
0.0135 
0.0113 
3.602 
1.487 
0.0124 
0 
0.0038 
0.0026 
0 

- 1 . 9 3 5 

0.035 

V I I I 

- 0 . 2 2 6 
0.278 

- 1 . 3 2 0 
0.899 

0.426 

- 1 . 9 3 9 
0.0866 
0.0624 
0.2186 
0.0654 

0.103 

2.161 
3.720 

1519.17 
20.338 

1.411 
9.691 

- 0 . 7 3 9 

0.137 
0.0273 
0 
0.1133 
0.0106 
0 
4.441 
0.0016 
0.0001 

- 0 . 0 0 4 4 
0.0034 

- 0 . 9 7 2 
- 0 . 0 4 6 

0.100 

IX 

- 0 . 1 6 2 
3.443 
0.039 
0.456 

0.291 

- 1 . 8 5 7 
0.0333 
0.0214 
0.0050 
0.0139 

0.332 

1.196 
3.151 

1518.45 
18.385 

2.850 
12.001 

- 2 . 0 6 4 

0.152 
0.0985 
0.0004 
0.0266 
0.0036 
3.585 
1.961 

- 0 . 0 0 0 8 
0.0003 

- 0 . 0 0 1 5 
0.0018 

- 1 . 1 0 6 
- 2 . 8 8 6 

0.0001 

Diagonal 
error 

0.5 
0.8 
0.08 
0.03 

0.03 

0.12 
0.06 
0.004 
0.023 
0.004 

0.22 

0.28 
0.41 
0.87 
1.20 

0.43 
1.05 
0.12 

0.31 
0.10 
0.003 
0.007 
0.003 
0.26 
0.66 
0.01 
0 
0.01 
0.001 
0 
1.12 

0.18 

a Solution I : Negative KNX parity. Minimized including A3, B% coefficients. Solution I I : Negative KN2 parity. Minimized without As, £2 coefficients. 
Solution I I I : Negative KNX parity. Width r oc K. Solution IV: Negative KN2 parity. Without nonresonant Dz amplitudes. Solution V: Positive KNZ 
parity. Minimized including A3, B% coefficients. Solution VI: Positive KNU parity. Minimized without Az, Bi coefficients. Solution VII: Positive KiVS 
parity. Quasiminimum. Solution VIII: Positive KN2 parity. Resonance in P3, K p state. Solution IX: Positive KNX parity. Resonance in Dt, K~p state. 

b Scattering lengths are expressed in (F)21+1 energies and widths in MeV, and phase angles in rad. 

tance to point C. Using the value at point B, the deriva­
tives at B, and the value at point C, calculate the dis­
tance to a minimum, assuming ?a parabolic dependence 
of X2 as a function of distance along this new direction. 
Move to this minimum and begin the process again. 
Each complete step takes approximately 30 sec when the 
IBM 7090 is used. 

The method tends to move along ravines toward 
minima rather than oscillating between the ravine walls. 
Even so, typically several hours of computation are 
required in order to arrive at a minimum in this 30-
dimensional X2 space starting from reasonable initial 
values. 

VIII. COMPUTER RESULTS 

A. Negative KN2 Parity 

The search for solutions compatible with the experi­
mental data proceeded in the following way. The non-
resonant S and resonant Z>3 amplitudes obtained by the 
precomputer analysis were introduced as starting condi­

tions along with zero initial nonresonant Ph P3, and Z)3 

amplitudes. With all parameters varying, a satisfactory 
solution was found with X2= 221.5. This fit contained 
257 data points, including the coefficients Az and JB2. 
With 30 parameters the expected X2 is 257—30=227, 
which is in good agreement with the value obtained. 
Because of the slight redundancy associated with the 
introduction of A 3 and B2 coefficients, we also minimized 
X2, eliminating these data points. With 235 data points 
we obtained a X2 of 208 when 205 was expected. The 
probability of a fit with X2 this large or larger is 43%. 
The parameters for these two fits appear as solutions I 
and II of Table IX. The contributions to X2 for the 
various measured quantities in each channel are shown 
in Table X. Apart from the S V polar-equatorial ratios, 
each line yields a satisfactory x2, so that to within the 
precision of the experiment the parametrization by 
constant scattering lengths over this momentum region 
is adequate. In Figs. 26 through 38, we display the 
momentum dependence of all data; the solid lines are 
obtained from solution I. The fits extend over the 
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TABLE X. Chi-square contributions for each solution according to various channels and measurements. 
The solutions are explained in the footnote of Table IX. 

Measured 
quantity 

a 

(F-B)/(F+B) 

(P-E)/(P+E) 

\<&r )ain0,sin0 cos20 

(aP)6in6 cos0 

Sum 

At 

B2 
Sum 

Reaction 

K-p 
RQn 
S+7T-
S-x+ 
2°7r° 
ATT° 

ATTTT 

K-p 
K\ 
S+7T-
2-7T+ 
2°7T0 

ATT° 

K-p 
K\ 
S V " 
S-7T+ 
2°7r° 

S+7T-
S V 
ATT° 

S+7T-
2°7r° 

K-p 

S+7T-

Data 
points 

12 
10 
12 
12 
5 
5 

11 

15 
9 

15 
15 
5 
5 

15 
9 

15 
15 
5 

15 
5 
5 

15 
5 

235 

7 
5 
5 

5 
257 

I 

12.53 
12.82 
7.38 

12.80 
9.27 
4.20 
8.76 

13.00 
2.80 

15.09 
6.88 
2.30 
3.35 

16.59 
2.08 

17.22 
12.03 
16.67 

11.66 
4.54 
2.19 

14.57 
1.73 

211.82 

6.18 
2.57 
0.96 

1.37 
221.52 

II 

12.27 
13.18 
6.12 

11.51 
11.00 
4.06 
9.00 

12.73 
2.68 

13.77 
6.93 
2.36 
3.45 

16.39 
2.16 

16.31 
12.56 
15.99 

12.08 
45.54 

2.20 

14.83 
1.79 

207.89 

226.87 

III 

12.08 
12.43 
7.52 

10.88 
7.54 
4.28 

17.00 

11.38 
2.53 

14.87 
7.56 
2.64 
3.41 

18.31 
3.14 

16.18 
13.34 
13.08 

11.09 
4.09 
2.19 

18.80 
1.66 

216.00 

Solutions8 

IV 

12.61 
15.13 
7.26 

13.89 
10.01 
4.14 
9.18 

13.18 
3.57 

14.42 
6.64 
2.26 
3.47 

16.37 
2.34 

17.08 
11.18 
17.06 

10.67 
4.50 
2.20 

15.00 
1.78 

213.97 

231.77 

V 

12.67 
15.17 
8.58 

12.29 
9.42 
4.81 

11.26 

12.35 
2.74 

18.48 
5.93 
2.79 
3.03 

18.90 
1.86 

16.75 
12.35 
18.01 

10.23 
5.78 
2.16 

65.17 
2.81 

273.54 

7.44 
17.50 
0.49 

1.17 
300.11 

VI 

12.56 
11.31 
4.39 

10.19 
12.00 
4.38 

11.80 

10.89 
2.92 

15.82 
7.33 
3.75 
3.19 

17.05 
2.48 

14.53 
12.11 
17.28 

9.55 
5.62 
2.18 

60.14 
2.67 

254.11 

349.23 

VII 

12.57 
13.18 
6.24 
8.29 

16.46 
4.39 

14.77 

11.68 
4.41 

16.94 
7.57 
7.51 
3.11 

24.03 
2.84 

113.53 
19.16 
16.28 

7.64 
4.26 
2.17 

14.54 
1.42 

332.98 

11.33 
16.93 

2.71 

2.29 
366.24 

VIII 

23.40 
33.80 

7.99 
16.30 
33.47 

1.71 
10.55 

17.32 
10.08 
32.36 
11.64 
7.08 
3.03 

75.61 
31.41 
30.31 
32.05 
14.89 

21.89 
4.86 
2.18 

22.34 
1.86 

446.09 

IX 

13.11 
21.12 

7.22 
13.43 
11.42 
4.18 

10.26 

13.90 
2.92 

14.24 
7.96 
1.83 
3.40 

23.27 
1.51 

21.03 
13.06 
17.54 

11.75 
4.63 
2.19 

15.01 
1.71 

236.69 

* Bold-faced numerals indicate values where solutions V, VI, VII, and IX are in serious disagreement with the data. 

interval 250 to 513 MeVA. The points at 620 MeV/c 
were kindly supplied by P. Bastien before publication 
and are shown only to indicate the continued trend of 
the data. 

Figure 39 shows the vectors representing the magni­
tudes and phases of the various amplitudes of solution I 
at the resonant energy as they appear in the KN and 
XT channels. The 5 and resonant P 3 amplitudes are 
clearly dominant. The real and imaginary parts of the 
K~p forward scattering amplitude as obtained from 
solution I appear in Figure 40. 

Two extreme assumptions were made for the energy 
dependence of the resonance widths V oc Kb and T oc K 
corresponding to a small (R<\TT/2) and to a very large 
(R>2XT) radius of interaction. The solutions discussed 
above used T oc Kb. The widths appearing in Table IX 
are the widths at resonance, i.e., they correspond to To in 
r = r0(i^/iT0)5 , where Ko is the wave number at reso­
nance. The fit using TccK appears as solution I I I in 
Tables I X and X. I t is somewhat poorer than for T oc Kb, 
having a X2 of 216 rather than 208, the major difference 
occurring in the ATTTT channel. Accordingly, we have 
employed V oc K2l+1 for all other solutions. 

Apart from the S wave, no single nonresonant ampli­
tude was sufficiently large to be significant in itself. We 
also minimized X2 by setting all nonresonant Ds waves 

to zero (except for the nonresonant ATTTT). With four 
fewer parameters, X2 increased by six, indicating that al­
though nonresonant D waves do improve the fit, they are 
not necessary. This is solution IV in Tables I X and X. 

When the coefficients A 3 are not retained, a number of 
ambiguities arise among the small P-wave amplitudes. 
For example, interchanging P i and P 3 amplitudes in the 
KN channels and reminimizing yields a result almost 
as good as that of solution I I . However, since P 3 was 
initially considerably larger than Ph the coefficient 
4̂ 3 = 1 8 Re(P3*D3) in the K~p channel then becomes 

much smaller than the observed value. Similar ambigui­
ties exist in the 2TT channels. By making various inter­
changes of the Sx phase angles in the P states followed 
by a reminimization, one can obtain solutions with some­
what higher although acceptable X2. However, these new 
solutions yield a momentum dependence for the Az 
coefficients opposite to that observed for 2+7f~", 2~7r+, or 
both. Accordingly, by use of the Az and B2 coefficients, 
we have found what appears to be a definitely best solu­
tion. On the other hand, some of the ambiguities associ­
ated with these small P waves do not differ sufficiently 
from the data so as to be completely excluded statisti­
cally. For brevity, we do not include these ambiguities 
in the tables, but list only the best solution under 
various assumptions. 
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B. Positive KNX Parity 

The equations used in the computer fit were written 
for negative KNX parity. Since a change of parity 
changes only the sign of the polarization terms, the 
positive-parity assumption was explored by changing 
the sign of the helicity, a, for 2 decays. Starting from 
solution I with the polarization terms reversed, X2 was 
again minimized. Because of the variety of ambiguities 
associated with the P amplitudes, an equally satis­
factory fit was quickly obtained for the sin#, sin# cos20 
term in polarization by a reorientation of these ampli­
tudes. However, as discussed previously, no such re­
orientation is possible for the 2+ S amplitude, the rela­
tive S—Dz angle being fixed by the strong appearance 
of cos20 in the 2+ angular distribution at resonance. As 
a result, the lowest X2 fit yields a sin# cos0 term in 20

+ 

polarization not differing markedly from a mere reflec­
tion of the negative KNZ parity curve as seen in Fig. 36. 

Solutions V and VI of the Tables IX and X list the 
best fits for positive KNX parity including and excluding 
the A 3, B2 data, respectively. With the exception of the 
sinflcosfl term in 2 + (and 2°) polarization and the Az 

coefficient in the 2+ angular distribution, all data can be 
equally well fitted to positive KNX parity; this can be 
seen from Table X or from Figs. 26 through 38, where 
the dashed lines are obtained from solution V. All addi­
tional X2 comes from the polarization data and from Az. 
Within the framework of the analysis, the positive KN2 
parity assumption clearly disagrees with the data. 

The sin# cos# polarization term has been discussed 
already. Let us look at the A% and B2 coefficients given 
by Az= 18 Re(P3*£>3) and B2= 18 Im(P8*A). Because 
of their simplicity, they are free of the ambiguities 
associated with analysis in terms of F-B and P-E ratios. 
The behavior of the Az data demands that the P3 ampli­
tude vector appear to the right of the Dz amplitude at 
resonance, whereas for positive KN2 parity, the B2 

polarization term demands the opposite behavior. 

E c .m . (BeV) 
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FIG. 38. Least-squares fit to the 2 0
+ polarization yields for the 

sin0 cos20 term, the coefficient B2 coming from P^—D* interference. 
We plot «o#2, where ao equals — 1 as a function of momentum. 
Both parity cases fit well, but because of the correlation with the 
S + angular distribution (Fig. 37), the A3 term is of necessity fit 
poorly. 

Im 
A 

I.Oh-

K p 

Is 

0.2 

2+7T-

FIG. 39. Magnitudes and phases for the S, Ph P3 , and D3 ampli­
tudes for the K~p, K°n, 2+7r~, S~TT+, and SV0 channels at reso­
nance as given by solution I. The scale for the amplitudes (dimen-
sionless) appears to the left. The maximum possible value of the 
amplitudes is one for the K~p channel. 

Minimization of the over all X2 has resulted in a good fit 
to the B2 polarization term and a poor fit to A%. Since 
one is dealing here with a small P 3 interference term, the 
argument is not as strong as that involving S—Ds 

interference. None the less, it is very encouraging to find 
that the P%—D% interference fits negative KNX parity 
nicely and confirms the argument based on the S—Dz 
interference. 

Attempts were made to find other unrelated solutions 
which would be compatible with the observed behavior. 
An exhaustive search of a 30-dimensional space was 
deemed out of the question. However, the dominant 
S—Dz terms are the only ones that can seriously affect 
the P—E and sin0 cos0 polarization data. We have re­
oriented the amplitudes in various possible ways, always 
returning to minima in the vicinity of that discussed 
above. For example, by reversing the S—Dz phase angle 
for 2 + one can obtain a rather good fit to the sin0 cos0 
polarization term, to the detriment of the well-measured 
2 + angular distribution. This can be seen from Fig. 23. 
If one performs this reversal by a reflection of the 
S-wave triangle in the figure through the horizontal axis, 
then to a first approximation the trend of the 2~ angular 
distribution remains the same. In terms of the computer 
parameters this corresponds to a reversal of sign of 
030-si, and 4>SI-D- But reversal of the 2 + S amplitude 
yields a negative P-E ratio at resonance rather than the 
strong positive term observed. This can be partially 
compensated by enlarged nonresonant D waves and 
more nonresonant Pi~Pz interference. However, since 
the angular distributions are well measured, the X2 

always remains poor. The computer has found a quasi-
minimum with the above properties but with a large 
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FIG. 40. Real and 
imaginary parts of 
kf(0)t where /(0) is 
the forward scatter­
ing amplitude. The 
curve is obtained 
from solution I, the 
numbers areiC"^ lab­
oratory momenta. 

0.2 0.4 0.6 
Re K f (0) 

X2 = 366. This is listed in the tables as solution VII. This 
solution yields an approximately stationary X2, the good 
polarization fit being balanced by the poor angular dis­
tribution, but eventually the computer returned this 
solution to the lower X2 of solution V. 

C. The P 3 Resonance Possibility 

In order to investigate quantitatively the strength of 
our arguments concerning the identification of the 
incident K~p resonant state a s a Z ) wave, we modified 
the computer program to introduce the resonant ampli­
tude in the P 3 state. The resonance widths were corre­
spondingly taken to be proportional to Kz for a P-wave 
resonance. Very poor fits to the data were obtained for 
both parity assumptions. The better of the two (positive 
KN2 parity) is solution VIII . A X2 value of 446 was 
obtained where 205 was expected. 

D. The J= § -Resonance Possibility 

Referring to Eqs. (14) and (15), notice that under the 
interchange TV" +± Tr, g(6) changes in sign only, while 
f(6) remains approximately the same. Let us focus our 
attention on the dominant S state (which does not ap­
pear in g) and the resonant D state. Perform this inter­
change on the resonant amplitude only, i.e., Dz-+Db; 
the angular distribution remains the same, to a first ap­
proximation, and the sign of IP changes. Thus, one is 
led to suspect that if the resonance were to have a spin 
of f rather than f, the parity arguments would be 
reversed. To quantitatively investigate this important 
possibility we have modified the computer program to 
include the D5 amplitude as a resonant term. All non-
resonant amplitudes through Dz were included. Addi­
tional terms containing the coefficients A 4 and Bz were 
introduced into the P—E,F—B, and polarization terms, 
and a fit was made to positive KNX parity. The 2w 
resonant state is thus assumed to be Fb. The results are 
shown as solution IX in Tables IX and X. A X2 value of 
237 is obtained with 203 expected, which has a con­

fidence level of 5%. All data fit well (including the un­
fitted A3, B2 terms), with the sole exception of the R°n 
cross-section channel shown in Fig. 41. Because the Z>5 

resonance is considerably more effective in producing 
strong P—E effects, the fit has greatly reduced the 
magnitude of the resonance (x=0.15 compared to 
#=0.29 for a D% resonance). The result is a 1-mb en­
hancement in the K°n channel, where experiment sug­
gests about 5 mb. The probability of this curve fitting 
the data is about 1%. 

A further consideration is the magnitude of the A\ 
coefficient generated by the Z)6 resonance. This does not 
appear explicitly in the program but is mixed with A§ 
and A 2 terms in the P~E ratio. However, no significant 
A 4 terms are found in the experimental data. To im­
prove statistics we Jmve taken wider momentum 
intervals in the Kp, K°n, 2+7r~, and 2~7r+ channels in 
the vicinity of the resonance and found the A± coeffi­
cients shown in Table X I with their uncertainties. Also 
listed is the computed A 4 fit over the same momentum 
intervals from the computer analysis. The calculated 
value of A 4 is positive, since it comes mainly from the 
resonant term, the nonresonant Dz amplitudes being 
small. Most experimental points are negative but with 
large uncertainty. The probability of there being this 
much or more cos40 in the data is 10%. I t is also clear 
that a relaxation of the constant-scattering-length 
assumption would not significantly improve the agree­
ment of_the D5/2 possibility, since if this led to an en­
larged K°n bump, it would necessarily result in larger 
predicted values of A 4 in all channels, further conflicting 
with experiment. We conclude that the over-all proba­
bility that the resonance spin is f is less than 1%. 

E. Parameter Uncertainties 

The uncertainty associated with each parameter may 
be obtained by inverting the second-derivative matrix 
of the X2 function. Let G be the complete error matrix. 
At the minimum, we have 

/ 6V \ 
x'2 = xmin*+J £ ( ) baMi 

i>3 \daiddi/ m i n 

+higher derivative terms. 

Then with Mij= (1/2) (d*X2/daidaj) we have Ga 
— [M~l)ij. If the X2 space is strictly quadratic, this pro-

TABLE XI. Experimental and computed A 4 

Reaction 

K~p 

2+7T-
2-7T-

Momentum 
interval A 4 
(MeVA) (Experimental) 

380 to 420 -0.169±0.219 
370 to 410 -}-0.l72d=0.136 
380 to 410 —0.117=1=0.117 
380 to 410 -0.026=b0.106 

coefficients. 

A4 
(Solution IX) 

+0.070 
+0.050 
+0.115 
+0.115 
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cedure for determining the error matrix can be shown to 
be equivalent to displacing one parameter by an amount 
which increases x2 by one after readjusting all other 
parameters. The displacement is then equal to the 
diagonal element of the error matrix, while the change 
in all other parameters yields the off-diagonal elements. 
Since our X2 space is far from quadratic in all directions 
over a region sufficiently large for X2 to change by one, 
these two methods are not equivalent. The first pro­
cedure of inverting the second-derivative matrix is 
clearly easier, but for several parameters yielded un­
reasonably small diagonal elements. For these, we 
employed the second procedure to obtain more meaning­
ful errors. Our estimates for the diagonal errors of solu­
tion I I are listed in the last column of Table IX. I t is to 
be understood that because correlations are large and 
the X2 space deviates considerably from a quadratic in 
the region of the minimum, these diagonal errors are to 
be regarded with caution and should be used only as 
rough guides. The differences between solutions I to IV 
which involve different assumptions in the parametriza-
tion also give an indication as to the parameter un­
certainties. Furthermore, as stated previously, ambigui­
ties exist among the smaller amplitudes which yield X2 

values higher than those reported but yet not so high as 
to be unacceptable. More precise experiments in this 
region may well show a preference for another of these 
solutions. 

Lastly, there are uncertainties not contained in the 
computer analysis arising from the momentum resolu­
tion of the experiment. Since only the resonance param­
eters are rapidly varying, only they should be affected 
significantly. Different channels have different resolu­
tion widths, so that the over-all resolution is difficult to 
determine quantitatively. Furthermore, much of the 
information concerning the resonance comes from inter­
ference terms involving resonant and nonresonant 
amplitudes. These effects extend over a broader momen­
tum range than the cross-section enhancements which 
come from the squared resonance amplitude. There is 
also an arbitrariness of 5 MeV/c in the choice of momen­
tum intervals and an uncertainty of less than that in the 
incoming central momentum. Over all, we estimate the 
uncertainty due to experimental resolution to be less 
than 2 MeV, both for the resonant energy and for the 
width. 

IX. DISCUSSION AND CONCLUSION 

In this section we discuss the assumptions that enter 
into the analysis, and the degree to which our conclusion 
of negative KN2 parity is dependent upon these 
assumptions. 

In parametrizing the computer analysis, we have 
assumed strict validity of charge independence. This 
has been found to agree with K~—D experiments to a 
precision of about 5%.29>18 Furthermore, no incon-

29 L. W. Alvarez, see Ref. 2, 

t.46 1.48 1150 1.52 1.54 1.56 1.58 1.60 1.62 

FIG. 41. The KH 
and K~p cross sec­
tions as a function 
of momentum. The 
curves are computed 
under the assump­
tion that F0* (1520) 
is a 7 = f resonance. 
The only data used 
by the computer 
which is not well fit 
by this assumption is 
the K°n cross section. 
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sistencies with charge independence have occurred in 
the considerable body of experimental data on strange 
particles. The agreement of this experiment with charge 
independence further strengthens the assumption.30 On 
the other hand, mass differences among the various 
charge multiplets are quite large and comparable to the 
half-width of the resonance. Deviations from charge 
independence sufficiently large as to be evident may, 
therefore, be expected due to these mass differences. A 
naive but perhaps not completely meaningless calcula­
tion of mass-difference effects might proceed as follows. 
Assume that all three Xtr states are equally coupled to 
the resonance. The only difference in the decay rate of 
the resonance into each 2TT channel would be due to the 
centrifugal barrier and phase-space factor for a 23-wave 
resonance by Eq. (21). At resonance we have P s = 2 6 5 
MeV/c, so that KR< 1 for a reasonable radius of inter­
action, i?<X7r/2. The momentum dependence of V is 
then closely approximated by T oc Kb (which also agrees 
best with the computer fit). The momentum differences 
between the various Xw states then lead to a branching 
ratio S+:S°:S-=1.12:1.12:1. This is in the right direc­
tion to account for the experimental resonance branch­
ing ratio, although the observed differences are some­
what larger. (Of course, different X ratios can also be 
obtained by introduction of a nonresonant D% amplitude 
in 1=1.) One may further remark that the momentum 
difference between Xw and KN channels would lead to a 
branching ratio 2ir/Kn = 1.66 if they had equal coupling. 
Experimentally, we find 1.86=b0.2. I t would, thus, ap­
pear that all two-body channels are equally coupled to 
the resonance. 

30 Because of the experimental difficulties associated with the 
£°7r° channel, we do not regard the rather poor fit to the P-E ratio 
for S°7r° to indicate a violation of charge independence, 
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TABLE XII . Comparison of the S-wave parameters for our 
solution I with the Humphrey-Ross solutions 1 and 2. 

Humphrey-! 
Solution 1 

-0.22dbl.07 
2.74±0.31 
0.02±0.33 
0.38±0.08 
0.40±0.03 

«90 a 

Ross solutions 
Solution 2 

-0.59±0.46 
0.96±0.17 
1.20d=0.06 
0.56±0.15 
0.39±0.02 
« - 9 0 a 

400 MeV/c 
Symbols 

do 
bo 
ai 

\ 
rs^ 

<f>sosi (deg) 

region values 
Solution I 

-0 .08±0.5 
3.13=h0.8 
0.02=1=0.08 
0.46=b0.04 
0.29=b0.03 

- 1 0 4 ± 7 

a This angle was not actually used as the sixth parameter by Humphrey 
and Ross. The values shown are rough predicted extrapolations for this 
phase based on their solutions. 

A second assumption concerns the number of partial 
waves that contribute significantly in the region of the 
resonance. Note that at resonance the K~p cm. momen­
tum is 245 MeV/c. Even for a radius of interaction as 
large as XT this gives KR—1.7 at resonance. Thus, it is 
highly unlikely that amplitudes beyond D waves con­
tribute appreciably. The data reflect this in that 
satisfactory fits are obtainable with nonresonant S and 
P waves only. In this connection it is instructive to 
consider the other known boson-nucleon interactions. 
The first TT—N resonance, iV*(1238), occurs at a cm. 
momentum of 233 MeV/c, 5% lower than F0*(1520). 
Careful investigation of this interaction in the resonance 
region leads to a satisfactory description in terms of S 
and P amplitudes only. Similarly, the K+~p interaction 
appears to be purely S wave below 600 MeV/c, while 
the available K+—n data is in satisfactory agreement 
with S and P waves. Furthermore, the nonresonant 
amplitudes at these momenta can be reasonably well 
described by constant scattering lengths. It is, thus, 
plausible to generalize that boson-nucleon interactions 
are not pathological. 

We have found that the various interference effects 
associated with the resonant amplitude are well de­
scribed by a Breit-Wigner form with a momentum 
dependence of the partial widths by TccK5. Since the 
resonance is narrow, the precise momentum dependence 
of T is not crucial. A more elaborate analysis involving 
the introduction of different momentum dependences 
of the partial widths in each channel could perhaps 
improve the positive KN1, parity fit somewhat. How­
ever, the parity conclusion is based on a very gross 
measurement of the sign of an interference between two 
large amplitudes which dominate the reaction; it is in no 
way a subtle effect. Hence, such embellishments 
of the channel widths cannot weaken the conclusion 
significantly. 

Let us consider now the parametrization of the non­
resonant amplitudes in terms of constant scattering 
lengths. This is assumed primarily in order to provide 
a momentum continuity for the amplitudes. The pre­
cision of the experiment is not such as to warrant 
introduction of effective-range parameters, as is ap­
parent from the fact that constant scattering lengths fit 

quite well over the momentum region investigated. This 
is not to be construed as meaning that effective-range 
effects are absent. Table XII compares our S-wave 
parameters to those obtained by Humphrey and Ross 
at lower energy.1 Our phase angle <j>s^-si agrees with 
their solution 2, while the scattering lengths in general 
are in closer agreement with solution 1. Akiba and 
Capps23 have shown that this situation could arise from 
the presence of reasonable effective-range terms. When 
both experiments are done with greater precision and 
the properties of F0*(1405) are better established, per­
haps meaningful effective-range parameters can be 
extracted from a comparison of the two experiments. 

The general method we use is similar to that originally 
discussed10 and later improved17 by Capps. We have, 
however, formulated the problem in such a way as to 
permit an analysis of the over-all K~p interaction utiliz­
ing all measurable data. Treating this broader problem 
has necessitated the introduction of dynamical assump­
tions. On the other hand, the parity arguments are to a 
large extent independent of these assumptions. This has 
been emphasized by Capps.17 To demonstrate this we 
have minimized X2, using only the 2+7r~ data and only 
over a momentum interval ±60 MeV/c surrounding the 
resonance. This removes the assumption of charge 
independence and considerably relaxes those of constant 
scattering lengths and energy dependence of partial 
widths. Again the data strongly favor a Z)-wave Sx 
resonant state, the X2 being 44.9 and 72.3 for negative 
and positive KN2, respectively, when X2 = 42 is ex­
pected. The probability of positive KNX parity satisfy­
ing even this limited data is 0.25%. The purpose of the 
computer analysis, however, has been not only to 
establish the 2 parity, but also to correlate with a 
minimum number of parameters a large body of data 
undergoing rapid and spectacular momentum varia­
tions. That the analysis can survive these many experi­
mental hurdles gives us much more confidence in the 
parity conclusion than one might have by only fitting 
one channel. 

The Z)-wave assignment for the incoming K~~p reso­
nant state is very strongly favored by the computer fit. 
Here the assumption of constant scattering lengths 
enters into the analysis considerably more forcefully 
than in the S7r orbital-state identification. Relaxing this 
assumption would significantly lower X2 for solution 
VIII for the P3 resonance possibility. However, it is clear 
from previous arguments that the data cannot be fitted 
with a P3 resonance unless some very unlikely behavior 
is assumed for the nonresonant S and P± amplitudes. 

A much more likely possibility is that F0*(1520) may 
be a / = ! resonance. Computer fits indicate that this 
has a probability of somewhat less than 1% of fitting 
the data, the only serious disagreements are (a) the 
inability of an incident D5 resonance to reproduce the 
various angular distributions and simultaneously yield 
the resonant enhancement in the K°n cross section and 
(b) the absence of cos40 in the angular distributions. A 
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/ = f resonance would lead most naturally to the 
opposite conclusion concerning the 2 parity. 

We should note that this experiment contains two 
nearly independent measurements, both clearly indicat­
ing negative KNX parity. The stronger of the two 
involves S—Dz interference and correlates cos20 in the 
angular distribution with the sin# cos0 polarization 
term. The other involves P%—D% interference correlating 
cos30 terms in the angular distribution with the sin# and 
sin0 cos20 polarization terms. Both of these experiments 
necessitate a knowledge of the helicity in S0

+ decay 
previously measured.8 A reversal of this sign would 
reverse the parity conclusion, apart from a very weak 
indication from 2° polarization that would still favor 
negative KNl, parity. 

Finally, the KNA parity has been rather con­
vincingly shown to be negative through experiments in­
volving K~ capture in helium.31,19 The relative 2 — A 

31 M. Block, F. Anderson, H. Pevsner, E. Harth, J. Leitner, and 
H. Cohn, Phys. Rev. Letters 3, 291 (1959); R. Dalitz and L. Liu, 
Phys. Rev. 116, 1312 (1959). For the most recent summary of the 
experimental situation concerning the KNA parity, see the reports 
of M. M. Block and of R. H. Dalitz in Proceedings of the 1962 
International Conference on High-Energy Physics at CERN 
(CERN, Geneva, 1962). 

parity is thus found to be even. Theoretical schemes for 
strange particles have generally been based on the as­
sumption of even 2 — A parity. 
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