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E*, q*, etc., are the values of E, q, etc., evaluated for 
W=M*. We use a Lorentz scalar product in which 
x-y=(xPyP—x*y=ocftgpVyp, and then define the Dirac 
gamma matrices by 

The incident and final four-momenta of the pions 
are ph p%, respectively, and of the nucleons are p^ p4. 

The scalar invariants are 

s=(pi+p2)\ t={pi-pz)\ u^{pl~p,)\ 

which satisfy 

In the center-of-mass system, 

/= -2^ 2 ( l - cos^ ) , 

«==E-s+2q2(1-cos0), 

COS(?=l~(5+W"D/2g 2 , 

(W±M)*-n* 
E±M~-

2W 

We define the positive-energy Dirac spinors by 

(y.p-M)w(p) = 0, 

normalized so that fflw— 1, and set 

Q=h(pi+P*)., 
7 5 = ^ 7 1 7 2 7 3 7 4 . 
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A kinetic formalism including a Boltzmann-like equation is introduced to study classical condensation 
phenomena in gases. Force laws which include a repulsive core together with an r~N attractive tail are 
examined for all integral N greater than unity. The theory considers perturbations whose wavelengths are 
large compared to the diameter of the core. The results fall into two categories depending on whether iV<3 
or N>4, respectively. For the first class of long-range forces, there are no stable thermodynamic states. 
For the second class of short-range forces, phase-equilibrium curves are found which are in accord, qualita­
tively, with classical results. In the limit as N—><*>, all states are stable. A discussion of the effects of 
random collisions is included. 

I. INTRODUCTION AND SUMMARY OF RESULTS 

THE principal formalisms by which gas condensa­
tion has, in the past, been investigated separate 

into three distinct areas of study. The widest of these is 
the statistical-mechanics approach1-8 which, in turn, is 
centered about the construction of a partition function 
or higher order virial coefficients. A second formalism is 
that of Becker and Doring9 which is concerned primarily 
with the development of droplets in a condensing gas. 
A third avenue of investigation is a fluid-dynamical one 
which was first suggested by Jeans10,11 in studies of 
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gravitational instabilities. In the present analysis 
another kinetic formalism is initiated, which is centered 
about a Boltzmann-like equation. This equation stems 
from the first-order reduced Liouville12 equation and is 
derived (cf. Appendix) by expanding the integral over 
the two-particle interaction in terms of the correlation 
between the particles. The lowest order equation so 
obtained contains a collective force term over non-
correlated particles.13 

This equation is used to uncover the stability of 
Maxwellian equilibrium states. If these instabilities are 
interpreted as being the origin of condensation phe­
nomena (gas —> liquid), then the related stability criteria 
readily yield phase-equilibrium curves. That this is 
indeed the case has been demonstrated14 (to within 
second-virial-coefficient standards) through exhibiting 

12 H. Grad, in Rarefied Gas Dynamics, edited by F. M. Devienne 
(Pergamon Press, Inc., New York, 1960). 

13 I t should be noted that the distribution function of the Boltz-
mann equation is a truncated one [Ref. 12] (expectation of finding 
no particles within a certain distance of particle i, with particle i 
in a given state), while the distribution function in the present 
work is the standard reduced distribution. 

14 R. L. Liboff (to be published). 
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the equilibrium statistical-mechanics counterpart of the 
kinetic stability study herein presented. The resulting 
domain of validity relates to large enough specific 
volumes. 

In this manner a condensation theory is developed 
which includes thermal effects and the influence of 
collective forces. More generally, there are three dis­
tinct mechanisms that contribute to the development of 
condensation (classical). Only one of these—the col­
lective force mechanism—-contributes constructively to 
the growth rate of the perturbation. The remaining 
two—thermal effects and short-range random collisions 
—tend to destroy the condensation.15 

The system which is investigated is an infinite homo­
geneous gas vanishing at infinity, whose thermodynamic 
equilibrium is generated by a Maxwellian distribution 
function. The stability of this equilibrium configuration 
is examined through a normal-mode, Fourier-transform 
perturbation analysis. The problem is solved for all 
force laws F# which include a repulsive core together 
with an attractive r~N (iV>l, and integral) tail. The 
theory considers longitudinal perturbations whose 
wavelengths are large compared to the diameter of the 
core. 

The results fall into two distinct categories depending 
on whether N<3 or Ar>4, respectively. Each region 
exhibits distinctive properties peculiar to its own group. 
This, of course, reflects the fact that the first class of 
forces (N=2,3) includes very-long-range interactions, 
while the second group, N>3, includes short-range 
interactions (iV=4 is a special case but clearly belongs 
to the second group). 

The criterion which discerns between the existence 
and nonexistence of growing modes separates accord­
ingly into two classes. For the (N— 2,3) group of forces 
this criterion appears as inequalities that include the 
frequency and wavelength of the perturbation, so that 
unstable modes are always present. One concludes that 
there are no stable thermodynamic equilibria for gases 
interacting under (iV=2,3) force laws, which is con­
sistent with results of statistical-mechanics studies. 
However, in this first class (Ar<3), there do exist 
maximum growth rates. For the (iV—2) case11 the 
growth rate is maximum for long wavelengths and 
diminishes as the wavelength approaches some critical 
distance. For the (AT=3) force the growth rate is 
maximum for some intermediate wavelength X3

C, and 
diminishes as X —> dz (a definite finite distance) for short 
wavelengths, or as X —> X5>\zc for long wavelengths. For 
large temperatures, the wavelength X of the unstable 
mode varies as X^T0 for the (N— 2) gas, while X~T0

1/2 

for the (N — 3) gas. The equilibrium temperature is T0. 
For the second class of force laws (N>4t), the criter­

ion pertaining to the existence of growing modes is 
independent of the frequency and wavelength of the 

16 This is most evident only at the start of the growth of the 
instability. Collisions may very well aid the condensation mecha­
nism in the nonlinear region, 

perturbation, and is only dependent on the components 
of the equilibrium-state vector and the constants in 
FN< The vaporization curve (also called "phase-
equilibrium" curve) which emerges is: iV>o2=j#iv [or 
equivalently: Po= (i£/ftv)jHo2]. The equilibrium pres­
sure and specific volume are Po and vo, respectively. The 
constant fix is an explicit function of the parameters in 
FN. For any single gas the related equilibrium curve is 
seen to intersect the family of isotherms PoVo—KTo in 
accord, qualitatively, with classical thermodynamic 
diagrams. In addition, the theory satisfies the constraint 
that the equilibrium curves are to have the same func­
tional form for all gases. More quantitatively, the 
actual form of the vaporization curve16 can be accur­
ately fitted by one of two forms. In the region far 
removed from the critical point (r0<^Xc= critical 
temperature) where the heat of vaporization is slowly 
varying, the Clapeyron equation is readily integrated 
and gives the well-known logarithmic variation (a), 
lnPo^ — TQ~1. However, if To is not small compared to 
Tc, the form (b), PQ^T71, n>l, is more appropriate. 
(More generally, a linear combination of both forms 
accurately fits all points.) Clearly, the included theory 
yields results consistent with the experimental observa­
tions of region (b). 

It is also interesting to observe that the vaporization 
curves (for N>4) are asymptotic to P0^o2=0, in the 
limit as N —»°o, or equivalently, in the limit of vanishing 
attractive interaction. This, of course, is consistent with 
(1) the classical requisite that all thermodynamic 
equilibrium states for perfect gases are stable, and (2) 
that condensation is a collective phenomenon, so that 
in the absence of a cooperative coupling (N —><*>) con­
densation should vanish. This latter consistency also 
applies to the result that for the long-range class of 
forces (iV=2,3) all equilibria are unstable. 

The influence of collisions is considered in the limit of 
small collision rate where it is found that the effect of 
random impacts is to diminish the growth rate of the 
instability mode by an amount which is exactly equal 
to the collision frequency. For the first class of mole­
cules (N<3), this effect may drastically alter the re­
sults stated above, so that for collision frequency 
sufficiently large, stable thermodynamic states may 
exist. For the short-range class of forces (iV>4), the 
effect of collisions are readily incorporated into the 
theory and a formalism is described from which phase-
equilibrium curves may be obtained. 

II. ANALYSIS 

A. Starting Equations and 
Dispersion Relations 

The kinetic equation employed in the present analysis 
is of the form, 

df/dt+l-Vf+(T/m)V*Vsf»*Q, (1) 
16 A. H. Wilson, Thermodynamics and Statistical Mec'hanics 

(Cambridge University Press, New York, 1957). 
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where f(£,r,t) is the one-particle distribution in phase 
space. The field F is the force per source element r, 
which is due to the collective two-body interactions. In 
this study we will consider fields of the form, 

equilibrium configuration is perturbed in the following 
manner: 

F(r) 
aNrN r { 

47T J b>\r'\ 

dV n(r')(r— r') 

| r _ r ' | i V r + l 
(2) 

F = 0 + G , (7) 

which relates to the attractive interaction F# of particle 
i on particle j , 

a TiTj 

4 x | r 4 - r y | ^ + 1 (3) 

To terms linear in the perturbations g, G, n> Eqs. (1) 
and (2) appear as 

dg/dt+^Vg+(r/m)G'Vjo=0, (8) 

ar f <Pr'n(t')(t-T') 
G= 

4TT 
(9) 

r—r 

(the subscript N is implied on all force parameters). The 
constant n is associated with the ith particle and may 
be a function of its mass, charge, and various electric 
and magnetic multipoles. 

The inequality describes a central repulsive core with 
radius r0== i&- The dimensions of the force constant a 
are [MLN+1T-*r-r\. 

Equations (1) and (2) are related through the number 
density n according to 

(4) n= /<P£. 

Let us consider the equilibrium solution 

/o= [no/(27r)^C3] e x p { - JV2C2} . (5) 

This Maxwellian determines the related thermodynamic 
state variables according to which the equilibrium 
number density no, internal energy E0, and scalar pres­
sure Po are given by 

n Q = / o ^ f o - 1 , 

E*=\m / f0ed^=%n0KTo=in0fnC\ 
(6) 

P0Vo=KT0; 

the equilibrium specific volume17 is vo. 
Owing to the constancy of no, the equilibrium force 

F0 [Eq. (2)] is an integral over an isotropic vector func­
tion so that F0 vanishes by symmetry. 

In order to uncover the stability of the solution 
/ = / o (and the related thermodynamic state no,To), the 

17 The dimensions of v0 are volume per particle as opposed to the 
more standard volume per mass. 

In order to uncover the development of g (or, equiv-
alently, n or G) in time, the following plane-wave 
(antisymmetric) Fourier transform is constructed 
which, together with its inverse, appears as (say, for G) 

glut r 

G*(k,co) = / e-ik'*G(r,t)dh , (10) 
(2TT)3 J 

G(r,t) = e-iut / e i k ' r G*(k ,co )^ . (11) 

The equations that w*, g*, and G* satisfy follow from 
(8) and (9) and appear as 

( ^ k - « ) f g * + - G * . v € / o = 0 , 

G*= 
4TT (2TT)3 

dVn(x')(x-x') 

r— r ' I N+l 

(12) 

• (13) 

Let us consider the k dependence Gk of G*, viz., 
Gk=e~'w<G*. Substituting the Fourier integral for n in 
(13) gives the nine-dimensional integral, 

G k = 
2 ( 2 T T ) 4 

dhdh'dW 

_ r' I #+1 
-nw (kO 

r—r 

X e x p ( C k ' - r ' - k . r ] ) ( r - r ' ) (14) 

\jik is, similarly, the k-dependent part of w(k,w)]. Under 
the transformation of coordinates, 

k«Gk goes to 

k-G k = 
4 ( 2 T T ) 4 

x=r— r ' , r = § ( y + x ) , 

y = r + r ' , r ' = i ( y - x ) , 

/ [ r , r ' / x , y ] = | , 

(Pxdsydsk' 

y.N+1 

(15) 

X e x p p y J ( k ' - k ) ] e X p p x . | ( k ' + k ) > t - . (16) 
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The integral over y gives 

j(Pye*W-v = d( ) = 2 « ( k ' - k ) , (17) 

where 8 is the Dirac delta function. 
The integral over k' yields the remaining form, 

ar f d3x e~ix'kX'k 
k«Gk=—ftkQs) 

about €=0 depends on e. To obtain the e dependence of 
this leading term, we first expand the integrand in 
powers of z to obtain 

]dz dz (—)n2nz2n+1 r™ dz 

. ZNn=l ( 2 n + l ) ! Je ZN 
>2n+l (23) 

47T YN+l 
(18) 

In spherical coordinates with k along the polar axis, 
one obtains 

This serves to define the expansion coefficients <j>n. I t is 
quite evident that when 2 ^ + 1 = ^ — 1 (i.e., N even) 
the series gives a logarithmic contribution. To separate 
out this logarithmic dependence, IN is written in the 
following manner: 

k-Gk=-
arftk 

47T L 
/•27T /»' 

/ dv 

J 0 J b 

dcosd 

00 r2dr exp(—irk cosd)rk cos# 

IN=\ + =IN'+A(a,N), 
J e J a 

(24) 

6 r 

dwrkweirkw 

•N+l 

where (e/a)<Kl. The second integral A is some finite 
number which depends only on (A7,a). The first integral 
is further divided according to 

= arfik 

: f00 r1 dwrkwe* 

Jb J ^ ^ 
r ° dr ( 1 \ 

s / ( cos&r srnkr J . 
Jb ftf-A kr J 

ra dz oo 

Je ZN 1 

(19) 
+<t> 

radz 
-2)12 I ~ , (25) 

J e % 

This is written in the final form, 

1 dz 
ik*G* = arfi ^~2 / —(z coss—sins) 

JbhZN 

or, equivalently, 

IN'— —<t>(N-2)/2 lne+0(iv-2) 

where 

/

* 00 

' s 2n+l—N 

^arn*kN~*IN(bk), (20) 

which serves to define the function IN- We will be 
interested in values of IN for bk<^l. This relates to 
perturbations whose wavelengths are large compared to 
the range b of the repulsive core. 

The first relevant value of N is the gravity case 
(N=2) (for N=l the integral IN is not defined), in 
which case one obtains (integrating the sine term by 
parts), 

<£?/=<£?i(l—5n,!(jv-2)) • (26) 

Integrating the uniformly convergent series gives 

i V = — 0i(i\r~2) ln€+0i(iv-2) ln# 

0n' 

[? + E 2 ^ + 2 - A 7 
_z2n+2~N , (27) 

sol that l the leading terms of 7j\T(iV\Vven) explicitly 
appear as 

/ «= -
sms 

3! 

7 ^ = _^(iV.__2) i n € 

1 (1-fijM) 

siS. (21) 3 ( i ^ -4)e^- 4 
[ l + O ( e 2 ) ] + £ M 0 . (28) 

For N=3, the integral is still well behaved at the 
origin, and one obtains (integrating by parts, dV= dz/z*, 
U=zco$z—smz), 

1 fz cosz— sinsx I °° 1 r00 dz sins 

For odd N, there is no log contribution and one obtains 
directly (iV>4) 

1 1 
1/zcosz— sinz\ I00 1 r 

2 \ z2 / L 2Je 

w e 

4 12 
(22) 

For iV>3, the leading term in the expansion of IN 

tl+0(e>)-]+B'(a,N)J (29) 
3 (iV-4)«w-* 

The constants 5 and B' are finite and depend only on 
(a,N). 

For iV>4, even or odd, the dominant term is seen to 
be the 6~(^~4) term, even though the log contribution 
appears for N even. Table I indicates the dominant 
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Z*\ 
-z 

FIG. 1. The func­
tions SF and Z for the 
iV>4 class of forces. 

terms [7j\r(0)] in these expansions of IN about e=0 . IN 
may now be written 

7 Y = / * ( 0 ) ( 1 + ^ ( 1 ) + - • • + 6*-4A^lne+- • • ) , (30) 

where A ^ = 0 for N odd. 
To within these leading terms, Eqs. (12) and (13) 

appear as (dropping the * notation) 

^ « - k - « ) = - ( r / w ) G . V € / o , (31) 

Jk-G=arnkN-*IN®K (32) 

These two equations yield the single equation for G, 

~/,v (0 ) 

m 
-G-0 . 

5-k-wJ 

TABLE I. The dominant terms of IN about e=0. 

(33) 

N 

IN™ 

2 

- 1 

3 

TV 

4 

4 

1 
-toe 
3 

N>4 

t-N+i 

3(^-4) 

In the special case of longitudinal fluctuations 
(kXG=0) , Eq. (33) gives the dispersion relation, 

where 

1 = 

Z(0 

~INWZ({), 

1 /•» ve-^dv 

(2T)»;_ , » - f 

{=o>/Ck, » = { / C . 

(34) 

(35) 

In the upper half f plane, Z exhibits the following 
properties11: 

I m Z > 0 , 

R e Z > 0 ; I m F = 0 , 

I m Z < 0 , 

1 / 3 15 
1 — - + • — 

O<0<£*r, 

p~\p\»l 

(36) 

Z(t0)~l-/3(i ir)1*+- • • , 0 - | 0 | « 1 . 

Equations (34)-(36) will serve as our fundamental 
dispersion relation in the following sections. 

B. Specific Cases 

(a) A r>4 

For this force law, Eq. (34) appears as 

3mC2bN~4(N-A)/aNn0T
2=Z(f). (37) 

I t is clear that the only normal modes lie on the positive 
imaginary axis in the f plane, i.e., for f=i/3, ft= \&\. 
Since k is real and £—a)/Ck, setting £=ifi is equivalent 
to setting a>=i/z, fx= |/x|. This indicates that the only 
normal-mode solutions are purely growing (unstable) 
modes.18 

The solutions are obtained by plotting the straight 
lines, 

* = 3mC2bN~4(N-~~4)/ar2n0, (38) 

against Z(i(3) (where p = n/Ck), as in Fig. 1. 
I t is clear that solutions exist only if 

* < 1. (39) 

Furthermore, the equality gives the curve that 
separates stable (no growing modes) from unstable 
(growing modes) thermodynamic equilibrium. In terms 
of the specific volume vo=n<r1, and the equilibrium 
temperature KTo=mC2, this 'Vaporization" or "phase-
equilibrium") curve appears as 

T0Vo=aNTN
2/3KbN-*(N-4:)^yN, (40) 

or, equivalently, employing Eqs. (6) in terms of the 
pressure Po, as 

Po= (K/yN)T0* (41) 

(42) 

For some specific N, the curve (42) intersects the family 
of isotherms PQVQ=KTO, as depicted in Fig. 2. For 
2V»4, PN-+0, and Eq. (42) tends to v0

2PQ-+0, which is 

FIG. 2. Phase-
equilibrium curve for 
the iV>4 class of 
forces. 

EQUIU 

18 Decaying and propagating roots may be obtained in the 
lower half $* plane by distorting the contour of the F integral; 
however, such solutions are, of course, not normal modes. 
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depicted in Fig. 3. This latter diagram shows the manner 
in which the unstable modes diminish with vanishing 
attractive interaction.19 

The behavior of the roots in the region of large p 
(\ji/Cklp>l) niay be obtained by equating the asymp­
totic development of F [Eq. (36d)] to ^ . This gives 

z.%\ 

1 a^TN no 

\n3mbN~A(N-4:) 
(43) 

so that the growth rate n decreases as the wavelength X 
increases (opposite to result for N—2), and is inde­
pendent of the temperature. 

Finally, an estimate for the critical temperature Tc 

may be obtained by setting vo=vomila^b^> i.e., the 
"packing volume,'' in Eq. (40). This gives 

KTc^laNrN
2/bNJb/3{N-~^)~]. (44) 

(b) A r=4 

In this case, Eq. (34) assumes the form, 

Z(f) = -C2/V2 ln(*&)s=¥4 (45) 

F 2 = a 4 T 4 W 3 w . (46) 

The immediate conclusion is that normal-modes 
solutions occur only for kb<l, which is consistent with 
the original domain of validity for the expansion of IN-

Again, the only roots are those for which £ = ip, 
P=\p\. In terms of p, the dispersion relation (45) 
appears as 

C2 

V2\ 

1 

Lln(3-\n(vLb/C)J 
Z(iP). (47) 

(for These two functions of p are plotted in Fig. 4 
fixed /z). 

The criterion which discerns between the existence 
and nonexistence of solutions to (47) is uncovered by 
examining these curves in the region of large p where 
one obtains 

p*=(V*/C*)lnp. (470 

FIG. 3. Phase-
equilibrium curve in 
the limit of vanish­
ing interactions. 

18 Here we are assuming that [aNrnP/b1*"*] is bounded as N 
becomes large. Relaxation of this constraint yields interesting 
results. 

FIG. 4. The func­
tions ^f and Z for the 
iV = 4 force. 

j8*=/j.b/C 

This equation has solutions only for 

(V2/C2)>2e, [ V = l ] , 

1 I 
1 \ „ 
! \ 

\ 
— - \ \ 

• z 

"—' 

(48) 

which gives the desired criterion for the existence of 
solutions to (47). The equality gives the related phase-
equilibrium curve, 

ToVQ=a4Ti2/6eK=yi. (49) 

This is fundamentally the same form as was uncovered 
in the iV>4 case [cf. Eq. (40)], and one obtains in 
similar manner the alternate equations, 

P0=(K/yi)T(?, 

vtP0=Kyt. 

(c) N=2 

For this case, Eq. (34) appears as 

&w=£2c2/v=z(r), 
a)22 = o:2T22^o/w. 

(50) 

(51) 

(52) 

(53) 

Once again, the only roots of (52) are those for which 
£=ip or cc — ifjL. In a previous analysis by the author11 it 
is shown that w2 is the maximum value that ix can 
assume and that, furthermore, this maximum is ap­
proached as the wavelength X becomes large compared 
to d2. In addition, as X —> J2, At —-» 0, and the instability 
vanishes. 

I t follows that for a given (no,To) (i.e., given thermo­
dynamic equilibrium state), there is always an unstable 
mode. In order to ensure that this result is independent 
of the presence of a finite core (i.e., J2

(0) is independent 
of b), Eq. (34) must be examined in the region of large 
P, retaining terms of higher order in e. The relevant 
equation appears as 

co2202L 3\\cJ p2 5 ! \ C 7 P* 

ix* f l/fib\2l 1 / M 6 \ 4 1 -| 

1 / 3 15 \ 
= - 1 + - + • • • ) . (54) 

B2\ P2 #4 / 
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I t is clear that there is always a root, 

or equivalently, 

(55) 

(56) 

The larger the equilibrium temperature T0> the larger 
the wavelength X of the fluctuation which will exhibit 
collective behavior. This wavelength grows as 7Y/2. 

(d) N=3 

For this case, Eq. (34) appears as 

Ck/az=Z(£), 

C03= 7TG!3T32^o/4mC . 

(57) 

(58) 

Again, roots only occur for £=ij(3; oj=i/x, and for 
Ck/o)z<l, this latter criterion following from the fact 
that Z(i($)<\. The equality establishes the minimum 
value that X can assume which is 

X3=C/o)3. (59) 

Inasmuch as this root related to a finite k and /5 —> 0, it 
follows that at this minimum wavelength, M = 0 , i»e., the 
instability vanishes at X3. 

All of these results are strikingly familiar to the 
results of the (N=2) case, which is to be expected 
inasmuch as these two force laws are both very long 
range. However, there is one dissimilarity. In the previ­
ous (N=2) gas we found that the growth rate /x was 
maximum in the long-wavelength limit. However, in the 
present (iV=3) case, the equation of the asymptotic 
values for Z to Ck/o>% gives 

31/2A1/2> (60) 

so that ix decreases with increasing X. Since / i ->0 as 
X—>X3 also, it follows that /JL assumes a maximum at some 
intermediate wavelength X3

C. While the (N=2) gas will 
naturally coalesce to globular forms of the dimension 
J2, for the (N=3) gas the heterogeneous equilibrium 
depends on whether X^X3

C. 
If the effects of the finite core are brought into play, 

then, again, there is still a persistent growing mode, 

X^^KTo/wa^T^no, (61) 

which is seen to grow as T0. 

III. THE EFFECTS OF COLLISIONS 

To exhibit the influence that random collisions have 
on the above analysis, the following simplified collision 
form is adopted: 

Bf/dtlmi^vif-f). (62) 

The collision frequency is v and /° is a local Maxwel-
lian which includes the actual number density nm, 
temperature Tm, and macroscopic flow um of the gas. 

The Taylor expansion of /° about the absolute Max-
wellian /o appears as,20 

/°=/c 
n u-£ T /? 

1+-+ +— 
L wo C2 2T0 

(HH (63) 

The variables n, u, T, are perturbations about Tm= To, 
u m = 0 , nm — no, so that 

Tm—To~{- T, 

um=0+u, 

nm=no+n. 

(64) 

These equations are consistent with the perturbation 

/= / •+«• 
Substitution of (63) and (64) into (62) gives 

dt 

n 
(65) 

If v is taken to be small (along with the perturbations 
n, u, and T, then to within terms of lowest order the 
collision form (63) appears as 

df/dt\00u= — vg. (66) 

The inclusion of this in Sec. I I A produces one effect, 
that is, to change io) to io)— v, or, equivalently, to change 
the argument f of F(f) to 

r=(«+iiO/cft. (67) 

Since the only relevant roots occur at £—i(3=ijj,/kC, 
one obtains 

co=i(fx~v), (68) 

i.e., the collisionless growth rate fx is diminished by an 
amount which is exactly the collision frequency v. 

We now apply this result to the class of forces 7V>4. 
Let us recall the procedure which discerned between the 
existence and nonexistence of roots (cf. Fig. 1). A very 
similar procedure now applies again with P = fx/Ck, and 
again one concludes that normal modes occur only if 
^ < 1 [cf. Eq. (39)]. However, these normal modes 
will grow only if fx>v, due to formula (68). More 
generally, v is a function of (b,N,tio,To). These values 
also determine /x (for fixed k) through the equation 
ty=Z(i(3). If the intersection of ^ and Z lie to the right 
of j3v—v/Ck, instability results. Combining this fact 
with the explicit dependencies of ^ and v on (no,T0) 
yields criteria for the stability of the (#o,To) state. 
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APPENDIX 

In this Appendix we wish to demonstrate the formal 
connection between Eq. (1), which forms the basis of 
the above analysis, and the 9l-particle Liouville equa­
tion. The formulation includes expansions which are 
very similar to those encountered in obtaining the 
Fokker-Planck equation from the Boltzmann equation.21 

If the 9l-particle Liouville equation is integrated 
(91—1) times, (91—2) times, and so forth, one obtains a 
coupled system of equations22 for the reduced distri­
bution fi. The first two such equations appear as 

dh dh 91-1 d 

—+& + 
dt dxi m d£i 

df2 df2 df2 l r dh „ W 
—+{i + 6 + - F12 +F21 
dt dxi dx2 wL d\2 d% 

F 1 2 / 2 (2 l ,22 )&2=0 , (A l ) 

m 
Fi8/tffe«+—• / F B S / ^ S = 0 . (A2) 

dh 

A similar equation relates /3 and /4, and so on. 
The function / i is the one-particle reduced distri­

bution. The product fi(zi)dzi is the expectation of 
finding particle 1 in the phase state dz\ about z. The 
relation between / i and the 9l-particle probability 
density fa is 

/i(*o= = / /a i (zi- • zw.)dz2- • -dzsi. (A3) 

More generally, for the Z-particle (l<dl) distribution, 
one writes 

•- / fi(zv ••**) = \ fa{zv • -zvi)dzi+v "dzcji. (A4) 

2 1H. Grad, NYO-7977, Courant Institute of Mathematical 
Sciences, New York University, 1958 (unpublished). 

22 H. Grad, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1958), Vol. 12, p. 205. 

The density distribution is given by 9l/i. Toward the 
ends of obtaining Eq. (1), and its relevance to the in­
determinate Eq. (Al) (i.e., one equation in two un­
knowns, / i and /2) , the following product is considered: 

/i(si)/i(*2)= / / /si(21,22'• • 'Zvt')M(zi,z2' • -z%) 

X[<fei'- * -dz9i'~][dzr • -dzffi] 

X [dzx' • • • dzrijdzz • • • <fegj. (A5) 

If fa(zi,Z') is expanded about 01=31', and fa(zi,Z) 
is expanded about Zi=zh and the two series are then 
multiplied, one obtains 

M(zi,z')M(*i',z) 

'{hW,z)[yMzhz
f)-]zl=zl, 

= fa(*i-' -*3i)M(zi'' -2gi)+An. (A6) 

Substitution of (A6) into (A5) gives23 

/2(2i,22) = / i ( 2 i ) / i ( s i ) - A i i . (A7) 

The remainder A vanishes (molecular chaos) only in the 
limit of no correlation between the particles (alternately, 
if F i 2 ->0or^o-^0) . 

If the above leading term is substituted into (Al) 
there results 

dh dh 91-1 d 

dt dxi m d\\ 

•I F12 (xi,x2)/i (z2) dx2d%2. (A8) 

Multiplying through by 91 and neglecting 91 compared 
to unity gives 

df df ldf 
• / Fi2(xi,x2)»(x2)rfx2, (A9) 

which is the desired equation of motion. 

dt dx m d% 

23 In similar manner one obtains, more generally, 
fi(zr ' 'zi)fp(zi+i- • -zi+p) =fi+p(zr • -zi+p)-{-Aip. 


