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A systematic study is made of the electromagnetic properties of charged vector mesons. The various 
formalisms used to describe charged particles of spin 1 are compared, and a new first-order formulation of 
the Stiickelberg theory is developed. For the most general first-order Proca Lagrangian, subject to the 
usual symmetry requirements we eliminate the redundant components to obtain a Hamiltonian formulation. 
The theory is interpreted in the nonrelativistic limit, and the terms corresponding to spin-orbit coupling 
and electric quadrupole-moment interaction are identified. The analogy to spin-| theory has led us to 
consider spin equations of motion which agree with the quantum-mechanical equations to order m^. 

This general form for the electromagnetic interaction is applied to a recalculation of the /z —• e-\-y decay 
rate through a vector-meson intermediary. We conclude, that the absence of this process is not necessarily 
an argument against the existence of an intermediary meson in weak interactions. 

I. INTRODUCTION 

TH E charged vector meson that has been proposed 
as a possible intermediary field (B field) in the 

weak interactions must, if it exists, have a mass greater 
than that of the K meson and a very short lifetime.1 

Against such an intermediary field, Feinberg2 and Gell-
Mann3 have argued that, provided the two neutrinos in 
fx decay are capable of annihilating each other, such a 
B field would allow the decay ju —» e+y in first order in 
the ^-decay coupling constant G with a rate considerably 
larger than that experimentally observed.4 This rate de­
pends very strongly on the nature of the vector-meson 
electromagnetic coupling which we will investigate in 
this paper. 

The vector-meson field theory differs from the Dirac 
theory by the appearance of redundant components in 
the covariant equations of motion, and by the necessity 
of defining expectation values with an indefinite metric. 
We begin by demonstrating the equivalence of the 
various formalisms used for describing charged vector 
mesons. In particular, we present a new first-order 
treatment of the Stiickelberg theory.5 Invariance argu­
ments enable us to write down the most general 
Lagrangian for such particles from which a generalized 
Sakata-Taketani6 equation can be derived. The non­
relativistic form (to order m~2) of the theory is readily 
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obtained by a Foldy-Wouthuysen7 reduction of these 
Sakata-Taketani equations. As in the Dirac case, the 
electromagnetic moments are identified with various 
terms in the nonrelativistic Hamiltonian for the vector 
meson interacting with an external electromagnetic 
field. In a uniform electromagnetic field, the equation of 
motion of a vector meson of magnetic moment geh/lmc 
agrees to order tnr2 with that obtained on invariance 
grounds for a classical spinning particle. 

By way of application, the rate for the unobserved 
process p —> e+y is recalculated for a vector meson of 
arbitrary (constant) magnetic dipole and electric quad-
rupole moments. With a suitable choice of these two 
parameters, the rate for this process, and for the also 
unobserved \x—e conversion in a nuclear field, can be 
made equal to zero. 

II. ELECTROMAGNETIC INTERACTIONS OF A 
CHARGED VECTOR MESON 

A. Comparison of the Formulations of 
the Theory of Spin 1 Fields 

L First-Order Proca Equations 

A first-order form of the Proca theory8 is given by the 
Lagrangian 

-W^U^+nPUJUp (2.1) 

for the case of free fields. In Eq. (2.1), Z7M(#), UpV(x) are 
independent field variables, UJ(x), U^{x) are the 
Hermitian conjugate fields, and m is the mass. The 
above Lagrangian gives the free-field equations 

Ullp=dptUv—dvUll, 

dMu 
2UV 

In the presence of an electromagnetic field, we per­
form the usual gauge-invariant replacement5 dp—>7r^ 
^dp—ieAn, where A^x) is the electromagnetic four-

7 L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950). 
8 A. Proca, Compt. Rend. 202, 1420 (1936). 
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potential, which yields the field equations 

Uu = 7T, JJV „UU (2.2) 

(2.3) 

(2.4) 

The second-order wave equation 

is obtained by substituting Eq. (2.2) into Eq. (2.3). 
Since a four-vector field must actually possess only 
three independent components, a subsidiary condition 
eliminating the unwanted fourth component is needed. 
This is most easily obtained from Eq. (2.3), 

7TV7TfJJnV— ~~\{TrliKv—irvTrli)Ullv— {\ie)F ^U ^v—m2ir yJJ ̂  

where 
irvUv— (ie/lm^FfxyUM (2.5) 

0 i = 

u 

• 1 

- 1 
1 

I 

• 1 

1 • 

These /3's satisfy the algebra-defining equation 

The first-order Proca equations are thus a realization of 
the Duifin-Kemmer formalism.5 

3. Discussion of Second-Order Field Equations 

In a first-order formalism, the subsidiary condition 
eliminating the timelike vector mesons either is one of 
the equations of motion or can be derived from them. 
When the equations of motion are of second order, how­
ever, the subsidiary condition must be separately as­
sumed. The second-order equations obtained by the 
substitution dM -~> TTM are then generally not mutually 

The second-order wave equation (2.4) then becomes 

(Tr*-n?)Uv- (ie/lm^iryiF^U^+ieF^U^O. (2.6) 

2. Duffi,n-Kemmer Formalism 

The first-order Proca equations (2.2) and (2.3) may 
be written in the matrix form (/3M7rM+w)^=0 by setting 

•(l/m)Uu 

•{Vm)Uu 
•(l/m)Uu 
•(l/m)U2Z 

<l/tn)Un 

•Wm)U12 

u2 
Us 
UA 

• 1 

i 

I 
[ 

L 

— i 

_ , 

1 

L • 

consistent without the addition of suitable F»v terms. 
For example, equations 

O 2 - W 2 ) ^ M = 0 and aMt/M=0 

on dM —» Tfi become 

(7r2-m2)*7M=0, (2.7) 

7TM£/M=0. (2.8) 

Since [7Tv,7r2]5^0, Eq. (2.7) is inconsistent with Eq. (2.8). 
A similar difficulty arises with the conventional Stuckel-
berg formalism5 in the case of electromagnetic inter­
action. For these reasons we have preferred to use a 
Lagrangian giving first-order equations of motion which 
after dM —•> 7rM can be iterated so as to yield the consistent 
second-order equations (2.5) and (2.6). 
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4. Stiickelberg Formalism 

There is one other dynamical form of the vector-
meson theory, introduced by Stiickelberg,5 which is well 
known in the neutral-meson case. There has apparently 
been, however, no consistent treatment of the electro­
magnetic interaction of charged mesons in the Stiickel­
berg formalism. The original Stiickelberg theory is a 
second-order formalism involving a four-vector field Z^ 
and a scalar field B.5 In the absence of interaction, these 
fields are related to the Proca field U^ by the equation 
U'fl=Zll+fnr1d^B. By the subsidiary condition 

dpZp-i-mB — O, 

the scalar field B cancels out the fourth component of 
the vector-meson field. In the conventional formulation, 
when the electromagnetic interaction is introduced by 
the minimal substitution d^ —> 7^, this separately im­
posed subsidiary condition becomes inconsistent with 
the field equations. We will consider here a new first-
order formulation of this theory which is internally con­
sistent automatically and turns out to be identical with 
Proca theory. 

For free mesons consider the Lagrangian 

<£ = §ZM„t[dMZ„— d„ZM+mrx (dM<3„— dvdll)B~] 

+ | [ < ^ t - dvZJ+mr1 (d^d,- d.d^B^Z^ 

—|Z^tZMV+ w2ZMtZM+ mZ^dpB+md^B tZM 

+CJd»B+d^C»-CJC,, (2.9) 

where Z^v, B, ZM, and CV are independent field variables. 
On variation of £ we obtain the equations 

dvZvtl- w2Z^~ md^B = 0, (2.10) 

Z ^ = d^Zy— dyZp, (2.11) 

d^+m^d^C^O, (2.12) 

C^dpP. (2.13) 

By operating on Eq. (2.10) with d^ we obtain Eq. (2.12) 
on using Eq. (2.13). Substitute Eq. (2.11) into Eq. 
(2.10) to obtain 

(B'-m^Z.-d^d^+mB)^ 7 

and; using Eqs. (2.12) and (2.13), we find 

O2-w2)(ZM+nr"id|lJB) = 0. (2.14) 

Set U^Z^+m^dpB so that Eq. (2.14) along with the 
condition dliUli=dfJLZll+m~1\Z]2B = 0 [which is identical 
to Eqs. (2.12) and (2.13)] reduces to the Proca equa­
tions. Thus, the internally consistent equations, 

dvZVfl—m2Zfi—mdllB=0J (2.15) 

ZM„= dpZi,— d„ZM (2.16) 

together with (2.14), are equivalent to the Proca 
equations. 

The advantage of the above first-order formulation is 

the possibility of introducing the electromagnetic inter­
action consistently. Put dM —>xM in Eq. (2.9) to obtain 

£ = iZMFt[TMZJ>—7r„ZM— (ie/m)F(ivB~} 

+KirJZ,1-irJZJ+ {ie/m)FlxvBqZllv 

— ijZ^tZ^-f m2Zll tZM+ tnZ^TpB+mir^B tZM 

+CJT,B+T^C,-CJC,. (2.17) 

From Eq. (2.17) follow the equations 

TrvZvli~m2Zfi--mw(iB=0, (2.18) 

Zpv—TTV.ZV—'KVZP,— (ie/m)FfiVB, (2.19) 

<wvZv+m-x7T^CM- {ie/lm^F^Z^ 0 , (2.20) 

CM=7r>B. (2.21) 

As in the free-field case [if we use Eq. (2.21)] operating 
on Eq. (2.18) with xM gives Eq. (2.20). Substitute Eq. 
(2.19) into Eq. (2.18) to find 

(Tr2—m2)Zfl—TvTrliZy--mTrlxB— (ie/m)7rv(FvliB) = 0. 

When Eqs. (2.20) and (2.21) are used, this latter equa­
tion becomes 

(TT2- m2) (Zv+m-'ir^+ieF^iZv+m-^B) 

- {ie/lm^ir^FxvZ^) = 0 (2.22) 

on making use of the commutation relations 

C7^?71"2] = ~~ i&tvF nV—ieF pyTv. 

If we set U^Z^+m^ir^B, then Z^V=U^V, and Eq. 
(2.22) becomes 

(w2~m2)U,- (ie/2m2)w»(FxMxv)+ieFv,Uv=0, 

which is identical with Eq. (2.6) in the Proca theory. In 
addition, the subsidiary condition Eq. (2.5) in the 
Proca theory is readily seen to be identical to Eq. (2.20). 

B. Most General Lagrangian for a 
Charged Vector Meson 

1. Divergence Transformations 

The theories we have just considered possess, as we 
shall see in Sec. D, a "normal" magnetic moment, i.e., 
their gyromagnetic ratio g is 1. The Lagrangians we have 
been using are not unique, however. In the Proca theory 
the divergence 

S'^ydldJIJUn-drUJU,!, (2.23) 

where 7 is a dimensionless constant, may be added to 
the free-field Lagrangian (2.1). The divergence <£' will 
not change the field equations derived from the Lagran­
gian. However, the Lagrangian <£+<£' will have, as field 
equations in the presence of electromagnetic interaction, 

U^TpUy—ITrUn (2.24) 

TtUv-tntUr+ieyFvU^O. (2.25) 

The term proportional to 7 in Eq. (2.25) will correspond 
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to an additional magnetic-moment interaction.5 We see 
then that there are infinitely many free-particle Lagran-
gians leading to the same free-field equations but differ­
ing in the distribution of charge density. Thus, the 
principle of minimal electromagnetic interaction does 
not define a "normal" magnetic moment unless the free-
particle Lagrangian is specified. Since, for any choice of 
7, the theory is nonrenormalizable,9 this criterion too 
(unlike the spin-| case) is not usable to define a pre­
ferred electromagnetic interaction. 

2. Electric Quadrupole Moment Interaction 

Group theoretical considerations allow a particle of 
spin 1 to possess an electric quadrupole moment in 
addition to a magnetic dipole moment. We now proceed 
to show how an electric quadrupole-moment interaction 
can be added to the first-order Proca Lagrangian. We 
require that such an interaction be bilinear in the meson 
field variables Up and £/M„, and linear in the electric 
charge e and the derivatives of the electromagnetic field 
d\FpV. Since these derivatives are constrained by the 
Maxwell equations 

dvFp\— dpF^ = dxF^, 
only the form 

£ " = aeU^UtfiFv+rfeUxWvdiFv (2.26) 

satisfies these requirements along with the requirements 
of Lorentz and gauge invariance. The multiplication 
factor a is now determined by demanding invariance of 
this electromagnetic interaction under time reversal. 

We define the time-reversed fields (apart from 
arbitrary phases, which are the same for all terms in the 
total Lagrangian) by 

AiT=Ai(r, - 0 , , 4 o r ( r , 0 = - ^ o ( r , - * ) , 

UiT=Ui(T,-t), UoT(t,t)=-Uo(r,-t), 

diT—di, d 4
T =—d 4 ? aT=a*. 

Applying these definitions to Eq. (2.26), we have 

(£")T= Z'^^eU^U^F^+aeU^Ux^F,,, 

and thus, in complete analogy to the /3-decay Hamil-
tonian, all coupling constants must be relatively real, 
and a pure imaginary. Choosing a—iq/^tm2, where q is 
an arbitrary dimensionless constant, we obtain the 
electric quadrupole-moment interaction 

£ " = (ieq/Am^lU^-U^U^dxF^. (2.27) 

We have been unable to introduce a term like (2.27) 
in a "normal" way by suitable choice of a free-particle 
Lagrangian without going to derivatives of third or 
higher order. The quadrupole moment is, nevertheless, 
subject to the same degree of ambiguity as the magnetic 
moment, since, as we shall see in Sec. D, the "normal" 

9 H. Umezawa and S. Kamefuchi, Nucl. Phys. 23, 399 (1960). 

interaction (2.23) already implies a certain amount of 
quadrupole moment. 

Adding Eqs. (2.1), (2.23) (with 3„->*•„), and Eq. 
(2.27), we now have as the total Lagrangian 

-W^Uv+m*UJUr+ (iey/2) {UJUV- UJUJF„ 

+ (ieq/4M*)lU„Wx-UxW^d*Fr,. (2.28) 

Except for the possibility of letting y and q have form-
factor space-time dependence, this Lagrangian is the 
most general charged vector-meson Lagrangian con­
sistent with the ordinary invariance requirements. The 
vector-meson theory tacitly used in the original /*—>e+y 
argument2'3 corresponded to the choice 7 = ^ = 0 . As 
discussed in Sec. IIB1, we know of no physical criterion 
justifying a particular choice of 7. 

I n the next two sections we investigate more fully the 
physical content of this theory. 

C. Generalized Sakata-Taketani Equation 

The Lagrangian (2.28) furnishes the field equations 

TjJ^-mWv+ieyUvF^+iieq/^U^dvF^O, (2.29) 

UliV=TrflUv-TrvUll+ (wq/lm^UxdyJF^. (2.30) 

A meson field satisfying first-order wave equations is 
expected to have six dynamically independent com­
ponents, corresponding to the three independent field 
variables and their time derivatives. Equations (2.29) 
and (2.30) must, therefore, contain four redundant 
components which we wish to eliminate. Since in Eqs. 
(2.29) and (2.30) U^i, j= 1, 2, 3) and UA do not con­
tribute to the time development of the meson field, these 
are the four components to be eliminated. After this 
elimination we will possess a Hamiltonian form of the 
theory. For simplicity, we consider the electromagnetic 
fields time-independent, and the magnetic field spatially 
constant, in the terms proportional to q only. The terms 
not proportional to q can be considered completely 
general. 

From Eq. (2.29) we have 

Ui= (l/m^iwiUu+ieyUiFu). 

Let m<t>i^ Uu, SO that we have 

UA= ( l /w)«- <i>+ {ey/m2)\}' E , 

where E is the electric field strength. Also from 
Eq. (2.29), 

KjUji—m2Ui+wdJ' u= —ieyFjiUj—ieyUAFu 

- (ieq/lm^UijdiFAi- (ieq/^m2)UlmdiFlm, 

which becomes 

d<t>i 
i—^ecp^i+mUi+mr1^ x(nx V>)~]i-\-ieynrl(X} x H)» 

dt 
+eym~2Ei(TZ' ^)+e2y2m~sEi(V'E) 

-edq^frdiEj, (2.31) 
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ro o CT 
o o - ; 

lO i 0 J 
, s2= 

r o o r 
0 0 0 

l - i 0 0J 
, S%-~ 

ro - i o] 
i 0 0 

L0 0 OJ 

where <p is the scalar potential, and H is the magnetic 
field strength. We wish to write this last equation in 
matrix form. I t is lengthy, ba t not difficult, to show that 
if one introduces the spin-1 matrices 

5 i = 

Eq. (2.31) can be written as 

—=e<pcl>+niU—m'~1(S"K)2U~eym~l(S-H.)U 
dt 

—- ey?n~2SiSjEjTri(t>~\- eymr2 (E • TC)<£ 

_ ^y2m~s ( S . E ) 2 u + e2y2m~z^2 jj 

+e$q)nr2SiSjdjEt<f>-e(iq)mr2(v -E)</> (2.32) 

where 

<j>-

Now Eq. (2.30) becomes 

Uu^inV'i—7nU\+ie(%q)m~2U'jdjFu, 

which can also be written in matrix form: 

dU 
i—= epU+nufy+tnr1 (S • TC)2<£— {7z2/m)(j>—em~l (S • H)<£ 

dt 

+eyM-2SiS37Tj(EiU)-~eym~-27z- (EU) 

+e$q)M-2SiSj(diEj)U-e(iq)m~2(V'~E)U. (2.33) 

We now define a six-component wave function 

* = ( l / v 2 ) ( 

\-U+<t>/ 

frl* 
4>i 

w03> 
, u--= 

[U{] 
U* 

LJ7,J 

so that Eqs. (2.32) and (2.33) take the Schrodinger 
form, 

i—= {e<p-\- p^m+ip2(S* iz)2/m 
dt 

— (p3+ip2)(n2+eS-K)/2in 

— (ps—ip2)ey(S'W)/2m 

-(ey/2m2)(l+p1) 

X [ ( S - E ) ( S . « ) - « S - ( E x w ) ~ E - w ] 

+ (ey/2m2)(l-Pl) 

X [ ( S - « ) ( S - E ) - « - ( * x E ) - * . E ] 

— ^ V / 2 m 3 ) ( p 3 - ^ 2 ) [ ( S - E ) 2 ~ E 2 ] 

+ (eq/^ZQvidEi/dxj)-2(dE{/dx^1}+, (2.34) 

where Qij^SiSj+SjSi. For 7 = 2=0 , Eq. (2.34) reduces 
to the Sakata-Taketani6 equation. The charge matrices 
Pi, p2, P3 are the usual 2 by 2 Pauli matrices: 

Pi^ c :)• - c :y - c : , ) 
D. Nonrelativistic Limit of the 

Vector-Meson Theory 

To find the nonrelativistic limit of Eq. (2.34) we 
use the Foldy-Wouthuysen method7 of successive uni­
tary transformations. The free-particle Hamiltonian 
[ e = 0 in Eq. (2.34)] is diagonalized by the unitary 
transformation 

exp(£ip!0), 
where 

tan ( |0) = £2i/(E2+m2)T^2- (S • P ) 2 ] , (2.35) 

so that we have 

U^ 
(E+m)/2(mEy/2 - R P 2 - {S'P2)~]/{E+m){mEy!2-

L-&P2- (S-P2)y(E+m)(mEy2 (E+m)/2(mE^2 
(2.36) 

Thus, in the noninteracting case, Hf~ U~lHU~ p$E, so 
that each sign of the charge can be represented by a 
three-component wave function. 

In the interacting Hamiltonian of Eq. (2.34) we 
define "even" operators as those containing p3 or 1, and 
"odd" operators as those containing p2 or pi. For the 
nonrelativistic limit we require that H be free of odd 
operators up to some order in the inverse mass. Succes­
sive canonical transformations V', where U^eiS, 
S= ipzO/2tn, and the O are odd operators of the Hamil­
tonian, will eliminate O from the Hamiltonian. An ex­
ample of such an O is ip2(S'7z)2/m. The resulting wave 
equation is 

ify/dt^iHo+HtW; (2.37) 

and 

Ho=ecp+m+Tz2/2m~ (rc2)2/8fi 

e r g—1 

# i = - — S - U H + — ( E x 2mc 2mc 
7C— ttXE) 

• {eQ/QQijdEi/dXj+eQQfr-K+Oinr*), 

where « = P — ek and ()= — (g— 1+q) (h/mc)2. The three 
terms in Hi are identified as a magnetic-moment spin-
orbit coupling term, an electric-quadrupole coupling 
term, and a Darwin tenn. Except for this last term, 
the same Hamiltonian Ho+Hi is also obtained for 
spin-0 (St=(?z/=0) and for spin-J particles (that is, 
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Si^^ari, Qij=0) of arbitrary gyromagnetic ratio. The 
Darwin term is zero for spin 0 and [eh/2 (2mc)2]V • E 
for spin J. Except for these Darwin terms, which vanish 
in the classical (&=0) limit, particles of different spin 
are, thus, found to obey the same nonrelativistic wave 
equation (2.37), once allowance is made for the possi­
bility of arbitrary magnetic dipole and electric quad-
rupole moments in the higher spin cases. This result 
suggests that, except for the specifically quantum-
mechanical Darwin term, the nonrelativistic wave equa­
tion is actually spin-independent and that its form 
depends on classical invariance arguments only. 

I t is worth noting that a vector particle could have, 
except for g== 1, a quadrupole-moment interaction pro­
portional to the " anomalous moment" g— 1, even if the 
specific form (2.27) had not been introduced. Unless 
there are reasons (unknown) for preferring g= 1 theory, 
a term (2.27) is not to be excluded. As we shall see later, 
such a q term apparently does not lead to any more 
divergent a form of electromagnetic interaction than 
does the y term itself. 

The factor \ has been introduced before Q in Hi in 
order to make our normalization of the quadrupole 
moment strength conform to that conventionalized by 
Ramsey.10 Consider the meson to have its spin along the 
positive z axis, and also take as a very weak electric field 

E i = - ( p > , £ 2 = - ( ! % , E^kz, 

where k is a small constant. For a meson with spin up, 

result 

so that we write 

\ 4 dXj / 4 

Ramsey defines the energy E of an electric-quadrupole 
moment q as 

E=-\q{dEt/dz)z^ 

for particles with spin along the positive z axis. The 
quadrupole moment is usually divided by the charge and 
given in units cm2, and so the vector meson has quad­
rupole moment Q= — (g—l+q)(h/mc)2 cm2. If we con­
sider the spin projection along the z axis to be 0, then 
we have 

+= 
and 

<S,= 0|-
eQBEj 

4 exj 

eQ 

to give —2Q, in agreement with the group theoretical 
10 N. F. Ramsey, Nuclear Moments (John Wiley & Sons, Inc., 

New York, 1953). 

Q(m)^Q[3tn^S(S+l)yS(2S~\), 

where S is the particle spin and m the projection of the 
spin along the z axis. The charge distribution can be 
considered as having the shape of an ellipsoid of revolu­
tion centered at the origin, and thus Q^^rjR2, where 
n = (C2-a 2 ) / (C 2+a 2 ) , R=±(a2+C2) is the mean square 
radius, C is the axis of the ellipsoid in the z direction, 
and a is the axis perpendicular to the z direction. A 
positive quadrupole moment corresponds to a cigar-
shaped charge distribution, and a negative quadrupole 
moment corresponds to a pancake-shaped charge 
distribution. 

For g = l , #=0 , our result (2.37) reduces to that ob­
tained by Case.11 

E. Classical Spin Equations of Motion 

In the preceding section we noted that spinning parti­
cles of the same gyromagnetic ratio have (except for the 
Darwin term) the same Hamiltonian, at least to order 
1/m2. This suggests the possibility of a classical spin-
independent description of the magnetic-moment pre­
cession. Bargmann, Michel, and Telegdi12 have recently 
given such a description, using a four-vector s^ for the 
spin or magnetic moment. In quantum mechanics the 
spin has, however, more often been described as part of 
the angular momentum antisymmetric tensor S^. We 
will here derive covariant classical equations of motion 
in terms of the more familiar S^. While the equations 
(2.40) we obtain are apparently quite different from the 
equations (2.42) obtained by Bargmann, Michel, and 
Telegdi, the two sets of equations are actually the same 
when Sp and S^ are related as they have to be. This will 
show then that covariant spin-precession equations 
equivalent to those of Bargmann, Michel, and Telegdi 
can be derived from classical invariance arguments by 
using the more familiar SpV formulation for the spin 
angular momentum. 

We wish to generalize to an arbitrary Lorentz frame 
the equation of spin precession 

ds/dt= (eg/2m)s x H , (2.38) 

which holds in a rest frame, by using an antisymmetric 
tensor S»v. The tensor S^ must have only three inde­
pendent components, which in a rest frame are $i, $2, s$. 
This condition is expressed covariantly by the constraint 

O fiyMy — U , (2.39) 

where uv is the four-velocity (u2— —-1). I t is readily 
confirmed that the unique expression for the time varia­
tion of S^v consistent with the particle equation of 
motion dujdr— (e/m)Fltv'Uv and reducing to the form 

11 K. M. Case, Phys. Rev. 95, 1323 (1954). 
12 V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. 

Letters 2, 435 (1959). 
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(2.38) in a rest frame is13 

dSpv/dr^ — (eg/2m)[_SflaFav—SvaFapJ 
-Le(g-2)/2m]lu,S^-u^^']F^ua. (2.40) 

Here r is the eigentime. 
Define a four-vector sa by the relation 

sa= — (i/2)ealiVpSlivUp, (2.41) 

which then also satisfies a supplementary condition 

SpUp=0. 

The time variation of sa can be obtained from Eqs. 
(2.40) and (2.21): 

dsjdr— — (i/2)eafXVp[_UpStlv+upSvVJ 
= (ie/4tfn)eatlvp{gup(Sp\F\v—Sv\F\r) 

+ (g— 2)u\F pKU^jifJSPv— tivSpp]} 

— (ie/2m)eafl^SliVF^u\, 

where A = dA/dr. Now use the two relations 

*J pv ==: 1'tfXvali'M'aSp t 

e j ua^e M Xpcr= [ S a X ^ p 5 < T v — 5 a x 5 j 3 < r 5 p y + 5ap5yx5(rj8 

~ 5 a p 5 ^ \ 5 a v + daadpxSvp— $aafypf>\v] 
to obtain 

dsa/dr= (e/m)l(^g)Favsv— ( § g - 1)^„M«M««]. (2.42) 

This is the result obtained by Bargmann, Michel, and 
Telegdi.12 

We now show, in particular, that Eqs. (2.40) and 
(2.42) both lead to the same coupling (spin-orbit 
coupling) between spin and momentum in an electric 
field, to order 1/m2. For this purpose we express both 
equations in three-vector form and keep terms linear 
in the velocity v. From Eq. (2.40) we have 

ds/dt=* - (eg/2m)l-s x H + (s x v) x E ] 

- C « ( g - 2 ) / 2 w ] ( s ' ( v E ) - E ( 8 - v ) ] 
= (eg/2m)s x H + [ > ( g - 2 ) / 2 w ] s 

x (E x v ) + (e/m)E x (s x v) , 
but 

E x (s x v) = Js x (E x v ) + {m/2e)dyf/dt, 

where v'=sz>2—v(s-v); and we have used dv/dl 
= (e/m)E, so that we write ds/dt=(eg/2m)sx'B. 
+ te(g— l ) /2w]s x (E x y)+(m/2e)dV/dt to terms linear 
in v. Now consider the case in which the spin changes 
slowly compared with the velocity, and the velocity 
periodically takes on the same values, so that we can 
drop the last term. The spin precession result to order 
mr2 then becomes 

ds/dt=(eg/2m)sxR+le(g-l)/2m2']sx(Exp) (2.43) 

for particles with a positive charge. Equation (2.42) ex-

13 Mrs. H. Hartmann, Lawrence Radiation Laboratory, 
Berkeley (private communication). The authors are also indebted 
to Mrs. Hartmann for an independent calculation of N in Eqs. (3,4). 
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pressed in the same way becomes 

ds/dt= Wf»)l(g/2)** H + (g/2)E(s • v) 
- ( s / 2 - l M s - E ) ] 

= (eg/2m)s x H + [ > ( s - l ) / 2 m ] s x (E x v) 

+ (m/2e)dy"/dt, 

where v " = + v(s• v). Thus, by dropping the last term in 
exactly the same way as we arrived at Eq. (2.43), we 
obtain the same result. I t is easily shown that (2.43) is 
identical with the result obtained from the Hamiltonian 
Eq. (2.37) through the relation d&/dt=i[H,&]. 

III. APPLICATION TO DECAY: v ± - » C ± + Y 

A. (y, —-> ey) Matr ix Element 

The Feynman diagrams for the process JJL —» e+y sue 
given in Fig. 1; the matrix element for the process /* —> e 
with emission of a real or virtual photon is given by the 
expression14 

3K=ieue(l—y5)TvullAp, (3.1) 

where ue, u^ are the electron and muon spinors, respec­
tively, and 

I \ = -i(2w)-^ifo(y^ky-ypktl)k-2+flcr(iV/fx}kv. 

Thus, 

iT,AM= (27r)-3{/oT,y,extA2+ (JM*^} . (3.2) 

Here k is the photon momentum, p the muon mass, and 

F^UkvAp—kpAv), 

The form factors f0 and fh which are functions of k2, are 
responsible for monopole radiation (in the Coulomb 
field of a nucleus) and dipole radiation, respectively. 
The rate for \x —» e+y with emission of a real photon is 
proportional to | / i (0 ) | 2 , and the rate for the coherent 
process /*+nucleus —» e+nucleus is proportional to 
[/oG"2)+/i(M2)]2. 

B. Branching Ratio u>p-+e+y/.(*>n-*e+r+p 

If the n —> e conversion proceeds through /* —» v+B 
and v+B —-> e, then the branching ratio between the un­
observed decay fx —> e+y and the normal decay can be 
written as 

p=a>/x_>e+r/a>JU_,e+,+.i;= (3a/&ir)N2, (3.3) 

(a) (b) (c) 

FIG. 1. Diagrams for decay /* —» e+y. 

14 S. Weinberg and G. Feinberg, Phys. Rev. Letters 3, 111 
(1959). 
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where a is the fine-structure constant, and N is a 
number independent of the weak-coupling constant. 
The amplitude N generally diverges logarithmically 
with A/m} the ratio of cutoff to the 13-meson mass. 
Feinberg2 and Gell-Mann3 found (tacitly assuming unit 
magnetic moment for the vector meson), for A~nucleon 
mass, and ?n~ i£-meson mass, N~ 1. This value for N 
gives p«10~3, which is 103 times the experimentally 
measured upper limit for p.4 

Aside from the mild cutoff dependence, there are two 
reasons in a one-neutrino theory as to why the above-
calculated p need not be taken as evidence against the 
B meson. We have already pointed out that there is an 
infinity of free-particle 5-meson Lagrangians which 
differ in their definition of "normal" magnetic moment. 
Also, if the B meson exists it must have a large mass 
(greater than the i£-meson mass), and yet the gauge-
invariance type of argument for its presence15 indicates 
that it should have a vanishing mass. This implies that 
the B meson must have a rather complicated structure, 
so that one should keep an open mind with regard to its 
electromagnetic properties. 

We have recalculated the fxey vertex as a function of 
magnetic moment (l+y)eh/2mc and electric quadru-
pole moment Q= — (y+q) • (fo/mc)2, with the interaction 
Lagrangian given by Eq. (2.28). After a lengthy calcula­
tion, the value of N obtained13 is 

JSf= ( l_ 7-gM2/ 8 w2) j r ( ) /+ (l+27+g /x
2/4w2)// 

+ (3-T/X 2 /2^ 2 +11M 2 /6W 2 ) /2 / 

+ (22/3+47) Qis/mi)Iz
,+ KV/w2J4 ', (3.4) 

where 
(im2n\ r / dAq \n+2 

\ 7T2 J J \q2-m2/ 

This result is correct to order /x2/w2, terms of order 
(ji/m)A have been dropped, and the electron mass has 
been set equal to zero. The expression (3.4) for N is 
consistent with that obtained by Meyer and Salzman16 

and by Ebel and Ernst,17 who, however, did not calcu­
late terms in jjp/m2 or q. Because q was originally defined 
divided by the square of the boson mass m2, and the 
muon mass is the only other quantity of dimensions of 
mass in our calculation, q always appears in N multi­
plied by fjL2/m2. 

C. Discussion of N 

In our calculation of N, y and q appear only in the 
combination 

T ' = 7 + g M 2 / 8 w 2 = ( g _ 1 ) ( 1 _ M 2 / g m 2 ) _ ( 2 M 2 / 8 > (3 < 5) 

This means that the rate for p —•» e-\-y depends only on 
this combination of moments. This result is apparently 

fortuitous, since in the monopole form factor f0 this 
particular combination does not occur.13 

1. Finite N 

The integral 1$ is logarithmically divergent so that, 
except for 7'= 1, N is formally divergent. Since we have 

(3.6) In'=(-)n/n(n+l), 

for 7'= 1, we obtain 

N=l+2fj
2/9m2

y (3.7) 

which for any value of the boson mass leads to a branch­
ing ratio p> 10~3. The cutoff-independent calculation of 
N is, thus, in definite disagreement with experiment. 

2. Logarithmically Divergent N 

N can be made vanishingly small by retaining the 
integral iY, making it finite by the formal device of a 
covariant cutoff Am. Consistency then requires that all 
integrals In be calculated with the same kind of cutoff. 
With the Feynman cutoff factor —A2m2/{q2—A2m2) we 
obtain the integrals 

/ — im2n\ rr/ d*q \n 1 

\ 7T2 J J L \q2-m2) J 

or 

and 

q2 

X lA2m2/(q2~A2m2)2, (3.8) 

IQ= [A2/(1-A2)2][l-A2+A2 InA2] 

15 S. A. Bludman, Nuovo Cimento 9, 442 (1958). 
16 P. Meyer and G. Salzman, Nuovo Cimento 14, 1310 (1959). 
17 M. E. Ebel and F. J. Ernst, Nuovo Cimento 15, 173 (I960). 

7.= ( - l ) ^ 1 A V » ( » + l ) ( l - A a ) - [ l / ( l ^ A » ) ] / ^ i , 
for n ̂  1. 

By defining 70' as that value of 7 which makes N 
vanish we find 

70'=A+Be, (3.9) 
where 

i l= ( /o+ / i+3J 2 ) / ( /o -2 / 1 ) , 

5=(/o-2/ 1)- 1[( l l /6) / 2+(22/3)/3+10/ 4] 
- ( i /2 -4 / 3 ) ( /o+/ i+3/ 2 ) ( / 0 -2 / 1 ) - 2 , 

and e— (/x/w)2<<Cl; in fact, we expect the upper limit for 
e to be 1/25, since m must be greater than the i£-meson 
mass. For two representative values of A, say, A= 1, 
A =2, we have 

h h h h h A B 
A = l 0.5000 -0.167 0.084 -0.050 -0.033 0.700 -0 .91 
A = 2 1.13 -0.296 0.125 -0.070 -0.044 0.702 -0 .67 

This table shows that 70' is insensitive to both the cutoff 
A and the square of the ratio of the masses e (as long as 
e is small), With e= 1/25, then for A= 1, 70'=0.698 and 
for A=2, 7o'=0.703. In the expression (3.4) for A7", it is 
evident that we can write 

tf=U(l-y/<yoO, 
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where 

J R « / o + / i + 3 / 2 + € [ ( l l / 6 ) / , + (22/3)/8+lQ/4] . 

The term proportional to e in R will always be small in 
comparison with the other terms, so that in R we can 
neglect e to obtain 

i ?= [A 2 / 2 ( l -A 2 ) 4 ] 
X[2A 2 (A 4 -A 2 +3) lnA 2 +( l -A 2 ) (2A 4 +A 2 +3) ] . 

The branching ratio p then becomes 

p=(3a/87r)^ 2 ( l -TV7o0 2 

The quantity 3a/8wR2 has been plotted by Ebel and 
Ernst, and varies from 10~4 to 1Q~12 as A varies from 
1 to 10. 

The branching ratio p, when it does not vanish (i.e., 
for 7/=#7oO> is sensitive to the value of A. The combina­
tion of 7 and q necessary to forbid the /x —> e-\-y decay 
is thus, certainly ad hoc. On the other hand, we know of 
no criterion for fixing on a choice of y and q a priori. 

Now only one combination of the two parameters y 
and q is involved in choosing yf to forbid the process 
/j, —> e-f-7. Another different combination of 7 and q will 
determine the rate of the coherent process /x+nucleus —* 
e-\- nucleus. In other words, we expect to be able to 
choose 7 and q so that / i(0)2 and [ / I ( M 2 ) + / O ( M 2 ) ] 2 are 
both small enough not to exclude the vector-meson 
hypothesis. 

D. Two-Neutrino Hypothesis 

Another explanation for the absence of /* —> e con­
version consists in the assumption18 that two different 
neutrinos v and v are involved in ju decay, v being 
coupled to the electron, and v to the muon. Since these 
neutrinos are different, they are not capable of annihilat­
ing each other, and thus any \x —* e processes are strictly 

18 J. Schwinger, Ann. Phys. 2, 407 (1957); S. A. Bludman, Bull. 
Am. Phys. Soc. 4, 80 (1959); B. Pontecorvo, Zh. Eksperim. i Teor. 
Fiz. 37, 1751 (1959) [translation: Soviet Phys.—JETP 10, 1236 
(I960)]; K. Nishijima, Phys. Rev. 108, 907 (1957). 

forbidden. The implications of this alternative are not 
pursued here. 

Note added in proof. Since this paper was written, 
the experiment of G. Danby, J-M. Gaillard, K. Gou-
lianos et. al, Phys. Rev. Letters 9, 36 (1962) has estab­
lished that v and v are different particles, or at least 
different states of one four-component neutrino, in­
capable of annihilating each other. A method of calcu­
lation for vector meson electrodynamics has also been 
proposed [T. D. Lee and C. N. Yang, Phys. Rev. 128, 
885 (1962)] which yields finite results for some hereto­
fore divergent quantities. For v=v' and q=0, Lee ob­
tains N—(y—l)\nay2, i.e., the divergent logarithm 
InA2 is replaced by the finity quantity lncry2. See T. D. 
Lee, Phys. Rev. 128, 899 (1962). 

IV. CONCLUSION 

We have shown that the various charged vector-
meson formalisms are equivalent and describe in the 
general case a particle of arbitrary magnetic-dipole and 
electric-quadrupole moments. The quadrupole-moment 
interaction is no more divergent than an anomalous 
magnetic-moment interaction. Indeed, when, to the 
normal interaction, an anomalous moment yefi/lmc is 
added, this itself introduces a quadrupole moment 
y(h/mc)2. 

A first-order Stiickelberg formalism has been de­
veloped in order to ensure internal consistency between 
the subsidiary condition and the other equations of 
motion in the presence of electromagnetic interaction. 
The nonrelativistic equations of motion of a spin-1-
particle of arbitrary magnetic moment, like those of a 
spin~§ particle, agree with the classical equations of 
motion derived on invariance grounds. 

Because of the absence of criteria fixing its magnetic-
dipole and electric-quadrupole moments, the electro­
magnetic interactions of charged vector mesons is 
ambiguous enough that the absence of /x —> e conversion 
processes cannot, by themselves, be a proof of the 
nonexistence of intermediary mesons in the weak 
interactions. 


