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where one has used (42). Because of (41), all the integrals in (43) diverge at most logarithmically. The same 
separation makes the second integral in (40) split as 

s r^rrl l -\p(s',t')ds'dt' s 
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\ j 0 - * / W t o t' w2Jsa s'(s'-s)Ut<, a-s'-t' Jto t' J 

s'(s'-s) 
(44) 

where one has used (41). Because of (41), the integrals in the last expression in (44) also diverge at most 
logarithmically. 

P H Y S I C A L R E V I E W V O L U M E 1 3 1 , N U M B E R 5 1 S E P T E M B E R 1 9 6 3 

Perturbation-Theory Rules for Computing the Self-Energy Operator 
in Quantum Statistical Mechanics* 

GORDON BAYM 

Department of Physics, University of California, Berkeley, California 

ANDREW M. SESSLER 

Lawrence Radiation Laboratory, University of California, Berkeley, California 
(Received 19 April 1963) 

Convenient rules are given for the general term in the time-independent perturbation-theory expansion 
for the self-energy operator of quantum statistical mechanics. The rules are derived by starting from the 
usual formalism involving time-dependent Green's functions. 

I. INTRODUCTION 

A PERTURBATION theory for quantum sta
tistical mechanics was developed by Peierls1 in 

1933. However, the general term in this theory was 
hard to characterize; furthermore, spurious terms, 
which are now known to cancel out, seemed to appear 
in the expression for the total number of particles. 
In 1958, Montroll and Ward2 gave a perturbation 
theory in which the spurious terms were absent and the 
general term was described, but their formalism, in
volving an unnecessary expansion in powers of the 
fugacity, was exceedingly complicated. In recent years 
any number of formalisms have been proposed.3 These 
are all essentially equivalent, varying only in details. 
The procedure of Glassgold, Heckrotte, and Watson 

* Work done under the auspices of the U. S. Atomic Energy 
Commission. 
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involves a contour integration, that of Bloch and de 
Dominicis multiple temperature integrations, that of 
Luttinger and Ward infinite sums. Thouless,4 however, 
has given a very convenient expression for the logarithm 
of the partition function. 

To propose still another formalism would appear to 
be both inconsiderate and imprudent. Our motivation 
is that the rules we describe here are considerably 
simpler than any other prescription previously pro
posed. The rules are closely related to those given by 
Thouless,4 but we shall work with the self-energy 
operator in terms of which one can find not only the 
partition function but also the single-particle excita
tions. Furthermore, it should be observed that the 
derivation of the rules is not restricted to the single-
particle self-energy operator but, rather, is quite 
general. Thus, for example, one can easily use the 
method described here to obtain explicit time-inde
pendent rules for the space-time correlation function 
of any two physical observables. 

The rules for calculating are given in Sec. II. These 
rules were first obtained intuitively5 by the following 

4 D. J. Thouless, The Quantum Mechanics of Many-Body 
Systems (Academic Press Inc., New York, 1961). 

5 A. M. Sessler, "Theory of Liquid Helium-Three," Varenna 
Summer School on Liquid Helium, 1961. Suppl. Nuovo Cimento 
(to be published). 
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reasoning: In quantum statistical mechanics one com
putes the equilibrium properties of a given system by 
constructing an ensemble of similar systems, then 
computing quantum mechanically the properties of 
each system in the ensemble, and finally averaging over 
the ensemble. We know from the work of Darwin and 
Fowler that the average over the ensemble is strongly 
peaked in the neighborhood of the most probable 
system in the ensemble. This suggests interchanging 
the order of (i) the averaging procedure and (ii) the 
quantum-mechanical calculation of the properties of 
one system. Thus, one is led to consider the quantum 
mechanics of a system in a state that is the most 
probable in the ensemble, and consequently one expects 
that the usual rules for ground-state perturbation 
theory6 will be modified only by replacing the step 
functions associated with particle and hole lines with 
single-particle statistical-distribution factors of the most 
probable state. In Sec. I l l we derive this result, starting 
from the time-dependent formalism for perturbation 
theory.7 

Dzyaloshinskii has recently published a set of rules 
equivalent to those of Sec. II, but without an explicit 
derivation of the general term.8 [Note added in proof. 
It has been brought to our attention that the rules given 
here have been previously established by R. Balian and 
C. De Dominicis, Nucl. Phys. 16, 502 (I960).] 

II. RULES 

A. Formalism 

The thermodynamic properties of a system can all 
be deduced from the grand potential &, denned by 

0 = - (1/jS) In Tr[exp(-/33C)], (2.1) 

where 3C^=H—fxN with H and N the Hamiltonian and 
number operators. The pressure P, the number of 
particles N, and the entropy, S are given by 

and 
S^kPidQ/dfl^v. (2.2) 

One can compute 0, in addition to calculating it directly 
from its definition (2.1), by an integration over tem
perature of X(/3,ju), the ensemble average of 3C: 

Q(ftM) = 5C(oo,M)+-
l r* [ m 

J CO 

[ & ( ^ M ) - 3 C ( ^ ) ] . (2.3) 

An alternative and more common method is to find 12 in 
terms of an integration of the potential energy over the 
coupling constant. 

6 J, Goldstone, Proc, Roy. Sec. (London) A239, 267 (1957). 
1 L. P, Kadanoff and G, Baym, Quantum Statistical Mechanics 

(W. A, Benjamin, New York, 1962). 
8 1 . E. Dzyaloshinskii, Zh. Eksperim. i Teor. Fiz. 42, 1126 

(1962) [translation: Soviet Phys.—JETP 15, 778 (1962)]. 
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FIG, 1. Two third-
order diagrams that 
contribute to the 
self-energy operator. 

The quantity 3C(/3,M) we express in the form 

1 f dzp r™ do)/ p2 \ 

2 J (2TT)3 i-oo 2T\ 2m J 
U(p,a>)/(o>), 

where 
/ (cd) = [^r F l ] - l . 

(2.4) 

(2.5) 

(The d= refers to bosons and fermions, respectively.) 
The spectral function A (p,«) is a function of /3 and ju, 
and is given in terms of the Fourier transform of the 
single-particle Green's function G(p,o>) by 

A (p,w) = — 2ImG(p, w+ie), (2.6) 

where u> is real. The Green's function G, as a function 
of a complex variable, z, is related to the free-particle 
Green's function Go and the self-energy operator 2(p,s) 
via the Dyson equation: 

where 

G(p>s) = Go(p,«)Cl+2!(p,a)G(p,8)]> 

G6(p,z) = lz-(f/2m)+ri-1. 

(2.7) 

(2.8) 

All of the above is well known and can be found 
derived, for example, in Ref. 7. 

The calculation of thermodynamic properties is thus 
reduced to a calculation of the self-energy operator 
S(p,z). The rules for calculating 2 in perturbation 
theory follow. To find the wth-order contribution to 
2(p,*): 

1. Construct a graph by drawing n horizontal dashed 
lines at different levels representing the potential and 
by joining their 2n ends with solid lines representing 
particles or holes, and having arrows to indicate direc
tion, in such a way that one directed line enters and 
one leaves each end of a dashed line (e.g., Fig. 1). 
Have one solid line leave the graph going up and one 
solid line enter the graph from the downward direction 
(the " external lines")-—all other solid lines must con
nect ends of dashed lines. In particular, it is acceptable 
to connect an end of a dashed line to itself [e.g., 
Fig. 2(a)], or one end of a dashed line to its opposite 
end [e.g., Fig. 2(b)]. Draw only graphs in which there 
are no unlinked parts and only graphs that cannot be 
disconnected into two pieces by cutting one solid line, 
but draw all graphs consistent with these rules. In nth 

>--o 
(a) (b) 

FIG. 2, The lowest 
order diagrams that 
contribute to ;the 
self-energy operator, 
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order, each topographically distinct diagram for 2 will 
yield n! different diagrams corresponding to the n! 
possible orderings of the vertices from top to bottom. 
Assign a distinct momentum p;, to each solid line and 
momentum p to the external lines. 

2. To compute the contribution of the graph, associate 
with each line of momentum p; directed upward a factor 
{\^zf\_{p^/2m)~-/J}, and with each line of momentum 
py directed downward a factor =b/[(^/2/2w) —/x]. Do 
not assign such factors to the external lines. A line 
joining a dashed line to itself is considered as directed 
downward. With each dashed line, associate a factor 
^(p;>Pi>Pfc,pz), where pi and py are the momenta of the 
directed lines leaving the vertex on the left and right, 
respectively, and pk and pi are the momenta of the 
directed lines entering the vertex on the left and right, 
respectively. The factor V(pi,pj,pk,pi) is just the 
matrix element of the two-body potential. Each of the 
(n— 1) intervals between vertices contributes a factor 
that is the inverse of the sum of (a) pi2/2m for each 
downward-going line of momentum p* crossing the 
intervals; (b) ~pj2/2m for each upward-going line of 
momentum py crossing the interval; (c) z if both ex
ternal lines do not cross the interval; (d) — z if both 

where/*represents / [ (^ 2 /2m)—/x] . 

C. Generalization 

We can sum a large class of diagrams, namely those 
corresponding to the replacement of G0 by G in all 
internal lines, by rules that are essentially the same 
as those given in Sec. II. 1: (a) Construct only irre
ducible graphs and, (b) calculate the contribution 
of an upward-directed line p* by assigning the factor 
^4(pi,Wi)[l±/(coi)] and for a downward-directed line 
the factor ±-4(p;,co;)/(o^). For the energy denominator 
the upward lines contribute — (co;+/x) and the down
ward lines (co;+/i). Proceed as in Sec. II. 1, and finally 
also integrate over all wt- as well as p*. 

These rules are greatly more complicated, since A 
must be obtained self-consistently, but one diagram 
now includes an infinite class of the old diagrams. 
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external lines cross the interval; or (e) 0 if only one 
crosses. 

Multiply all the above factors together along with 
an additional (—T)m , where I is the number of closed 
loops formed by solid lines representing fermions. 
Finally, integrate over all p t with a factor (27r)~3 for 
each three-dimensional momentum integration. 

The potential F(p*,py,pfc,pz) is simply expressed in 
terms of the Fourier transform of a local two-body 
spin-independent potential v(r) by 

V(pi,phpk,Pi)^ (2Tyd(pi+pJ~-pk-pi)v(pi--pk) f (2.9) 

where 

v(p)=* e-^v^dt. (2.10) 

For particles with spin, one must include the spin 
dependence of V and also sum over spins of internal 
lines—exactly as one does in ground-state perturbation 
theory. 

B. Example 

As an illustration of the rules, we evaluate the con
tribution for fermions of the two third-order diagrams 
of Fig. 1 : 

III. PROOF OF RULES 

The starting point from which we shall demonstrate 
the rules given in Sec. II. 1 is the time-dependent form 
of the perturbation expansion for 2 . This expansion is 
described in detail in the Appendix to Ref. 7. Briefly, 
to calculate any order of perturbation theory in the 
time-dependent formalism, one writes down all topo-
logically distinct connected diagrams of that order and 
evaluates the diagrams by writing a Go for each line, 
and a V for each vertex as in time-dependent ground-
state perturbation theory. The time integrations must 
be between t—0 and t~ — ij3 in order to include correctly 
the periodicity boundary condition obeyed by the 
thermodynamic Green's functions. In listing all the 
distinct diagrams no attention is paid to different time 
orderings. The momentum parts and the numerical 

2 ( a )(p,*) = / { [ 1 ~ / I ] [ 1 - / 3 ] / 5 [ 1 - / 2 ] C 1 - / 4 ] ( - 1 ) ^ P I ^ P 2 ^ P 3 ^ P ^ P 5 H P I - P ) K P 2 - P I ) H P ~ P 2 ) 

X (2TT)95(pi+ p 3 - p - p5) • 8 (p 2 + p4— Pi— PB) • 5 ( p + P B - p2~ PA)} 

X [ (Z- € i - 63+ €6) ( * - €2~ €4+ €5) ^Tr)1 5]-1 

and (2.11) 

2 ( 6 )(P,3)= / {[l~/l][l~/3]/5/2/4(-l)5^Pl^P2^p3^p4^p5^(Pl-p)^(p2--pl)^(p--p2) 

X(27r) 9 5(p i+p 3 -p-p 5 ) -5 (p2+P4-p i -p3) -5 (p+p5-p2-p4)} 

X [ ( 2 - €1- €3+ €5) (e2+ €4- € i - €3) (27I-)15]-1 , 
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factors are the same as in ground-state theory. One 
first calculates the Fourier coefficient of 2 

Jo 
2 (£,*,)= dte^-t'^ipj/), 

where 
Zv—TTv/~ ifi 

and v is an even integer for bosons, or an odd integer 
for fermions. Then the Fourier coefficient is continued 
from the zv to all complex z. 

Each wth-order diagram in this perturbation theory 
corresponds to n ! of the " ordered" diagrams one writes 
down according to the rules of Sec. I I . 1. In order to 
demonstrate the equivalence of those rules to the time-
dependent perturbation theory, we must show how the 
contribution of the ^th-order diagram evaluated by the 
time-dependent theory splits into n! distinct contribu
tions, each equal to the contribution from one ordered 
diagram evaluated by the rules of Sec. I I . 1. 

Consider a diagram of nXh order in V. The n vertices 
are labeled with n different times; to evaluate the 
diagram, one of these times is set equal to zero, and the 
remaining n—\ times are integrated from £=0 to 
t= — i(3. These n— 1 time integrations can be split into 
(n—\)! different integrations corresponding to different 
orders of the n—\ times along the line from 0 to —ij3. 
There are only (n— 1)! terms rather than n! terms, 
since one time has been arbitrarily chosen to be zero. 
We shall show that each of the (n— 1)! terms equals the 
contribution, evaluated by the rules of Sec. I I . 1, of 
n liordered" diagrams that differ only by a cyclic 
permutation of the vertices. 

Since in the (n—\) ! terms in the time-dependent 
perturbation theory the integration times are ordered, 
one can always replace the Go(p,My) that occur in 
the integral by 

i •Mi-')' (3.1) 

if U>tj, or by 

Go.<(p,fc,*y) = ^-e-^-W^ff—-fj) , (3.2) 
i \2m / 

if h<tj. Thus, to each Go,>, or forward-going line, there 
corresponds a factor l=b/ ; and to each backward-
going line, or Go,<, a factor ± / . There is an over-all 
factor of (—l)2"-1. At each vertex (^), one will have a 
factor ei(rm, where 

<r,= l/2m(pa
2+pb

2-pc
2-pd

2), (3.3) 

where p a and p& are the momenta of the lines leaving 
the vertex, and pc and pd are the momenta of the lines 
entering the vertex. For the external lines, the factor 
p2/2m is replaced by zv. One must therefore calculate 
the integral 

' o Jo 
dt2e

it2ffK (3.4) 

The results of the fo integral can be written as 

dt2e
it2°2= L 

0 X 2 = 0 , 1 

(3.5) 
0*2 

and it is clear that one can write / as 

i=2 Xi=0,1 

in-V r*exp(7r* £ Xj) 
.7=2 

r^ry • -rn_irn 
(3.6) 

where 

r & = ak~{-\k-iTk-i 

= akJrXk-i[_(Xk-iJirXk-2(^k-2-\-X]C-zak-z-]r • • * ) ] • (3-7) 

The sum now contains 2n~1 distinct terms, and we must 
rearrange it into n different groups of terms so that all 
terms in each group have a common value of exp(/3rn). 
This is done by rewriting the sum as 

in~1e^nTn exp(iri X Xy) 

n z H I « » H , I r2r3---rB_1r„ 
(3.8) 

(Xn = 1 , Xn-1 = 1 , • • ' , XA + l = 1 , \k = 0 ) 

where the k—\ term corresponds to taking all Xi= 1. 

Thus, 

/ = £ • 

^-1(—l)"-*exp[j8 E o-y] 

( E <7y)(E O-y) • • • (CTJH-I) 
k+1 k+1 

fc-1 

exp(7ri X) ^y) 

n E 
;_2 x»-o,iroVr--r3r2 

(3.9) 

X*=0 
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Call the summation in the braces Sk* Then 

5 i = l , 

•S'2—0"2_1, (3.10) 

5 , 
(-DXs 

X2=0,l ( o r a + A o ^ ) ^ 

:[o r3(o'3+a'2)] * , 

and in general 

Sk=[jrk(crk+(rk-i)((rk+(rk-i+<rk-2)-• ' (cH-cr^-H h o x K ^ + ^ - H ho"3+o'2)]~1. (3.11) 

This latter result follows from a simple induction argument. Assuming the result to be true for any arbitrary set 
of I\- for i= 2, 3, • • •, k— 1, we can write 

A 2=0,1 a 2 

fc-i 
exp(7ri 12 Ay) 

,n E — — 
1̂=3 Xi=o,i r o v r - i y 

(3.12) 

But the term in brackets is such a sum of "order" k—l involving o:3=o"3+X2o-2, and hence, by the inductive hy
pothesis we have 

( - l ) x * 1 
Sk= E • (3-13) 

X2=0,l (72 <Tk((Tk+<Tk-l) ' ' ' (crk + (Tk-l-\ h ^ ) ((Tk+CTk-l^ \~<T*+Vz) 

Computation of the X2 summation then produces the general formula (3.11) for Sk-
The integral / has thus been reduced to 

n jn—l f ^ \n—ke$ (an-\ hrfc+2) 

/ = E • (3.14) 
k==1 ( c T n + C T n - H h<Tk+l) ( c T n - l H h ^ f c + l ) * ' * <rk+l<Tk(<Tk+<Tk-l) ' ' ' (o"fcH \-<r2) 

These n terms correspond to just n cyclic permutations of a given diagram. Let h — n. Then the summand is 

*>—1 

O'nCo'n+O'n-l) ' ' ' ( ( ^ H h ^ s ) (o 'n+O'n- lH h ^ ) 
(3.15) 

When zv is replaced by z, the denominators clearly are 
the energy denominators one writes down by following 
the rules in Sec. II for the original diagram. The 
k — n—1 term 

i^-h^l(crn-l)((Tn-l+Crn-2)" • (<r„_H | - 0 - 2 ) ( - 0 - n ) ] 

(3.16) 

differs from the k = n term by a factor ep<rn, and further
more the an has become — <rn and each factor has been 
reduced by <r». Note that e^* is just dbl. Thus, the 
k = n— 1 term corresponds to the time-ordered diagram 
formed by moving the latest vertex n to the earliest 
time (a cyclic permutation). All energy denominators 

will clearly be reduced by — an, and the last denominator 
(an) will change sign when it becomes the first de
nominator ; the e^n will change the particles into holes 
and vice versa at the wth vertex, since efi<af(o>) — l±/"(co). 
Thus, / corresponds to the sum of all diagrams of nth 
order that are just cyclic permutations of a single 
diagram of wth order. Thus we have exhibited the 
correspondence between the time-dependent perturba
tion diagrams and the ordered diagrams as well as 
derived the rules of Sec. II. 1. We leave it to the reader 
to check that the detailed numerical factors are equiva
lent as well as to generalize the derivation to cover the 
situation of Sec. II.3. 


