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We have found a variational principle which is valid for irreversible processes, whether microscopic 
reversibility is obeyed or not, and beyond the region of linear response. A convenient general expression for 
entropy production is also found and the relation of entropy production to the solution of transport problems 
is discussed. 

TH E solution of transport equations always 
requires approximations. One of the most useful 

methods is the variational principle (V.P.) and many 
authors have developed such principles for transport 
theory in the absence of a magnetic field. The presence 
of a magnetic field or time variation has frustrated 
previous attempts to establish a V.P. which actually 
has a maximum (or minimum) for the correct distri
bution function. The primary purpose of this paper is to 
present such a principle, which in addition will be valid 
for nonlinear problems, but we will also discuss other 
V.P.'s and their physical interpretation, in particular, 
their relation to entropy production. 

II 

In discussing irreversible processes, we will write as 
our basic equation 

Df=Lf, (II . l ) 

where Df will be called the drift term and will be 
equal to 

df i 
Df=-+-U,BQ, (H.2) 

dt ft 

/ being the density matrix which is also subject to the 
requirement that its trace be at all times one. H 
represents the entire Hamiltonian except for terms 
which are attributed to "collisions," the latter being 
included in Lf. The split is to some extent arbitrary, a 
point which will be somewhat clarified shortly. For 
intuitive purposes it suffices to think of H as containing 
the terms one can handle dynamically, such as kinetic 
energy, and electric or magnetic fields which vary 
slowly in space or time. In particular problems either 
H or L may be neglected. In many problems, the 
commutator in (II.2) may be replaced by a Poisson 
bracket (P.B.) and the density matrix by a distribution 
function. 

In many classical problems one assumes for Lf the 
following definite form: 

LMp},{x},t) = jdp'(P({p},{pVMvV 

-^({p'},{p»/({p})), (n.3) 

but this is not essential, Here ; {p} ; {x} represent the 

momenta and positions of all particles in the problem. 
We shall assume a very general form for L 

-bjn 2LJ •L'nn'Jn (II.3a) 

where now n represents the totality of dynamical 
variables for the system as well as the time. In a quantum-
mechanical problem / will be a density matrix 
/({/},{/'},0> where {/} is a set of values for a complete 
set of commuting observables for the problem. In such 
a case n will represent the totality of indices ({1},{l'},t}. 

In general, it is essential that n refer to states of the 
entire system, because we wish to make use of the 
linearity of Eq. (II . l ) . If we were to use single-particle 
density matrices, the collision terms at least would be 
nonlinear for collisions involving more than one 
particle, and additional nonlinearities would be intro
duced by the use of Bose or Fermi statistics. In cases 
where we are interested in small deviations from 
equilibrium and are content to neglect terms of higher 
order than first in this deviation, it is possible to obtain 
linear equations for the deviations, and in such cases 
it would be possible to use single-particle density 
matrices or distribution functions. On the other hand, 
once we have obtained a general variational principle it 
will be possible to use trial functions containing no 
correlations, if desired, and thus obtain equations for 
single-particle distributions. On the other hand, we also 
have the freedom to retain such correlations, something 
we could not do if we tried to use one-particle functions 
from the beginning. 

Having considered L and D as linear operators it is 
now natural to view / as a vector in a space defined by 
the components fn. There is the difference that whereas 
in quantum mechanics we deal with normalized vectors 
y | ^ | 2 = 1, here we have instead the restriction 

T r / = 1 

d{p}d{x}f=l, 

expressing the fact that the probability is normalized 
to 1. 

As in quantum mechanics there are potential diffi
culties when the variables have infinite ranges, and we 
must restrict ourselves to certain classes of / ' s if we 
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wish to avoid them. Fortunately, these restrictions 
cause no serious limitation. A sufficient restriction is 
that the fs or their deviation from some suitably 
chosen / 0 be square integrable and have a sufficient 
number of moments %fplxmtn\f\2 for the problem at 
hand. This merely restricts us to the kind of situation 
which can be physically realized. Having said these 
pious words, we will merely keep them in the back of 
our mind from now on. 

We define for arbitrary operator, 0 , the objects 

( / , 0 g ) = £ fn*Onn'gn> ( H . 4 ) 
n,nf 

for arbitrary density matrices or distribution functions 
/ and g. (Recall that the sum over n includes integration 
over time.) / * is the complex conjugate of / , which for 
the quantum-mechanical density matrix implies its 
transpose. We also define (f,Og)t in which the time 
integration implied in (II.4) is not carried out, the 
quantity being evaluated at time t. Substituting D 
from (II.2) for 0 , we can write 

(fMt=QTr(fAg,Hj)+(f-) , (II.5) 
V dt/t 

where QTr means the trace of the operator in paren
theses, considered as a quantum-mechanical entity 
which we shall call the Q trace. Integration over t then 
yields 

(f,Dg) = -(g,Df). (II.5a) 

Thus, D is antisymmetric, and since the Q trace of an 
Hermitian operator is real, D is anti-Hermitian. In 
steady-state problems, the t integration is omitted, and 
t is omitted from the index n. 

If we set f=g, we obtain from (II.5a) 

( / , £ / ) = 0; 

therefore, 

( / , £ / ) = o 

for any / which is the solution to any problem with 
this L for arbitrary D. On the other hand, L is not, in 
general, antisymmetric. This fact is its most important 
property, for without some symmetric part of Z, 
irreversible behavior would be impossible, as will be 
seen below. As an illustration we may consider a case 
where L actually represents elastic collisions of electrons 
with impurities; then if detailed balance applies P in 
(II.3) is real symmetric as is L. This is indeed true 
for all internal scattering which obeys detailed balance. 
Tn the case of scattering with external objects, the 
symmetry may be broken, as it may if detailed balance 
is violated. If L has an antisymmetric part, it is rather 
arbitrary whether it is included in L or D, but the 
symmetric part will be kept in L. 

A N D E N T R O P Y P R O D U C T I O N 2355 

III 

Before proceeding to the consideration of V.P.'s it 
will be useful to discuss entropy production, for it will 
turn out that some of the V.P.'s are related to this 
quantity. 

The change in entropy during a process is given by 

&S=-(k\nf9(df/dt))+ASe, 
(III.1) 

ASe= 12 Snn'Lnn'Jn' 
n,n' 

where the first term is the change in entropy of the 
system and the second term represents the increase in 
entropy of the external scatterers. Here, 5WW' is simply 
a two-index symbol containing sufficient freedom to 
make this form correct. For a steady-state process we 
eliminate the integration over time and consider the 
rate of entropy increase. 

I t will now be helpful to consider a concrete situation. 
Frequently we think of scattering as being pretty well 
localized in space and time so that if the n's are the 
sets {pi,Xi,t} a particle is scattered from pi to pj at 
fixed Xi and /. Furthermore, life is simpler if the scatterer 
is a temperature bath (possibly moving) so that 
L(pi,pi,x)fo(p/,x) = 0, that is if the particles at x% are 
in a Maxwellian distribution /o, this is not changed by 
the scattering. Then, if we write 

/o(p*,x,/) 
= e x p { - [ ( 6 , + P r u ( x , 0 - f ( x , 0 ] A r ( x , 0 } , ( H L 2 ) 

where f is the chemical potential and u the velocity, we 
find for the entropy change of the scatterer 

Sp,pf = k (ln/op—ln/opO 

1 
= - [ > y - e p + ( p ' - p ) . u ] . (IIL3) 

T 

Integration over p, p ' and x of the second term in 
(III . l) then yields the familiar result that for the 
external scatterers the entropy increase is given by the 
integral of heat change divided by the temperature 
where the heat change is the energy increase minus the 
work done. 

Let us then substitute this quantity in (III . l ) 

/ df\ 
A5= - f * In/,—J + (ft lnf0,Lf) • (HI.4) 

For the true / then, defining 

f=fo+g=fo+fo<P, 
we have 

A5= - Ik In/,—J + (ft ln/0,Z>/) (III.5) 

= - (g,kD ln/o) - Ik In/,—J + (k Info, A/o). (IIL6) 
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Now we can write the last two terms 

df\ ( dfo\ 
k In/,—J + f A l n / o , — J + (k lnf0,D'fQ), (III.6a) 

where Df = D—d/dt. If the system starts from equi
librium and is allowed to return at the end to equi
librium, then / = / o at large positive and negative 
times so the first two terms of (III.6a) cancel, while if 
the system is in a steady state, they separately vanish. 
If the system is of finite extent, or uniform in space, 
the last term vanishes. The first term of (III.6) can 
now be written 

Sp=k(<p,foD]nfo) 
= (<P,X)=-(<p,(K<p), (III.7) 

where 
X = -DfQ= -foDk ln/o (III.8a) 

and (ft is so defined that for arbitrary g or <p 

' (L-D)g=Gl<p. (III.8b) 

Thus, cp satisfies the equation 

<R<P=-X. (III.9) 

The last line of (III.8a) is valid when D is a first-order 
differential operator like d/dt or P.B. The point of this 
derivation has been to obtain the entropy production 
in a quadratic form, rather than a form involving 
logarithms even for nonlinear problems. 

To investigate more closely the validity of these 
expressions, we consider the instantaneous rate of 
change of entropy 

dS/dt = - (k hif,(L-D')f)t+dSe/dl, (III. 10) 

where D'^=D—d/dt. The term involving D' actually 
yields zero if Df is a P.B. or a commutator but it is 
convenient to leave it in. Let us now write / = / o + g , 
where /o is not yet determined, and expand about /o. 
We will for the rest of this section assume that the 
coupling between the system and the external scatterers 
is so weak that only the first-order term in g need be 
kept. This is not essential but it simplifies (III. 13) and 
may be valid for a considerably wider class of scatterers 
than thermal baths. More strongly coupled scatterers 
could be included in the system. 

dS/dt = - (k ln/o,(L-D f)f0)t+ (dSJdt) (/0) 

-(k]nfQ,(L-D')g)t+(<r,g)t 
-k{U(L-D')J^g)t+k/2(g*U-\{L-

-k(gfo~\(L-D')g)t 

•D')h)t 

( I I I . l l ) 

The term (a,g)t is due to external scatterers as just 
discussed. (This is valid for the classical case.) The 
quantum-mechanical problem involves more manipu
lation but leads to the same result (III. 14), as shown 
in the Appendix. 

Now if we require / 0 to be a state of minimum 
nstantaneous entropy production at all times, subject 

to the condition that the Q trace of /o be one at all 
times, we obtain, by requiring the terms linear in g in 
(III. l l) to vanish, the equation 

<rn = \'(t)8n, + tk(L-D') ln/0]n' 

"+[(L-Z) /)/o]»'/on'- (111.12) 

where X/ is a Lagrangian multiplier. Since, as we 
remarked previously Dr could be omitted from (III. 10), 
an alternative equation is 

an = X' ( / )5 n / - [k In(foL)2n' — [A/o]n'/o» (III.12a) 

bn> is defined to be one for the classical problem, but in 
the quantum-mechanical case, it is one if n' refers to a 
diagonal density matrix element and zero otherwise. 
Substituted into ( I I I . l l ) this yields for the zero-order 
terms 

(dS/dt) o = X 00 = X' (t) + (dSe/dt) (Jo). 

If we now substitute (III. 12) in (III.l), we find 

AS=-lk \nj~~\ + (k l n / o , ( L - D 0 / ) 

+ (/o, (L-D')f<T1g)+ \\{t)dt 

df\ ( df 
= - ( * l n / — j + U l n / o -

dt) \ dt 

--HWJ) 

+ (fXL-D')f^g)+\\dl 

+ A(ln/0,/o)| 
-co I —oo 

+ (Jo(L-D)J0-
lg)+ I \dt. ( i n . 13) 

The first two terms cancel each other if / = / 0 at large 
positive and negative times. Therefore, in such cases, 

, , - ( \dt =(X,<p)=~(<p(R<p), (III. 14) 

where we now and hereafter define 

X=(L-D)f0, (III.8c) 

while the definition of <p is unchanged and <p still 
satisfies 

(R<p=~X. (III.9) 

j^These definitions and Eq. (III.9) are valid for arbi
trary /o.] We will always assume that QTr / 0 = 1 at all 
times. <p is then subject to the restriction (fo,<p) 
= QTrg=0. 

Equation (III. 14) is always true Qor steady-state 
processes the integrals involving d/dt in (III. 13) are 
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identically zero] but it can be used only if an / 0 can 
actually be found for which dS/dt is at least a local 
minimum. We will not attempt to determine just when 
this can be done, but shall describe a wide class of 
important cases where it is easy and which encompasses, 
so far as we know, practically all problems whose 
solution has been attempted. If all scattering is either 
internal or with one or more external temperature 
reservoirs, possibly in motion and such that no two 
different reservoirs have elements of L with the same 
n or n', (III.12a) can be satisfied with X = 0. For then, 
we can break the matrix L into one or more blocks L{i) 

along the diagonal; the corresponding /o ( i ) are then 
independent. Each f(i) can be chosen to satisfy L / ( i ) = 0 
and be in equilibrium with its own reservoir, so that 
the instantaneous rate of entropy increase is zero. If the 
individual reservoirs are not identical and if the sub-
spaces are connected by the action of £), the entropy 
will soon increase, but that does not affect our argument 
which is based on the instantaneous dS/dt. As an 
example, in metals we sometimes idealize the problem 
of electronic heat conduction by supposing that the 
phonons are maintained in local equilibrium at tem
perature T(x) and scatter the electrons. Then the 
electrons see at each point (or small region) a thermal 
scatterer. We can choose /o to be at each x locally 
Maxwellian with the local temperature and (III . 12) 
will be satisfied with X = 0. True equilibrium is not 
reached in this way because D/OT^O, which means that 
electrons drift from one temperature to another, so that 
in a very short time the distribution is no longer locally 
Maxwellian and entropy is then produced, because 
cp is not zero and neither is (<p(R<£>). Basically, the 
situations which provide the easy evaluation of /o are 
those for which under the action of. scattering alone, 
equilibrium could be reached. Actually our argument 
can be expanded to cover cases where equilibrium can 
be reached under the combined action of L and all or 
any part of Df since the addition (or subtraction) of 
any part of Dr in (III . 10) does not affect the value of 
dS/dt. By "any part of D'" we mean (II.2) with any 
part of H, and without df/dt. 

The /o we have described are indeed not even unique 
in cases where L breaks up into more than one block, 
for then if L conserves number, each / ( i ) can be chosen 
to correspond to an arbitrary density of particles. In 
the heat-conduction example, we could have chosen 
/o so that the density of electrons varied widely from 
point to point. In the case where the scattering also 
conserves energy or momentum, additional arbitrariness 
appears. This can be resolved if desired. In problems like 
the heat-conduction example, one can require that when 
the /o is substituted into the Boltzmann equation and 
the first few moments are taken, the resulting equations 
are satisfied. These give conditions like the equation of 
continuity and the hydrodynamical equation. An 
alternative, more general, procedure might be to 
minimize (X,X). On the other hand, it may be more 

convenient to choose an arbitrary /o within the require
ment (III.12a), rather than to expend too much effort 
in optimization. 

Our emphasis on the above class of cases where X = 0 
should not be taken to imply that only such cases are 
important. In some problems this choice is not possible. 
One of these will be discussed later. 

The important point is that when the proper choice 
of /o is made, the entropy production is a quadratic 
form in <p plus f\dt which may be viewed as an 
irreducible entropy production due usually to departure 
from equilibrium even in a small neighborhood. 

[In problems where we can treat the "particles" 
independently and they obey Fermi or Bose statistics, 
it is easily shown that it is possible to obtain (III.14), 
but we must redefine (R and <p 

f=fo+g=fo+kT(df0/dE)<p, 
6\<p=(L~D)g. (111.15) 

We also define <£ and 2D as the parts of (R arising from 
L and D, respectively.] 

Finally, from (III. 11) we find to second order 

dS/dt = \-(<pS<p)t, (111.16) 

S~-|((R+(R^-9C), (III. 17) 

Xnn^KL-D^fo^nn'- (111.18) 

In S the contributions of D are readily seen to cancel. 
If /o is a state of minimum entropy production, then 
S must be negative semidefinite. If L/ 0 = 0, then 
£-\-£T must be negative semidefinite. 

In some problems it is possible to sharpen this up 
considerably. For example, we may be able to require 
that dS/dt be a minimum and that (L—Z>0)/o = 0 where 
Do represents the part of D due to an "unperturbed" 
Hamiltonian, frequently the kinetic energy alone or in a 
crystal the energy in the absence of electric fields or 
thermal gradients. In such cases, we can include D0 in 
(III. 11) but omit the rest of D''. If then the solution / 0 

is the unique state of minimum entropy production, or 
in particular, the unique equilibrium state under the 
unperturbed Hamiltonian, (Ro+(RoT is negative definite 
not semidefinite where (R0= (<£—3D0). [3D is defined 
after (III. 15).] This is a very common occurrence. 

We have imposed the requirement that / = / 0 at large 
positive and negative times. For real systems this will 
normally be satisfied, since a system is usually set up 
in termal equilibrium and is allowed to return to it, 
possibly at another temperature. In such cases, one 
will want to require that /o be the equilibrium state at 
beginning and end. In cases where these conditions are 
not true, and which are not steady-state problems, we 
might have a system starting in one steady-state regime 
and ending in another neither being a state of minimum 
entropy production. We can then do the time inte
gration between fixed limits in these two regions. These 
end points will then contribute an additional term to 
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AS which, however, will not depend on the intervening 
process, which is our primary concern. 

IV 

In many problems of the type just discussed, we can, 
in addition, choose / 0 so that Dofo=0 and require that 
2)o <£>=0; this will normally arise from the translational 
invariance of the system, including scatterers and 
perturbations. If we are, in addition, content with the 
linear response of the system, we can ignore the re
mainder of 2D and write 

£<p=-X. (IV.l) 

Furthermore, £ is negative definite, and in an important 
category of problems, symmetric. These are the 
problems in which detailed balance holds for all scatter
ing, and the external scattering is thermal. For then, 

Lnn^Lntne^-^W, (TV .2) 

fon=<r**lkT. (IV.3) 

In such cases, then, we can obtain (IV.l) from a V.P. 
which will have a maximum at the correct solution <p. A 
number of essentially equivalent forms are possible, 
such as: 

(a) Maximize (<p,X)+(X,<p)+ (<p£<p). 

(b) Maximize — ((p,X)(X,<p)/(<p£<p). 

(c) Maximize — (<p£<p) subject to 
-2(<p£<p)^(<pX)+(X<p). 

This type of V.P. was first proposed by Onsager1 and 
has been discussed also by Kohler2 and Ziman.3 In all 
cases the limiting value is — (X£~lX) = — (<p£<p) 
= (<p,X), which in this approximation is equal to the 
entropy production (III. 14). 

The next simplest situation is that £ still be definite 
but not necessarily symmetric, £fo — 0, and X small 
but not necessarily 3D small. This last is, for example, 
true when a large magnetic field is present. 3D then 
contains a term (HXv)-d/dk which acting on / 0 gives 
zero, assuming that / 0 is a function only of energy. 
$)<p is not necessarily small compared to £<p however. 
Another example occurs when H contains the time 
explicitly, so that though / 0 may be time-independent, 
X is not. Then d/dt cannot be neglected. In such 
situations we have 

Gio<P=(£-£>o)<P=-X, (IV A) 

where we are again satisfied with the linear solution, and 
(£—3D0) is negative definite, but not Hermitian. 2Do 
contains the parts of 3D which we do not consider small. 

1 L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931). 
2 M . Kohler, Physik 124, 772 (1948); 125, 679 (1949); Ann. 

Physik 6, 18 (1949). 
3 J. Ziman, Can. J. Phys. 34, 1256 (1956); F. Garcia-Moliner 

and S. Simons, Proc. Cambridge Phil. Soc. 53, 848 (1957); F. 
Garcia-Moliner, Proc. Roy. Soc. (London) 249, 73 (1959). 

Now we can try to use a V.P. similar to (IV.3a): 

W= tt,X)+(X,<p)+tt(Ro<p). (IV.5) 

Varying <p and \p independently yields a stationary 
point when 

tfW—X, (IV.6) 

Thus, if (R=^(R?', \p will not equal <p and there is no 
particular meaning to the equation for \p in general, 
except that there exists a problem for which it is a 
solution. Nevertheless, when (IV.6) is satisfied, 

W=Wo= ( A » = - (?(JW)= ~ (*<M0 , (IV.7) 

as before. Again this is equal to the entropy production 
to the accuracy desired. 

The important point right now is that W does not 
have a maximum or minimum when (IV.6) is satisfied, 
but a saddle point. To see this, we write 2Xi=8 <p+fop, 
2X2=8(p—8\[/, where 8<p and 8\p are the deviations from 
the equilibrium values and we find 

W= Wo- (X1(R0X1)+ (X2(ft2(RoX2) 

- (Xi(RoX2)+ (X2(RoXi). (IV.8) 

Thus, W has a maximum as a function of Xx and a 
minimum as a function of X2 at Wo. 

A different V.P. can be obtained by multiplying 
(IV.4) by A where A is the antisymmetric part of (R0 

A(RQ<p=-AX. (IV.9) 

This equation can be obtained from the V.P., 

W'= ty,AX)- (XA <p)~(tA(R0<p), (IV.10) 

whose equilibrium value is 

W0'= - (XA <p) = (<p<R0
TA ip). (IV. 11) 

The physical significance of Wo will be considered in 
Sec. V. 

We have commented that, in general, the second 
equation of (IV.6) has no simple meaning. There are, 
however, a number of important physical problems in 
which 6iT is the (R for a closely related problem. Thus, 
if £>o contains d/dt, its Hermitian conjugate is also 
its time-inverse. If £>0 contains (BXv)-d/dp, its 
transpose is also its value for reversed field. In such 
cases, ip is the solution of a closely related problem. 
Indeed, previous derivations of (IV.5) have explicitly 
used the field-reversal properties in their arguments. 
We see that this is quite unnecessary. (IV.5) is es
sentially the V.P. used by Ziman and his associates3 

for the magnetic-field case. Robinson and Bernstein4 

have used much more complicated V.P.'s which are 
equivalent to (IV.5) and (IV. 10), so far as we can tell. 
Like their X2, W gives the components of the conduc-

4 B . Robinson and I. Bernstein, Ann. Phys. (N. Y.) 18, 110 
(1962). 
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tivity tensor which are odd in the magnetic field and 
in the ac conductivity problem, the components odd 
in frequency, that is, the reactive components (see 
Sec. V). 

The great deficiency of the methods based on W or 
W is that they do not have a maximum for the correct 
value. This leads to a number of disadvantages. First, 
nothing guarantees that the variational solution for a 
given class of trial functions is in any way better than 
some other member of the class. In particular, there will 
always be functions which give the correct values of W 
or W since the range of values is unbounded. Second, 
unless one chooses functions linear in the parameters, 
the determination of the saddle point is not so easy as 
the determination of a minimum or maximum. Finally, 
they are not applicable to nonlinear problems. There
fore, we conclude that there is good reason to seek a 
V.P. which does have a minimum or maximum for the 
correct solution. 

Such a V.P. is, in fact, easy to obtain. Rewrite 
(III.9) in the form 

&TT<S{.<p= -(&TTX, (1V.12) 

where T is for the time being an arbitrary real symmetric 
positive definite operator. Obviously, if <po is the 
solution of (III.9) it also solves (IV. 12). Similarly, if 
<pi is another solution of (IV. 12), then 

Since T is definite (R(<pi— ̂ o) = 0 and <pi is a solution of 
(III.9). Thus, the solution of (IV.2) is precisely as 
unique as that of (III.9) or (II. 1). Since 6iTT6i is also 
Hermitian, we can obtain V.P.'s in forms analogous to 
(IV.3). For definiteness, consider the form 

V= (cp6iTTX)+ (XT(R<p)+ (<p6iTT(5{<p), (IV.13) 

which has the maximum value (XTX). 
V can also be written in terms of <po as 

V= (C^-^o],CRTr(R[^-^o])--*)o(R rr(R^o, (IV.13a) 

and 6iTT(${ can then be replaced by T. A particularly 
interesting special case is then provided by T 
= \ ((R+ (RT- 9C) which yields 

^ s = ~ ( ^ [ ( R + ( R r - 9 C ] ^ 0 ) 
+ ( O - ^o]*[(R+(R r - 9C][>- vol). 

If we add — (^o|9CW, we obtain 

- K ^ [ ^ + ( R T - 9 C ] ^ 0 ) - | ( ^ o 9 C ^ o ) , (IV.14) 

and the maximum value is 

Vs0'^-~~(<Po(R<Po) 

= A S - Xdt, 
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which again is equal to the entropy production if / 0 has 
been chosen to be a state of minimum entropy produc
tion, and A = 0. Whether the state of minimum entropy 
production is unique depends on whether (R+(RT— 9C 
is definite or semidefinite as discussed at the end of the 
last section. If L / 0 = 0 , we can omit 9C and replace (R 
by <£ in (IV.14). We will discuss the interpretation of 
entropy production in a later section. Now we must 
point out that this V.P., which for the case of linear 
galvanomagnetic effects is basically equivalent to that 
of Tsuji,5 suffers from the drawback for computational 
purposes that it requires at least partial knowledge 
of <poy whose determination is the object of the whole 
problem. 

For computational purposes, we would want to use 
known forms for T and the simplest, of course, is 
2^=1.6 This may not always be the most useful, how
ever. We want to emphasize also that it may frequently 
be useful to use more than one T and compare the 
results. This will have the following advantages : 

(1) If the <£>'s found for different T's differ a great 
deal, we would not have much confidence in any of 
them. Conversely, we would be encouraged by obtaining 
similar g's from rather different T's. 

(2) I t may be possible to extrapolate in a loose sort 
of way from known values T to an unknown one with 
more physical significance. Thus, in may cases, iT-1 

will not be very different from (R~1-\-(RT~1. Then 
r = l , <£, £2, • • •, constitute a sequence which could 
hopefully suggest the value to be obtained for T= JB-1 

and, thus, ior T=i(Gi+(RT-1). 
Another feature of (IV.13) is that (XTX)-V yields 

a limit on (g—go) 

(XTX)-~V-«g-go)((Rm)(g-go)) 

>\g-go\2(GiTT6i)min, (IV.15) 

where ((R rr(R)min is the minimum eigenvalue of 6iTT<5i. 
On the other hand, 

| ( g - g o , X ) | K | g - g 0 | 2 | X | 2 

[(xrx)-F]ix|2 

< . ( I v . i 6 ) 
((RTT(R)min 

Thus, although we cannot, in general, find a useful 
V.P. for the entropy production, we may be able to 
obtain explicit limits on our error which is not possible 
when the V.P. is an unknown quantity. 

This last class of V.P.'s could have been deduced 
without selecting an /0 , which is most useful for making 
problems linear. Thus, we need only start from (II. 1) 
in the form 

( L - Z > ) / = 0 . 

5 M. Tsuji, J. Phys. Soc. Japan 13, 979 (1958). 
6 C. Herring has also discovered this form in unpublished work 

on the linear magnetic field problem. 
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Its solution minimizes the quantity 

V=(JIL-D1TIL-Plf) (IV.17) 

for arbitrary positive definite Hermitian T. If we 
compare V with V, we see that 

V'=(XTX)-V. 

We have pointed out that the fact that certain other 
V.P.'s do not have maxima or minima at the saddle 
points is a disadvantage relative to the class of V.P.'s 
we have proposed. Candor requires that we point out 
that Robinson and Bernstein4 have, in fact, obtained 
excellent results in a case which could be compared 
with a rigorous solution. I t would be very difficult 
to judge how much this example says about the general 
relative utility of the different procedures for linear 
problems. 

V 

In this section we shall consider an illustrative 
example, concerning electrons in a magnetic field 
subject to weak electric fields as in cyclotron resonance. 
We assume the scattering relaxes the electron toward 
/o a Fermi distribution. We consider only the linear 
response. In this case, it is shown in Wilson's book7 

that we can write Lf in the form 

£ / = £ * > , (V.l) 

where £ is symmetric and / = / 0 + / 0 V and f0 

= M(E-?)/kT). Then (II. 1) reads 

£<p—i^l(p — X 

fd d\ 
-*a==/0' —+BXv—) 

\dt dp/ 

u 
X = E - v — , 

kT 

where E is the electric force and B is e/c times the 
magnetic induction. I t is easy to verify that in this 
case the entropy production is 

AS=--(<p,£<p). 

We now take the Fourier transform with respect to 
time, obtaining 

- ^ = - / o , U o + B X v — J . 

Now consider ions or electrons whose energy is p2/2m 
and whose differential scattering cross section is a 
function only of the angle between the incoming and 
outgoing momenta, and the initial and final energies. 

7 A. H. Wilson, The Theory of Metals (Cambridge University 
Press, New York, 1953), p. 194. 

Then, if we expand <p in spherical harmonics, 

v^H <pim(E)Ylm(e,x), 

£<p takes the form 

£<Pi,m(E) = PtiE^vUEOdE' 

and —iti takes the form 

-itt^fo'i-iio+Bd/dx)?, 
— i^l<pim(E) = foi(—o)+mo)c)<pim(E). 

Thus, in this case, the equations for the individual 
<pim are completely separate, each being driven by the 
corresponding part of X. In the common problems 
where only temperature gradients and electric fields 
are involved, the only X's correspond to I— 1. 

An advantage of this procedure is that 12 is broken 
into groups of single, positive- or negative-definite 
operators. A separate V.P. can be used for each com
ponent. A similar procedure has been used by Robinson 
and Bernstein with their variational principle. 

In solid-state problems, £2 can be diagonalized, but, 
in general, £ will not be so simple. On the other hand, 
the work involved will not be an order of magnitude 
greater than that required for a nonmagnetic static 
problem. 

In Eq. (IV.2) we found that the V.P., W, had an 
equilibrium value 

Wo'=-{XA<p)=(<pAX). 

In the present problems, this quantity can be given 
a simply physical meaning. In a problem of electric 
conduction in a magnetic field, X= EvfG

f and 
A=BXvd/dp. Thus, 

AX= BXv-a-E/o ' , 

where a is the inverse effective mass tensor and may be a 
function of at least p. In case a is an isotropic constant, 
m~l 

E X H E X H 
W*'={<p,AX) = ( ^ / o 0 = J , 

m m 

where / is the total current. Thus, Wo gives the Hall 
component of the current in this special case. If A 
arises from time dependence, it will for each frequency 
component have the form ico, and HV then gives simply 
the imaginary part of the conductivity as W gives the 
real part. 

In problems of this type, like that discussed in 
Sec. IV, we can also find maximum principles which 
yield the same quantities. This is done by separating 
the equation for different co and m. Then if T 
= AOr~1—0~1A, the maximum value of V is <pAX for 
each component. 
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VI 

We found in Sec. I l l a convenient form for the 
increase in entropy of a system 

A 5 = \dt-(<p0<5i<po). (VI. 1) 

In Sec. IV we found that the last term is the value of a 
number of V.P.'s. In the case of (IV.3) the connection 
is even more intimate for in that case (<p£<p) t is actually 
the instantaneous value of entropy increase, to second 
order, since 9C can be neglected to that order in (III. 17). 
For the other V.P.'s, we can only say that W and V 
are equal to the correct value of (<po(R(po) when cpo 
substituted into them for <p. 

We have then in a restricted sense a "principle of 
maximum entropy production." The question arises 
whether any deeper significance is to be attributed to 
it. We feel that this is really a matter of taste. In the 
case of the linear problem, (IV.3), Ziman has suggested 
that the V.P. is really a basic physical principle. If this 
is to be maintained, it should be true not only for linear 
processes, but in general. Our feeling is that the link 
between V.P. and entropy production in the general 
case is not sufficiently close to justify such an interpre
tation. We have seen that, in fact, there are a great 
variety of possible V.P.'s to maximize and that it 
really takes a fair amount of artificiality to get one in 
the form of entropy production. Even so, what we 
obtained is a quadratic form which agrees with the 
entropy production or any part of it only for the true 
distribution function except in the small perturbation 
limit. Unless L / 0 = 0 we even have to add an extra term 
to the Vs to make it equal the entropy production. 
Thus, our point of view is that not too much significance 
should be attributed to the maximum entropy produc
tion, but we would not strongly dispute those whose 
taste differs from ours in this regard. Vs can 
be viewed somewhat differently as follows: Maximize 
— ̂ (<p[_(R+(RT—X]cp) subject to the restriction that it 
equal f (^>[(R+(Rr— 9C]^o). The quadratic term is equal 
to the quadratic form for the second-order entropy 
increase (III. 11) so that while it is not exactly equal 
to the excess of entropy increase over the minimum 
it is intimately related. On the other hand, the term 
+J(^o9C^o) certainly is an obstacle to any glib interpre
tation, except in lowest order when it vanishes, being 
at least third order in DC. The best we can say is that it 
appears here in much the same way that the right side 
of (III. 14) differs by the same term from the quadratic 
term of (III. 11). 

Entropy production has been a favorite topic of 
irreversible phenomena for a long time and a principle 
of minimum entropy production has been enunciated 
by Prigogine8 and discussed by a number of authors.9 

8 1 . Prigogine, Etude Thermodynamique des Phenomines Irre-
versibles (Maison Desoer, Liege, 1947), Chap. V; S. R. de Groot, 
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Two different such principles have, in fact, been 
proposed, though their difference seems to have been 
largely overlooked. 

The first is based on the theorem due to Prigogine8 

that if a system is operating in a state of minimum 
entropy production and the forces acting on it are then 
changed the currents will change in such a way as to 
counteract the change in forces. The meaning of "a 
state of minimum entropy production" is different 
from ours, for it envisions a system subject to a certain 
number of "forces," X0i such as electrical potential 
differences or concentration gradients, some of which 
are fixed, while the others are not. The rate of entropy 
production is defined by the quantity \LuJiJh where 
L is the matrix relating the currents Ji to the forces 
Xi'.LuJi=Xi. The state of minimum entropy produc
tion is then a state in which LikJiJk is minimized 
subject to the condition that the fixed forces X{ be 
equal to the corresponding LuJi. The theorem as 
stated is true, but there has been a tendency to go 
beyond it and assume that whenever some forces are 
fixed and others are free, the steady state of the system 
will actually be the state of minimum entropy produc
tion. This would amount to obtaining a complete 
solution to an incompletely specified problem. This is 
not true unless there are boundary conditions requiring 
the Ji corresponding to the unspecified forces to be 
zero. The misinterpretation of the theorem rests in 
trying to obtain the currents in a situation in which not 
all the forces are specified. In fact, while not all the 
forces need be specified it is essential that an equivalent 
number of conditions be given. These will frequently 
appear as boundary conditions. As a simple example, 
consider a thermocouple with junctions at temperatures 
T and T-\-bT, and a voltage V across a pair of leads. 
Then the entropy production can be written in the form, 
2a = K5T2+pJ2. If we set 8T=Xi the state of minimum 
entropy production is attained when 7 = 0 . This is the 
actual solution, however, only if open circuit boundary 
conditions are imposed. If the two leads are shorted, 
the current is not zero but is determined by the thermo
electric power and resistivity. If intermediate conditions 
are imposed such as V=IR, due to a load resistance, 
intermediate currents will flow. The actual current is 
determined by the applied temperature difference and 
the boundary condition. 

The logical gap between Prigogine's theorem and the 
"principle of minimum entropy production" is that the 
"tendency to counteract the change in forces" will be, 
in fact, consumated only when the open circuit boundary 
conditions apply. In our example, if this boundary 
condition applies and the voltage should fluctuate the 

Thermodynamics of Irreversible Processes (North-Holland Publish
ing Company, Amsterdam, 1951), Chap. X. 

9 M. J. Klein and P. H. E. Meijer, Phys. Rev. 96, 250 (1954); 
M. J. Klein, ibid. 98, 1736 (1955); P. H. E. Meijer, ibid. 103, 839 
(1956); M. J. Klein, in Transport Processes in Statistical Me
chanics (edited by I. Prigogine (Interscience Publishers, Inc., 
New York, 1958), p. 311. 
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current would change and charge would build up at the 
boundaries in such a way as to restore the original 
voltage and current; but if the boundary condition is a 
short circuit or leak, the tendency will not be con
summated and the minimum entropy production state 
will not be stable. 

Inspired apparently by Prigogine's theorem, Klein 
and Meijer9 have investigated what is really a different 
principle of minimum entropy production, stating 
that the steady state is the state in which the distri
bution function or density matrix adjusts itself to 
produce minimum entropy production. This is much 
more closely related to what we have done earlier in 
this paper. Klein and Meijer conclude that this principle 
is not always valid, but claim that it is approximately 
valid in the models they study in the neighborhood 
of equilibrium. Klein has emphasized, in addition, that 
the temperature must be much larger than the energy 
level spacing in the two-level system he considers. 
We can investigate the realm of validity of this principle 
on a much broader front. From (III. 12) we find that 
the necessary requirement for the entropy production 
minimum to occur when Eq. (II. 1) is obeyed is 

_ <f-w-°, (VL2) 
(L~-Df)k hifn=<Tn—\8n. 

Obviously we cannot absolutely rule out the simul
taneous solution of these two equations, at least until 
we make some hypotheses as to Lnn> and crn. On the 
other hand, we can certainly say that there is no reason 
to expect such solutions in general; for assuming L—D 
to have a unique solution for given initial conditions, 
the second equation constitutes a set of conditions 
which must be satisfied by / and their sum determines 
X: 

(*,/)=x. 
Since completely general statements would be very 
difficult we restrict ourselves to problems where the 
deviation from equilibrium is small. Any general 
results should also be true for this special case. The 
equilibrium distribution / ( 0 ) is the solution of the 
equation 

Z,<°>/<°> = 0. (VI.3) 

Our Eqs. (VI.2) now read, after adding and sub
tracting : 

(£<0> + £ r W ) ^ n = - L ( 1 ) / » ( 0 ) - £ r ( 1 > l n / n ( 0 ) 

1 
+-W1>-Xfin, (VL4) 

k 

1 
—o» ( 1 >+xa w , 

k 

where La) is a perturbation on L(0) and cr(1) is the 
associated external entropy production. For simplicity 
we make the (nonessential) assumption that £ ( 0 ) is 
symmetric. Then 

2Dfn
w = LVfn«»-£,Tv in/n«» 

1 
+ -<T<1>n-X5»/n«», (VI.5) 

k 
and 

2(/(0>,Z>/<0)) = 0 = C/" (0),L (1)/ (0))- (f°\£TV ln/«») 

1 
+ - ( 0 . ( i ) j < o ) ) _ x . (VI.6) 

k 

Thus, X and Df(0) are completely determined by L0) 

and o-(1). Clearly then for general Df(0\ the state of 
minimum entropy production is not a solution of 
(II. 1). A special case of importance occurs when the 
scattering is adequately described by L(0), so that 
£(!)=: o-(i) = 0. This leads to X = Z>/<°> = 0. Thus, all the 
usual transport problems are ruled out. 

So far as we can see the only situation in which 
(VI.5) can even approximately be satisfied, aside from 
complete happenstance, is the following: We assume 
that there is scattering only between n's with nearly 
equal / . Thus, we write /n' = Cn(5n '+^n' tn). Then 
(VI.5) reads to lowest order 

1 

n' k 

n' 

— Cn(8n+\l/nn) £ Lnn>
{l)bn> l nC n 

n' 
-Cnbrlnn^n'n. (VI. 7) 

Again because of the independence of D, La) and / ( 0 ) , 
we can expect a solution only for a class of cases in 
which / does not enter. We can achieve this by re 
stricting ourselves to D — o-{l) — Q. We also divide by 
Cn and obtain 

/^, -Linn' Un'\TZ~i \J^nn' VnJ-^nn' JYn'n 
n' n' 

= X«n(l+*n»). (VL8) 

Now if Lnn>
(1) = Ln/n

(1)5„, En' Lnn>
(1)5W/ = 8n £ 5»/Ln/n

(1) 

= 0 because this is a condition L must obey to conserve 
probability, and on taking the trace, X = 0. Also if 
Lnn>

a) = Ln>n
a)8n, then further it equals Lnn>

{l)bn'bn 

= Ln/n
(1)5n/6n. That is, La) is symmetric and connects 

only diagonal density matrix elements in the quantum-
mechanical case. This description, along with cr(1) = 0 
fits transitions due to radiation of effectively infinite 
temperature. This then fits the essential features of the 
models considered by Klein and Meijer. We do not 
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see that any other physical realizable situations will 
even so approximately fit the requirements. 

Our discussion of Sec. I l l indicates that the true 
role of the state of minimum entropy production is to 
provide a particularly convenient "base." The addi
tional entropy production has a particularly simple 
quadratic form and is given by a variational principle, 
though this V.P. is not particularly useful for 
computation. 

One can make an analogy to the relation between 
quantum mechanics and classical mechanics. In the 
latter the motion is determined by the minimization 
of the action, but when quantum effects are taken into 
account, this no longer holds. The analogy is that if 
kT, the analog of fi'1, is very large, minimum entropy 
production is a good approximation. (In a sense this 
is true even if JD/os^O. In this case, if /o is Maxwellian, 
Dfo becomes small at high temperature and the devia
tion from equilibrium becomes small. Unfortunately, 
only the deviation is interesting in most cases.) The 
analogy is not very interesting, in most cases, however, 
because "large" must mean large compared to the 
width of the spectrum, which again limits us to spectra 
of finite width. 
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APPENDIX 

To discuss entropy production in the quantum-
mechanical case, we consider S(f), the entropy con
sidered as a functional of / . For the internal part of 
dS/dt we write 

/dS' 

\dt 

d / df> 
= \im~S[f+T~ 

t T^° dr \ dt 

= \im—S(f+r(L-D')f). (A2) 
*-° dr 

To investigate the behavior near a minimum we 
write 

dS d 
—=\im-S(fo+g+T(L-D')(f0+g)) 
dt T-*° dr 

+ £ Sn'nLn'nifon+gn) • (A3) 

This leads us to an equation for /o 

lim (-)s<JQ+ng+T(L-D')(Jo+ng)) 

+ S <Sn'nLnfn=Xdn. (A4) 

Thus, we can substitute into (I.II.l) 

dS # d 
— = l i m —£ 
dt ^ ° dr K) 

d d 

(Al) 

- lim 5 ( / 0 + / 1 / + T ( L - Z ? 0 ( / o + / i / ) ) + X 
'-**>»-* d dj 

(A5) 

dS(f) d d / 
= - lim S(fo+»fo+»g+T(L-D)fo 

dt T->0^°dfidr \ 

dfo dg\ 
+ T ( 1 + M ) — + T M - ) + X , (A6) 

dt dt/ 

where we have used (L—Df=0. We can now rewrite 
this as follows: 

'idS(f) d d 
A5= / ] lim 

dt T^°^0diidr -/l: \s(fo+nfo+T(L-D)f0+T~ }+S(fo+ng+r(L~D)fo) 
L V dt/ 

+ 5 ( / o + M g + r ~ ( / o + ^ ) ) + ^ ( / o + T M y ) ] [ ^ + ^ X*. (A7) 

Since5(/) = QTr(/ ln/) , l imMo(rf / rfr)5(( l+M)/o+rF)-
is for arbitrary Y equal to 

and 

QTr ( [ ln ( l+M)+ln / 0 ]F ) 

d d 
lim 5 ( ( l + M ) / o + r F ) = O T r F . 

^°^° dfx dr 

Thus, the first term in square brackets in (A7) 
vanishes. The third term is 

d d 
lim S-(Jo+ng). 
*-*° dtdix 

The fourth term is (d/dt)S(fo). These two combine 
(A8) with dS(f)/dt to yield (d/dt) QTr ( ln / 0 ~ln / , / ) which 

vanishes on integration if / = / o at beginning and end. 
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We are then left with 

A S - / \dt 

d d 
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as well as (R such that 

M V ) = /• 

• / • 

d d 
dt l im 

r->o,M-o dr dfx 

= \dt lim 5 ( / 0 +/*g+r (£ -Z>) /o ) . (A9) XS(f0+fxfo<P+r(L-D)f0cpf). (All ) 
*-*o>i>*> dr dp 

With these definitions of X and (R, (III. 14) and other 
We now introduce <p such that g=/<>*>, and X such formulas following it remain valid. In (III. 18), we use 

that for arbitrary <p for <£ 

/

d d 1 d2 d 

* lim (^rt=Jfco9^17 XS(fo+ixfo<P+r(L-D)fo), (A10) XS(Jo+fjLfo<p+T(L-D')fo). (A12) 
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Broken Symmetries and Massless Particles* 
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The following generalization of a theorem conjectured by Goldstone is proven: In a theory admitting a 
continuous group of transformations, suppose a set of operators <f>i{x), transforming under an irreducible 
representation of the group, has the property that in the vacuum some expectation values (<£;(#)) ̂ 0 for 
i — i'. The theorem then asserts that Dij(p), the Fourier transform of the propagator of <f>i(x), is singular at 
p2 = 0 for some ij*i'. (The maximum number of (<f>i)?*0 is a property of the group representation. The 
further identification of the singularities as poles and their interpretation as massless particles depends on the 
usual apparatus of quantum field theory.) 

The appropriate choice to be made for the field fc when it describes a boson excitation and when the 
Lagrangian contains only direct fermion-fermion coupling is discussed. It is suggested that such Fermi in
teraction theories may be renormalizable when expanded in terms of the coupling between fermions and the 
collective boson field. 

The theorem is illustrated by the following models: (A) 75 gauge group (Nambu and Jona-Lasinio), where 
a massless pseudoscalar meson is predicted; (B) isospin group (Nambu and Jona-Lasinio) where massless 
charged mesons are predicted; (C) SU(3) octet model (Baker and Glashow) where six or four massless 
mesons are predicted; (D) Lorentz group (B jorken) where the massless photon is predicted. The limitations 
of the theorem are also discussed. 

I. INTRODUCTION 

A WIDESPREAD feature of many-body systems is 
the existence of collective modes of excitation for 

which the energy vanishes in the long-wavelength limit, 
these modes constituting the only low-energy excita
tions. Well-known examples are the spin waves in the 
Heisenberg model of ferromagnetism,1 the phonons of 
superfluid helium,2 and the phonons which presumably 
would be exhibited by a superconductor in the absence 
of Coulomb interactions.3 The common feature of these 
systems is the appearance of a condensation or coopera-

* Supported in part by the U. S. Atomic Energy Commission. 
f Alfred P. Sloan Foundation Fellow. 
1 F. Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932). 
2 L . D. Landau and E. M. Lifschitz, Statistical Physics, 

(Addison-Wesley Publishing Company, Inc., Reading, Massa
chusetts, 1958), p. 198. 

3 P. W. Anderson, Phys. Rev. 110, 827 (1958); 112, 1900 
(1958); G, Rickayzen, ibid. 115, 195 (1959). 

tive phenomenon; the theoretical description then re
quires, or at least is facilitated by, the introduction of a 
degenerate or symmetry-breaking ground state. 

Thus, in ferromagnetism, where the Hamiltonian is 
invariant under spatial rotations, the ground state has 
a macroscopic spin proportional to the size of the 
system. For an infinite system, at least, the ground state 
is then not rotationally invariant. In this sense, the 
ground state is nonsymmetric or degenerate; the spin 
points in some direction which, because of the symmetry 
of the Hamiltonian, is arbitrary. Each particular choice 
of spin direction, however, defines a representation of 
the Hilbert space inequivalent to all the other possible 
choices. 

The BCS model of superconductivity4 can be formu-

4 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 
34, 58, 73 (1958) [translation: Soviet Phys.—JETP 7, 41, 51 
(1958)]. 


