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The following generalization of a theorem conjectured by Goldstone is proven: In a theory admitting a 
continuous group of transformations, suppose a set of operators <f>i{x), transforming under an irreducible 
representation of the group, has the property that in the vacuum some expectation values (<£;(#)) ̂ 0 for 
i — i'. The theorem then asserts that Dij(p), the Fourier transform of the propagator of <f>i(x), is singular at 
p2 = 0 for some ij*i'. (The maximum number of (<f>i)?*0 is a property of the group representation. The 
further identification of the singularities as poles and their interpretation as massless particles depends on the 
usual apparatus of quantum field theory.) 

The appropriate choice to be made for the field fc when it describes a boson excitation and when the 
Lagrangian contains only direct fermion-fermion coupling is discussed. It is suggested that such Fermi in
teraction theories may be renormalizable when expanded in terms of the coupling between fermions and the 
collective boson field. 

The theorem is illustrated by the following models: (A) 75 gauge group (Nambu and Jona-Lasinio), where 
a massless pseudoscalar meson is predicted; (B) isospin group (Nambu and Jona-Lasinio) where massless 
charged mesons are predicted; (C) SU(3) octet model (Baker and Glashow) where six or four massless 
mesons are predicted; (D) Lorentz group (B jorken) where the massless photon is predicted. The limitations 
of the theorem are also discussed. 

I. INTRODUCTION 

A WIDESPREAD feature of many-body systems is 
the existence of collective modes of excitation for 

which the energy vanishes in the long-wavelength limit, 
these modes constituting the only low-energy excita
tions. Well-known examples are the spin waves in the 
Heisenberg model of ferromagnetism,1 the phonons of 
superfluid helium,2 and the phonons which presumably 
would be exhibited by a superconductor in the absence 
of Coulomb interactions.3 The common feature of these 
systems is the appearance of a condensation or coopera-

* Supported in part by the U. S. Atomic Energy Commission. 
f Alfred P. Sloan Foundation Fellow. 
1 F. Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932). 
2 L . D. Landau and E. M. Lifschitz, Statistical Physics, 

(Addison-Wesley Publishing Company, Inc., Reading, Massa
chusetts, 1958), p. 198. 

3 P. W. Anderson, Phys. Rev. 110, 827 (1958); 112, 1900 
(1958); G, Rickayzen, ibid. 115, 195 (1959). 

tive phenomenon; the theoretical description then re
quires, or at least is facilitated by, the introduction of a 
degenerate or symmetry-breaking ground state. 

Thus, in ferromagnetism, where the Hamiltonian is 
invariant under spatial rotations, the ground state has 
a macroscopic spin proportional to the size of the 
system. For an infinite system, at least, the ground state 
is then not rotationally invariant. In this sense, the 
ground state is nonsymmetric or degenerate; the spin 
points in some direction which, because of the symmetry 
of the Hamiltonian, is arbitrary. Each particular choice 
of spin direction, however, defines a representation of 
the Hilbert space inequivalent to all the other possible 
choices. 

The BCS model of superconductivity4 can be formu-

4 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 
34, 58, 73 (1958) [translation: Soviet Phys.—JETP 7, 41, 51 
(1958)]. 
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lated analogously.5 Here Nambu views the conserva
tion of charge or of fermion number as the invariance of 
the Hamiltonian under rotations about the 3 axis of a 
fictitious isospin space. The ground state is, however, 
characterized by a nonvanishing value of the isospin 
density in the 1,2 plane; this nonvanishing expectation 
value determines the energy gap. The invariance under 
rotations about the 3 axis is reflected by the arbitrariness 
in the choice of direction in the 1,2 plane for this non-
vanishing component. The ground state is again de
generate and the symmetry broken in a sense precisely 
analogous to that explained for the ferromagnet. The 
superfluid boson system can be described similarly. 

Nambu and Jona-Lasinio6 have tried to extend these 
concepts to Lorentz covariant field theories and to 
found a theory of strong interactions on the assumption 
that the nucleon mass arises in analogy with the energy 
gap of superconductivity, the associated low-energy 
collective excitations being identified with the pion. 
In correspondence with the nonrelativistic examples, 
Nambu and Jona-Lasinio find that the pion energy 
should vanish with the momentum, i.e., that the pions 
should be massless. 

The models of Nambu and Jona-Lasinio involve basic 
four-fermion interactions. The boson excitations then 
appear as collective modes of the fermion system. 
Goldstone7 has, on the other hand, examined theories 
involving bosons as elementary fields. These elementary 
bosons transform by an irreducible representation of a 
continuous transformation group leaving the Lagrangian 
invariant. From these models, Goldstone conjectures 
that whenever the Lagrangian admits a continuous sym
metry group, but the vacuum expectation value of some 
boson field is nonvanishing, some zero-mass boson states 
must exist. Goldstone, Salam, and Weinberg and, in
dependently, Taylor,8 then presented several proofs of 
Goldstone's conjecture. 

The primary purpose of this note is to prove a version 
of Goldstone's theorem generalized to Lagrangians ad
mitting any continuous symmetry group and contain
ing or not containing elementary boson fields. A second
ary purpose is to apply the theorem, not only to the 
cases already cited, but also to more recent work9-11 ex
tending Nambu and Jona-Lasinio's program of broken 

5 Y. Nambu, Phys. Rev. 117, 648 (1960). 
6 Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); 

124, 246 (1961). See also V. G. Vaks and A. I. Larkin, Proceedings 
of the 1960 International Conference on High Energy Physics at 
Rochester, edited by E. C. G. Sudarshan, J. H. Tinlot, and A. C. 
Melissions, (Interscience Publishers, Inc., New York, 1960), 
p. 871. 

7 J. Goldstone, Nuovo Cimento 19, 154 (1961). 
8 J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 

965 (1962). J. C. Taylor, Proceedings of the 1962 International 
Conference on High-Energy Physics at CERN (CERN, Geneva, 
1962), p. 670. 

9 M. Baker and S. L. Glashow, Phys. Rev. 128, 2462 (1962). 
10 S. L. Glashow, Phys. Rev. 130, 2132 (1963). 
11 J. D. Bjorken, (unpublished); I. Bialynicki-Birula, Phys. Rev. 

130, 465 (1963). 

symmetries. Our method is closest in spirit to that of 
Bjorken.11 

In Sec. I I , we prove the generalized Goldstone 
theorem, defining the conditions under which zero-mass 
excitations are predicted and relating the number of 
independent zero-mass excitations to the structure of 
the symmetry group. In Sec. I l l we apply the theorem 
to a number of models chosen to illustrate its wide 
scope. Most of these models have already been discussed 
in the literature.5-11 A brief discussion of the limitations 
of our derivation of the theorem and of the theorem's 
physical implications concludes the paper. 

II. FORMULATION AND PROOF OF THEOREM 

A. Prel iminaries 

We consider a theory, denned by a set of field equa
tions (or by a Lagrangian) and by an appropriate opera
tor algebra, invariant under some continuous group of 
transformations. Let the set of operators fc transform 
according to an irreducible representation of the group 
and be described by an equation of the form 

DfT14>i=ji9 (2.1) 

where j% is a current, constructed from the fundamental 
operators and transforming as $;. 

For example, <jn might be a fundamental spinless bose 
field of "bare mass" /x0, 

Z V - ^ - d H W , (2.2) 

or designating the Fourier transform of Df1 by D<rl, 

D0-
1(p) = p2+fJio2- (2.3) 

We shall also be concerned with examples where <j>i 
represents a Dirac particle or a vector boson and the 
Do -1 are the associated well-known operators. 

On the other hand, <£; might not be an elementary 
field, but a synthetic object formed from other fields. 
For example, our theorem includes four-fermion theories 
of the Heisenberg12 type. In this case Do=F is simply a 
Fermi coupling constant with dimensions (mass) -2. Our 
aim in every case is to define as " field" that object which 
classically describes the transmission of forces and 
quantum mechanically the propagation of particles. 

We now assume that in the ground state (vacuum) of 
the system some components i—i'oi </>; have nonvanish
ing expectation values, 

<*<>5*0. (2.4) 

From Eq. (2.1) we have the conditions 

5o-1(0)<**> = 0\>, (2.5) 

to be fulfilled nontrivially. We refer to Eqs. (2.5) as the 
generalized Hartree conditions. These conditions bring 
new physical parameters, the (fa), into the theory and 

12 W. Heisenberg, Rev. Mod. Phys. 29, 269 (1957), 
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distinguish theories of this kind from more conventional 
field theories. 

I t would appear at first sight that we must exclude 
the case B<r1(0) = 0. If, however, (ji) = 0 but (<t>i) re
mains finite, the reasoning given below will remain 
valid providing the limit So"1 (0) —•» 0 is sufficiently 
regular. We shall return to a discussion of this problem 
at th-e end of Sec. I I I . 

Our approach is to calculate the Green's functions 
defined by the response of the quantum system to ex
ternal sources Ji. We therefore modify Eq. (2.1) to 

Do-^ji+U (2.6) 

This formalism is particularly suggestive here where we 
think of the vacuum as the ground state of a system 
(like a ferromagnet) which, because of some kind of 
dynamical instability, remains unsymmetric even in 
the limit of vanishing Ji. We know that, whether ob
tained by a summation of perturbation theory or directly 
from the action principle, these Green's functions are 
functionally related through the Dyson-Schwinger 
equations. 

The theorem will be a statement about the propagator 
Dij(x—y) defined as the functional derivative 

Dij(x-y) = d(Mx))/Wj(y) I J - O . (2.7) 

For its Fourier transform, we obtain from (2.6) the well-
known form 

[5c"1 (p) -Hp)likDkj(p) = ««, (2.8) 
where 

^{p)- j e^-lb(jM)/K<t>k{zmj^dh. (2.9) 

In the limit ^ = 0, this simplifies to 

***(0) = d<i<>/d^ | j -o , (2.10) 

where we have defined (<£*) = pi. For this case, we thus 
have 

= C^o-1(o)]«-d<i»)/a^*|/-o. (2.ii) 
The theorem can finally be stated as an assertion 

about 5 _ 1 (0 ) . Let the representation </>*• be of dimension 
N and let there be Nf nonvanishing Hartree conditions. 
Then we shall prove that A / - 1 (0) == 0 for some i or 
J9^if. (The Hartree conditions define an A7'-dimensional 
subspace in the A^-dimensional representation space. 
The maximum value N'm&^v that A7' may have de
pends on the group representation. Until subsection 3 
we will suppose N'=*N'max. Of course, how large Nf is, 
i.e., how much the symmetry is broken in the vacuum, 
depends upon the dynamics.) 

The propagator Ay(0) is singular for some Mf direc
tions in the subspace normal to the Af'-dimensional 
space defined above. Thus, the number of massless 
mesons Mf<N—N' depends on both the group repre

sentation and the dynamics. The proof itself will pro
vide the means for counting Mf in individual cases. 

B. Proof 

The Hartree conditions (2.5) represent a set of 
numerical relations covariant under the group repre
sentation. We consider the effect of an infinitesimal 
transformation 

5 (pi— XijaXa<pj, (2.12) 

where the set pj is the solution of (2.5) in a given co
ordinate system and the \a infinitesimal parameters of 
the group. From (2.5) we derive 

{L^miik-Hji)/B<pk}l<pk=0, (2.13) 

where the use of the symbol 5 for differentiation of 
(ji) (not to be confused with functional derivative) 
serves to remind the reader that this is the special 
value of the derivative for those changes which are 
group transformations. We refer to this derivative as 
the kinematical derivative. 

We note that the quantity in curly brackets in (2.13) 
bears a strong resemblance to \jDo~1(0)2ik, Eq. (2.11). 
We have to examine the conditions under which the 
two expressions are indeed identical. 

1. A Simple Example 

We start with an example that serves to illustrate 
the type of result obtainable, by considering <pi to 
transform under the fundamental representation of 
0(N), the real orthogonal group in N dimensions. The 
general form for (ji) in Eq. (2.5) is then simply 

0 \ . ) = ^ © ( ^ ) , (2.14) 

with © an invariant function of p2— pipi, and the 
Hartree condition reduces to a single equation 

^ - 1 ( 0 ) = ©, (2.15) 

assuming that pj has at least one nonvanishing com
ponent. Without loss of generality, we can adapt the 
coordinate system so that pi^O and pi=0, i?*l. From 
(2.14) we have immediately for the kinematical 
derivative, 

&(ji)/~5<Pk=diS, (2.16) 

because of the in variance of ©. 
To compare this with the dynamical derivative in 

(2.11) we note that, in the presence of a uniform ex
ternal source Jiy the form (2.14) is still correct; we thus 
obtain 

d(jt)/dph^biS+2pipk&, @'=<9@/<V. (2.17) 

Setting Ji=0, which is the same as setting (£>&=0, 
k^l, tells us that 

8(ji)/8<Pk=d(ji)/d<pk\j=0=8ik®, i,k^ly (2.18) 
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whereas for i~ 1 

dj1/d<Pl\J^=®+2<p1*®' (2.19) 

bears no simple relation to the kinematical derivative. 
We note further that the 5<pk in (2.13) are only re

stricted by the condition of invariance for <p2, 

<M*>*=0, (2.20) 

which is satisfied by 5<pi = 0, 5<p.k arbitrary, &^1 . For 
the group chosen, no new restrictions on the 8<pk emerge 
from (2.12), since the number of parameters is, in O(N) 
for N>2, greater than or equal to the number of non-
vanishing 8(p,k, once (2.20) is satisfied. 

From (2.13) and (2.18), we thus conclude that 

5 , r
1 ( 0 ) = 0 (no sum on t), i = 2 , 3- • -N. (2.21) 

2. Generalization to More Complicated 
Group Representations 

The defining representation of 0(N) is especially 
simple in that the Hartree condition defines a direction, 
which by operations of the group can be made to point 
along the 1 axis. In general, however, a group representa
tion can, by operations of the group, only be brought to 
a canonical form in which v of the (<j>i) are nonvanishing. 
This number v, the minimum number of components 
necessary to specify an N representation after suitable 
orientation of axes, which is also iVmax, the maximum 
number of independent Hartree conditions that can be 
imposed, will be called the canonical number. The basis 
in which the N representation achieves "principal-axis 
form" will be called the canonical basis. 

That generally v> 1 can be pictured by regarding the 
N representation of the group in question as constrained 
to transform as some subgroup oi 0(N) considered 
above. Equivalently, from an arbitrary vector <p(i), we 
can construct v independent algebraic invariants. These 
are of the form 

h=[_iii2ji(p(ii)(p(i2), 

Iz=[iii2iz]<p(ii)<p(i2)<p(i*), (2.22) 

/ „ + i = p i - • -iv+iJiviii)- • • <p(iv+i), 

where [ i i ^ ] = e> (^ 2 ) and [iv • - i j is a symmetric in
variant numerical tensor under the group. For instance, 
for the adjoint or regular representation of SU(n), 
v — n—\ and the invariants have been constructed ex
plicitly.13 Associated with each invariant Ip is a vector 

Vp(j) = [iir • -ip]<p(i2)- • <p(ip). (2.23) 

The canonical number v is, thus, the number of alge
braically independent invariants that can be constructed 
from the N representation. 

In addition to their form and number, we require but 
13 L. C. Biedenharn, Phys. Letters 3, 69 (1962); A. Klein. J. 

Math. Phys. (to be published). 

a single additional property of the invariants: These 
invariants are adapted to a choice of canonical basis 
such that when any one of the indices of p i • • • ip~] is 
outside the canonical subspace and the remaining in
dices are inside, the symbol vanishes. 

Returning to the proof, the Hartree condition is now 
equivalent to at most v coupled equations for the v in
variants 12,- • 'Iv+i, or equivalently v equations for a 
vector (pi in its canonical coordinate system where 
<Pi^v, i= 1- • -v. We suppose a nontrivial solution to 
exist. Replacing Eq. (2.14), we have the form 

{ji)= <p(i)®i+[iiii2~]<p(ii)<p(i2)®2-\ 

+ [ n r - - i ] ^ ( i i ) - - ^ ( i ) e , , (2.24) 

where 

0 < = © < ( J V / H - I ) - (2.25) 

The properties of the numerical tensors [ ] now yield, 
from (2.24), upon varying about the canonical coordi
nate system, 

l<j<)/hh=d{ji)/d<pk\j^ i , * = H - l , - " # . (2.26) 

i.e., the kinematical and dynamical derivatives are 
( again equal in the subspace orthogonal to the first v 

components, i.e., to the canonical subspace. Since these 
\ derivatives are also symmetric in their two indices, they 
\ can be taken as diagonal. 

If the 8cpk, h— v+1, • • • N can be chosen independently 
and nonzero, we shall then have proven that 

| A-r1(0) = 0, f = H - l , — tf. (2.27) 

This will certainly be the case when N— v is less than or 
i equal to the number N\ of parameters \a of Eq. (2.12), 
I since then the onlv condition on 5<p, that it be orthogonal 
1 to the vectors Vp' of Eq. (2.23) [as follows from (2.22)] 
i is precisely satisfied by choosing 5<p^0, k= v-{-1, • • • N. 
3 These restrictions are satisfied by all the examples of 

Sec. I l l and in particular by the adjoint representation 
oiSU(n). 

The maximum number of mesons M /
m a x = ^ — v never 

) exceeds Â x, the number of parameters. This is obviously 
so when N does not exceed N\, i.e., for the most interest
ing representations of small dimensionality. When 
N>N\, we have precisely AT—v=N\ and our proof still 
applies. This is true because by definition N— v is the 

' number of components of <pi that can be chosen with-
> out loss of generality to vanish. But given <pi, in an 

arbitrary coordinate system, we can determine a canoni-
r cal coordinate system by fixing N\ of the components 
) in the new coordinate system to vanish, thus fixing the 

N\ parameters. This statement is simply a generaliza-
:- tion of the familiar idea that in the higher representa-
d tions of the rotation group, three components of an 

arbitrary tensor transforming under the representation 
t serve merely to orient the geometrical form associated 
r with the tensor with respect to an arbitrary (space-

fixed) coordinate system. 
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3, Less than Maximum Breaking of Symmetry 

The theorem as proved above depends on the assump
tion that the symmetry is broken maximally. This is 
because from the structure of the group and the mean
ing of canonical basis, if <pj5*0, j=l,- • -v, then from 
(2.12) there exist X« and Xif* such that 8<pi9^0, 
j = y + 1 , • - -N. If one or more of the <pi= 0 so that some 
of the symmetry is preserved, the number of conditions 
(2.27) will be reduced, either because some of the 8<pi 
are now necessarily zero or because there are linear re
lations among them. Whereas the first possibility can be 
deduced from study of (2.12), the second comes about 
because the vectors Vp are no longer all linearly 
independent. 

C. Physical Picture 

A simple physical picture, extending that of Gold-
stone,7 may be applied to the results of this section. 
Given a symmetric theory in the ground state of which, 
however, a constant field <p points in a certain direction, 
consider infinitesimal oscillations 8<p—§— <p about <p 
which alter its direction but not its magnitude, i.e., 
such that d<p' <p=0. (Such occur, of course, only if the 
symmetry is that of a continuous group.) The infinite 
wavelength (p = G) oscillations are then constant over
all rotations of the system which, precisely because of 
the symmetry, do not alter the energy. Thus, the sig
nificance of the "massless bosons" is the vanishing of 
the excitation energies for ^ = 0 for the modes of oscilla
tion perpendicular to (p. Whether such modes occur or 
not is a question of whether or not the system supports, 
in its state of minimum energy, a nonvanishing field 
expectation value. 

The above picture also applies when the N representa
tion <pi is not simply an N vector in O(iY), i.e., when 
there are other invariants besides (pi2. The results are 
modified in detail only because not all directions are 
equivalent. 

III. SPECIFIC EXAMPLES 

In this section we illustrate the theorem proven by 
considering four examples of broken symmetries: (A) an 
elementary bose field transforming under the real 
orthogonal group 0(N). This is the case which suggested 
the general occurrence of massless bosons when the 
ground state is asymmetric.7 (B) A Heisenberg-type 
theory invariant under SU(n). The definition of the 
boson field operator when no boson occurs in the 
original Lagrangian is discussed. (C) The broken sym
metry is that of space-time, and a massless photon is 
produced. (D) Finally we give a concise derivation of 
the origin of massless phonons in a superconductor with 
short-range interactions, and discuss the reason for 
the breakdown of the theorem in the presence of 
Coulomb interactions. 

The cases (A)-(C) have been discussed in the 
literature.6-11 Our contribution is to give a unified 

treatment specifically relating the number of massless 
particles predicted to the extent by which the symmetry 
is broken. We also discuss the question of renormaliza-
bility in a new light. 

A. A Real Boson Field O(n) 

Consider a theory containing an elementary Her-
mitian field operator <£;. Since the defining representa
tion has a unique invariant 4>i4>i, the theorem asserts 
that if 

(<t>i)^0, (3.1) 

the Fourier transform of {TQj>i{x)<j>i(y))) (no sum on i) 
is singular at p2=0 for i=2- • -n. This covers all the 
applications considered in detail by Goldstone7 and by 
Goldstone et al.8 

B. Heisenberg-Type Theories 

1. Definition of Boson Field Variables 

We now consider the case where <j>i is coupled to a 
fermion current density ji, and <f>i and ji each transform 
as an iV-dimensional representation of SU(n). If <fo were 
an elementary field, the situation would be essentially 
that considered in the previous illustration. Instead we 
shall consider the case 

f4>i(x) = Fji{%)y (3.2) 

where F is a dimensional coupling constant and / is a 
dimensionless number. Under these circumstances, 
where no boson appears in the original Lagrangian, 
how should the effective boson field be understood? 

Suppose the Lagrangian is 

<£(#)=—1£ (x) (y^d^+mo)^ (x) 

+iFji(x)ji(x)+Fji(x)Ji(x), (3.3) 

where m0 is a possible bare fermion mass, 

i<(*)=i[0(*W(*)] 0.4) 
is (with Ti the coupling matrices in the N representa
tion) the unitary current density, and Ji(x) is an ex
ternal source which is ultimately allowed to vanish. 

With the conventional definition of the Green's 
function, 

G(x,x') = i(T(4,(x)Hx'))), (3.5) 

and with the help of the formula, valid for an arbitrary 
operator (0) and for the Lagrangian (3.3), 

{F<i i(*)>-8/8/ i(*)}<0>=F<r(i<(*)0)>, (3.6) 

we find the equation 

{y^dli+mo~Fl(ji(x))+Ji(x)^ri+iTi(8/8Ji(x))} 

XG(x,xf) = 8(x-x'). (3.7) 

The form of (3.7) suggests the definition of an effective 
meson field <pi(%) 

f<pi(x) = Fl(ji(x))+Ji(x)^. (3.8) 
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Rewriting Eq. (3.7) in the matrix form 

ytyn+mo 

- d*£ TiWZMS-iQi/dMQ)! G= 1, (3.9) 

we can, by introducing the vertex operator 

r.an-sG-ysMa), 

and the boson propagator 

recast (3.9) into the form 

(3.10) 

(3.11) 

+ifj #&*? TiWDvfoftGTAG-X. (3.12) 

This is completely reminiscent of the equation for the 
Green's function in a theory with Yukawa coupling 
and suggests that some Fermi theories may be renor-
malizable when expanded in terms of the effective boson 
propagator D rather than in terms of the Fermi coupling 
constant.11 This is the meaning we assign to the kind of 
excitations under consideration. 

2. Nambu's Original Model: Broken U(l) Symmetry. 

Nambu and Jona-Lasinio6 consider the Heisenberg-
type Lagrangian 

£ = ~ ^ 7 M ^ + | F j - j , (3.13) 

where \{/ is an ordinary four-component (massless) spinor 
field and 

is a vector in a two-dimensional "parity space." Because 
of the masslessness of the spinor field, this Lagrangian is 
invariant under the 75 gauge transformation 

$->$'=$ exp(iiay5), 

which rotates the vector j 

jo —> jo/;= cosajo+since j 5 , 

jb —> J5 /== sinajo+cosajs, 

(3.15) 

(3.16) 

keeping j* j invariant. 
Suppose now that the 75 gauge symmetry is broken 

because there exists a self-consistent solution in which 
j has a nonvanishing vacuum expectation value along 
some direction in the parity space. Choose a basis so 
that this direction is the 0 direction, 

That (j) has this direction is purely a matter of con
vention. Goldstone's theorem then shows that the 
propagator 

Bto-l&)={P/F)-7Cto[f) (3.18) 

has a zero at p2=0. These excitations of the Fermi 
system are identified as massless pseudoscalar neutral 
mesons. 

3. Broken Isospin Symmetry 

We consider the Lagrangian 

where 
(3.19) 

j = * [ * , * * ] • (3-20) 

The yj/ are two-component isospinors, transforming as 

x/z —> ^/ = exp (ia • z)yp , 

^—»$ ' = ^ exp(—icfs), 
(3.21) 

so that j transforms as an isovector and <£ is isospin in
variant. The bare mass wo need not vanish. [We could 
consider symmetry under the direct product of these 
isospin rotations and the parity rotations (3.15); a 
Lagrangian6 invariant under this group would need to 
have m 0 =0 . Such a model, which is reducible from the 
group theoretical point of view, will not be considered 
here.] 

Assume that the isospin symmetry is broken because 
there exists a self-consistent solution in which j has non-
vanishing vacuum expectation value along a direction 
called the 3-axis in isospin space 

<J3>^0. (3.22) 

Goldstone's theorem shows that Difl(p2) vanishes at 
p2=0 for i and j = l or 2. This asserts the presence of 
massless scalar mesons positively and negatively 
charged. 

I t was Baker and Glashow9 who pointed out that a 
neutron-proton mass difference could originate in such 
a spontaneous breakdown of isospin symmetry because 
of some kind of dynamical instability. We would empha
size, however, that this may happen whether or not all 
of the nucleon mass is of dynamical origin. 

4. Broken Octet Symmetry 

Consider now the Lagrangian 

(3.23) 

where £0 is the free-particle Lagrangian including the 
mass mo, and \[/ is an eight-component unitary vector 
transforming according to 

(3.24) 

(Jo)^0, <j8) = 0. (3.17) 

y// —* exp(ta*A)^, 

1// —> \p exp (—ia • A ) , 

where the \a(a= 1- • -8) are the infinitesimal generators 
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of SU(3) in the 3 representation and 

i « = i [ £ X a * ] . (3.25) 

(Ordinary spin indices on ty and the additional covari-
ants this leads to will be suppressed here.) 

We wish to study the consequences of assuming that 
(^O^)^O. TWO of the X«, conventionally taken to be X3 

and Xs and linearly related to a charge and hypercharge, 
are simultaneously diagonalizable. The eight basis vec
tors \pa are distinguished, besides by the eigenvalues of 
X3 and Xs, by an additional label conventionally identi
fied with the isotopic spin. Using this basis, the most 
general way of breaking the symmetry is to allow solu
tions for which 

( ^ ^ O ^ X ^ ) . (3.26) 

Our theorem now asserts that six massless bosons ensue, 
interpretable as 7r+, 7r~, K+

y K°, K~, Kl\ associated con
ventionally with the 1, 2, 4, 5, 6, 7 axes. 

The solution (3.26) breaks the isospin symmetry. To 
preserve the latter we consider a solution in which only 
(is) T^O. Examination of the infinitesimal transforma
tions of the 8 representation, in this case a table of 
structure constants of SU(3),U shows that in this case 
we are left with four massless mesons (K+,K°,K~,K{)). 
This is in accord with the geometric interpretation of 
the theorem, since in the 8 representation, a vector 
originally pointing in the 8 direction can be acquired by 
infinitesimal transformations of the group components 
along the axes 4, 5, 6, 7 but not along the 1, 2, 3 axes. 

C. The Lorentz Group: Quantum 
Electrodynamics 

Following Bjorken11 and Bialynicki-Birula,11 we begin 
with a Heisenberg model containing the interaction of 
the conserved current 

JM(aO = Mft7M*] (3.27) 

with itself. The equations for the one-fermion Green's 
function and associated functions are Eq. (3.8)-(3.12) 
with Ti —> ijn and generally the index i —»/*. 

We introduce an external current /M(x), which is also 
assumed to be conserved 

d ^ ( * ) = dVM(*) = 0. (3.28) 

As a consequence only J^, the transverse part of 7M, is 
coupled to jp. 

For the "photon" propagator we obtain from Eq. 
(3.8) and (3.11) 

/JD^ix—y)= / diZTTli\(x—z)D\v(z—y) 

+5»v
T8(x-y), (3.29) 

14 M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 

where ^(f/F), 

5 M / = 5 M V - d A / d 2 , (3.30) 
and 

Tpv(x—z) = df(jll(x))/8<pv(z). (3.31) 

From its definition IIM„ is divergenceless. In momentum 
space, where Eq. (3.29) reads 

^D,v(p) = T,x(p)DXv(p)+K;r(p), (3.32) 

we may write 

*>,(P) = h>T(P)*(P), f^> (3.33) 
and similarly 

D»V(P) = KT(P)D(P2), P2^0- (3.34) 
We assume that jf, the time-like component of j M , 

has a nonvanishing vacuum expectation value. 

/ ^ / = F O ' / > * 0 . (3.35) 

For f = Q, d,/(0) is defined by 

§,/(()) - 5 , , - i f o V s (3.36) 

where t]^ is a unit vector in the direction of (JnL). Fol
lowing the reasoning of Sec. I I , we find 

A / ( 0 ) = w,/(0) - § , / ( 0 ) T ( 0 ) (3.37) 
or 

M 2 -TT(0 ) . (3.38) 

If we write 

T K ^ - ^ O ) ^ - ^ ^ 2 ) , (3.39) 

Eq. (3.32) becomes 

^T(P)P2*i(P2)D(p*)^/(p), (3.40) 
exhibiting the singularity at ^2 = 0 for the transverse 
excitations orthogonal to the direction of the vacuum 
expectation value <pM

L. The latter plays a role analogous 
to that of a constant vector potential in conventional 
quantum electrodynamics. 

Bjorken goes on to establish the full equivalence of 
this Heisenberg-type theory to conventional quantum 
electrodynamics. In our formulation the proof consists 
of several observations. (1) The Dyson-Schwinger 
equations obtained are formally the same as in quantum 
electrodynamics, except that the Green's function D^ 
is denned as above. This is equally true of the equations 
after renormalization. (2) For Eq. (3.40), renormaliza-
tion consists in the replacement 

D{f)-^Dr{f)/^{Q)- (3-41) 

One then verifies that ifi(^2)/7Ti(0) is the same renor-
malized "sum of bubbles" as found in the conventional 
theory. In other words, the Heisenberg theory differs 
from the conventional electrodynamics only in the 
"values" of the renormalization constants. 

D. Model for Superconductivity 

I t is worth remarking finally that our theorem pro
vides a concise new proof of zero-mass excitations for a 
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Fermi system with short-range attractive interactions. 
A s a Lagrangian we choose in analogy with the work of 
Nambu5 

£ (x) = * t 0 ) [i (d/dt)+r 3 (p2/2tn)yk (x) 

+ V<&*(X)T&(X)& (X)T& (#)+const , (3.42) 

where, if ^ l t 2(x) are the two spin components of the 
usual electron operator, 

*(*)=( +/ J - (3.43) 
W ( * ) / 

The theory is invariant under rotations about the third 
axis in the isospace defined by (3.54), where 

^ —> exp(irza)^, ^ —+ ^ + exp(—ir3a). (3.44) 

For F 0 > 0 , corresponding to an attractive interac
tion, we expect a solution (occurrence of an energy gap) 
such that ( y 1 (0 ) )=<^ t (0 )n^ (0 ) )^0 . The theorem of 
Sec. I I then assures us that the propagator (r(J2(x)J2(y))) 
has a singular Fourier transform when p—pQ—O, cor
responding to the onset of a phonon spectrum. 

I t has frequently been observed that the phonons do 
not occur when the long-range interaction between 
charged particles is included. This result is only 
apparently in conflict with Goldstone's theorem. We 
have assumed throughout that the various matrix ele
ments such as (ji), are continuous, differentiable func
t iona l of the collective fields <pi. In the case of a 
Coulomb field, for i = 3 , the appropriate definition of <̂ 3 

is 
<?3(p) = r x i 3 ( p ) . (3.45) 

By adding a uniform background of positive charge, 
<?3 (p) is defined to vanish for p = 0 , but becomes quite 
singular for small p. Since (71,2 (p)) are functional of 
03(p), we encounter a situation where the limit of the 
functions as p —> 0 is not their value at the limit. Thus, 
the theorem predicting zero-mass particles does not 
apply. We are unable to say whether it is possible to 
construct a relativistic model with analogous properties. 

IV. CONCLUDING DISCUSSION 

In this section we wish to discuss the significance of 
the generalized Hartree conditions (2.5), the lacunae in 
the derivation of the Goldstone theorem from these 
conditions, and the physical implications of the theorem. 

A. Asymmetric Vacuum 

Theories of the kind we have been discussing are dis
tinguished from conventional field theories by the 
presence of generalized Hartree conditions (2.5), which 
introduce into the theory new physical parameters, the 
(<t>i). Together with the Dyson-Sch winger equations, 
these conditions contain information on the nonvanish-
ing particle masses. Nambu and Jona-Lasinio6 and then 
Baker and Glashow9,10 have, for example, restricted 

themselves to Heisenberg-type theories and used the 
Hartree approximation in which the momentum de
pendence of the fermion mass operator is neglected. 
The Hartree conditions can then be solved to obtain 
the fermion masses. We wish to emphasize that our 
proof of the existence of the boson singularity at p2—0 
depends only on the (rigorous) existence of the general
ized Hartree conditions, and not on any such Hartree 
approximation. 

Although well denned in the nonrelativistic situation, 
the (4>i) are in relativistic models the most divergent 
quantities in the theory. Though we have maniuplated 
them formally, the (fa) are well-defined only after a 
cutoff is introduced. 

The significance of these Hartree conditions or of 
condition (2.4) is that in the physical vacuum some 
"direction" or subspace in the symmetry space is pre
ferred. Because of the initial symmetry in the Lagrang
ian, which particular subspace is taken is conventional 
and serves to establish a labeling of one-particle states. 
Now consider the components i^if for which 

<*.->=0, i*i'. 

The meaning of this equation is that <j>i operates on a 
vacuum state | 0 > to produce an orthogonal state 
<£*|0> that, since it is equivalent to | 0 > is degenerate 
with | 0 > in energy. The different vacuum states are 
distinguished by the presence of different numbers of 
massless low-energy bosons created by 4>i(i?£if). 

I t is worth emphasizing that the vacuum is degenerate 
only in a description in which the particle number, or 
other conserved quantity, is not a good quantum num
ber. In the conventional treatment of superconduc
tivity, for example, the particle number is not definite. 
In a system of finite volume V, however, the supercon
ducting ground state is not, strictly speaking, degener
ate, but is one of a large number of equivalent states 
separated by an energy ~V~l. Likewise, in Nambu's 
theory of elementary particles, a cutoff A is introduced. 
For any finite value of the cutoff, the ground state is 
nondegenerate but separated from many other equiva
lent states by an energy difference ^JSr1. 

Any state of definite particle number (or charge, 
etc.) is built on a particular one of these equivalent 
vacua. The degenerate and orthogonal vacua are dis
tinguished by the presence of different numbers of par
ticles of zero four-momentum. 

Once this formal nature of the degenerate vacuum 
treatment is recognized,15 this kind of degeneracy would 
appear to offer no obstacle to the derivation of axiomatic 
field theory results such as the spin-statistics theorem. 

B. Limitations of Our Proof 

Whereas the degenerate vacuum by itself offers no 
genuine conceptual difficulties, the theorem issuing from 

15 R. Haag, Nuovo Cimento 25, 287 (1962). 
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this source of symmetry breakdown appears to demand 
the existence of certain collective states of zero energy 
momentum. 

We should emphasize, however, that the formal 
group-theoretical argument has shown only that cer
tain Dij(p)jLre singular at p2 — 0. In fact it is not cer
tain that Dij(p) exists for f^O. Only if D{r

l(p) is 
analytic near p2=0 is the singularity obtained that of a 
massless particle. To establish such analyticity prop
erties requires more than broken symmetry alone. 

Of course, when the singularity obtained is precisely 
at p2—Q, questions of asymptotic condition and particle 
interpretation arise. Nevertheless, when dealing with a 
theory that is renormalizeable in the conventional per-
turbative sense, the singularity we have found estab
lishes a "particle" of zero mass in the same sense that, 
in conventional field theory, the massless photon is a 
"particle." 

We have also emphasized, at the end of Sec. I l l , that 
our treatment may be inapplicable when zero-mass 
fields are originally present in the Lagrangian. We have 
in mind nonrelativistic situations where gauge in-
variance calls forth the existence of massless phonons, 
but the long-range Coulomb interactions turn these 
into massive plasmon modes.16 For the relativistic case, 
however, the value of the bare mass of a particle may be 
irrelevant. The question deserves further study. 

C. Massless Particles 

The main effect of the generalized Hartree conditions 
in an originally symmetric system has been (subject to 
the above qualifications) to give a dynamical reason for 
the existence of some zero-mass particles. In the case of 
the photon (and possibly of the neutrino) this result 
may be welcome. In the domain of strong interactions 
for which the Heisenberg and Nambu theories were 
originally proposed, however, no massless particles are 
known. Before concluding that this invalidates the 
original program of spontaneous breakdown of strong-
interaction symmetries, we should observe 

(1) Extended gauge invariance also seems to demand 
the existence of massless gauge particles but does not 
dictate the renormalized coupling strength with which 
these particles must be coupled. The coupling strength 
of the massless bosons predicted by the Goldstone 
theorem is likewise not dictated by the theorem. 

It is true that in any actual calculation like Nambu's 
or Bjorken's that produces a propagator with a singu-

16 P. W. Anderson, Phys. Rev. 130, 439 (1962), 

larity at p2—0, this singularity has a residue of order of 
magnitude unity. The value of the residue calculated is, 
however, cutoff-dependent and decreases to zero 
(logarithmically slowly) with increasing cutoff. 

Massless bosons also may, precisely because of their 
long-range interaction, more or less completely screen 
away their renormalized coupling to their sources. 

(2) If the currents involved in weak decays are the 
same as those involved in strong interactions, then this 
boson strong-coupling constant is inversely proportional 
to the observed boson decay rate and therefore can 
certainly not vanish. Indeed, this Goldberger-Treiman 
proportionality was the original reason Nambu17 and 
Gell-Mann and collaborators18 had for considering 
asymptotically conserved currents. In these situations, 
precisely because the current is only asymptotically 
conserved, the invoked symmetry is only approximate. 
Thus, the pion decay amplitude is proportional, not 
only to the reciprocal of the pion coupling constant, 
but also to the pion mass. 

From a puristic point of view this might appear to be 
an argument against introducing symmetries which are, 
to begin with, actually approximate. Remarkably 
enough, however, Nambu and Jona-Lasinio6 showed 
that only a small breaking of y5 invariance was necessary 
to give the observed pion mass. The broken-symmetry 
mechanism then serves to introduce bosons with the 
requisite quantum numbers even though their massless-
ness is not taken seriously. 

The currents involved in weak-decay processes may, 
on the other hand, not be directly related to the observed 
strong-interaction currents. Despite the success of the 
Goldberger-Treiman equality in predicting the pion 
decay rate, this may be the implication to be drawn 
from the low rate observed for strangeness-changing fi 
and ju decays and from the appearance of AQ- — AS 
processes. 

The lesson that we would draw is that the Goldstone 
theorem shows how short-range interactions can lead to 
long-range effects. (This relationship is reciprocal. 
Long-range interactions, if sufficiently strong, may-
screen themselves out into short-range interactions.) 
When perturbation theory is inapplicable, it is simply 
not manifest whether a given Lagrangian will lead to a 
symmetric or asymmetric ground state and to short-
range or long-range interactions. 

17 Y. Nambu, Phys. Rev. Letters 4, 380 (1960). 
18 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960); 

J. Bernstein, M. Gell-Mann, and L. Michel, ibid. 16, 560 (I960); 
J. Bernstein, S. Fubini, M. Gell-Mann, and W. Thirring, ibid. 
17, 757 (1960), 


