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By assuming a discontinuity in the spin direction at a defect, Arrott showed that for high density of defects, 
the approach to magnetic saturation should contain a parasitic paramagnetism term, as is observed experi­
mentally. It is shown here that the artificial assumption of a discontinuity is not necessary to get these 
results. Using the same one-dimensional model of Arrott and the usual theory for the magnetic hardness 
term, that implies unsmooth but continuous functions, the parasitic paramagnetism term is also obtained 
for the same limit of high density of defects, in regions where the nearest neighbors to each defect are defects 
of opposite sign. 

EXPERIMENTAL values of the magnetization M 
of a ferromagnetic material in a field H much 

larger than the coercive force are often analyzed as1 

M=M8-a/H-b/H*+cH, (1) 

where Ms is the saturation magnetization and a, b, and 
c are constants. The term b/H2 has been calculated in 
terms of anisotropy,2 yielding results in satisfactory 
agreement with experiment. The term a/H, known as 
the magnetic hardness, has been calculated by Brown,3 

in terms of high localized forces acting on the spins at 
crystalline defects. When the stress field at dislocation 
is considered,4 one obtains contributions both to the 
magnetic hardness and to the b/H2 term. 

The last term in (1), the so-called parasitic paramag­
netism cH, has never been fully accounted for. Holstein 
and Primakoff5 derived a term proportional to H1/2 

(which they argue is hardly distinguishable experi­
mentally from the parasitic paramagnetism in the 
presence of the other terms), with numerically plausible 
results for c. Recently, Arrott6 has modified Brown's 
treatment of the magnetic hardness and showed that 
when the defects are close to each other (Brown3 con­
sidered only widely separated defects), the a/H term is 
replaced by a cH term. The parasitic paramagnetism 
thus originates from those regions in the material in 
which there is a high density of defects. 

Arrott assumes a one-dimensional model in which 
there is a finite discontinuity between adjacent layers of 
atoms at the defect. He obtains the magnitude of this 
discontinuity by minimizing the sum of exchange energy 
(which tends to keep neighboring spins aligned) and 
Dzialoshinskii-Moriya interaction energy (which tends 
to make them perpendicular to each other) at the defect, 
plus the exchange and self-magnetostatic energies in the 
rest of the material, already minimized with the dis­
continuity as a parameter. Now, although the results 
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seem attractive, we consider this model objectionable on 
two grounds. In the first place, it is difficult to accept 
discontinuity as the boundary condition for the dif­
ferential equation associated with the minimization of 
exchange and self-magnetostatic energies, when a dis­
continuity implies an infinite exchange energy of this 
model of a continuous material. Even on a microscopic 
scale, it has already been remarked7 that a discontinuity 
in the spin direction means a certain pair of spins has 
an exchange energy larger by orders of magnitude than 
that of the other pairs, and this cannot be conceived as 
a minimum of energy. Although the Dzialoshinskii-
Moriya interaction acts just on the spins at the defect, 
the exchange interaction makes the disturbance gradual 
over a wide region, so that the most reasonable form 
will be a discontinuity in the derivative, as assumed by 
Brown. Secondly, the one-dimensional picture of planes 
of defects is too crude a picture anyway. Brown obtains 
the mangetic-hardness term for two-dimensional stud}' 
of line defects, and an experimentally unobserved H~zl-
term for the one-dimensional approach. Arrott obtains 
H~112 in one dimension for widely separated defects, and 
does not try the two-dimensional problem. He can only 
hope his treatment will also lead to the \/H term in two 
dimensions, since this agrees with experiment, but in 
view of the large difference in the results in one dimen­
sion, retaining the right form of magnetic hardness in 
two dimensions seems highly improbable. 

I t is the purpose of this paper to show that in the 
limit of closely spaced defects assumed by Arrott one 
can obtain a term proportional to H also from Brown's 
approach, retaining Brown's result for the limit of 
widely spaced defects. This will account for the parasitic 
paramagnetism, without the objectionable discon­
tinuity, and without losing the magnetic-hardness term. 

The results reported in the following can also be ob­
tained for a periodic model, as in Arrott's treatment. 
However, this artificial assumption is not necessary, and 
will therefore not be adopted. I t is still assumed that the 
small angle a of deviation of the magnetization from the 
direction of the field is a function of the coordinate y 
only, the defects being the planes y~ const. 

7 A. Aharoni, Rev. Mod. Phys. 34, 227 (1962). 
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Consider a particular defect, and let the origin be 
chosen so that this plane is y==0. If its nearest-neighbor 
defect on the positive y axis is of opposite sign, the func­
tion a should pass from positive to negative values some­
where between these defects. There should thus be a 
certain positive value of y at which a = 0. Similarly, if 
the nearest defect on the other side has also the opposite 
sign to that of the defect at y = 0, there is also a negative 
value of y for which a = 0. Denoting these values of y 
by — | L i and \L%, respectively, 

which implies in the limit XZi<3Cl, XZ2<3Cl, 

a ( - J L i ) = « ( i L 2 ) = 0. (2) 

In the region — \L\^y^\L^ there is just one defect, 
at y=0. At this point, according to Brown,3 a should be 
continuous, with a discontinuity of magnitude F in its 
derivative. These conditions, and (2) should therefore 
serve as boundary conditions for the differential equa­
tion for the function a (y) which minimizes the energy, 
and which is according to Brown3 

with 
d2a/dy2-\2a = Q, (3) 

\2 = HMS/C, (4) 

where C is the exchange constant (Brown's X is Arrott's 
1/po). The extra term of energy, which Arrott claims 
that Brown did not consider, vanishes for continuous 
function. 

The boundary conditions determine uniquely the 
solution of (3), yielding an appropriate combination of 
the exponentials of dbXy. Using this solution in the 
general expression for the contribution of the region 
—7jLi^y^%L2 to the deviation of magnetization from 
saturation,3 

AM i nL2 

= K « 2 ) A V = / a2dy, (5) 
M8 LiJrL2J-iLl 

one obtains finally 

AM/M ^ / ^ [ ( s i n h X L i - X L i ) (coshXL2-1) 
+ (sinhXZ,2-XZ2) (coshXZ,!-1)]/0, (6a) 

0=4X 3 (L 1 +L 2 )CcoshX(Z 1 +^2)- l ] ? (6b) 

AM F*L?L£ 

Ms 24(Zx+Z2)2 

" X2 -| 
1 (L1

2+4L1Z2+L2
2) . (7) 
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The other extreme, XZ£>>1, XZ2^>1, has already been 
studied by Brown,3 and one actually obtains his result 
by using this limit in (6). 

Since according to (4), X2 is proportional to H, the 
relation (7) implies a term proportional to H, i.e., a 
parasitic paramagnetism, with apparent reduction in the 
saturation magnetization value. The result of Arrott 
thus follows without the assumption of discontinuity. 
Moreover, the magnetic-hardness term will certainly be 
retained in the two-dimensional study of widely sepa­
rated line defects. 

Equation (6) has been obtained with the assumption 
that the nearest neighbors of each defect are of opposite 
signs. The case when they have the same sign can be 
studied by equating da/dy to zero rather than a, some­
where between the defects. The calculation is similar 
and it yields Brown's H~zl2 term for widely separated 
defects and a H~2 term for closely spaced defects. I t 
can thus be concluded that in regions of the material 
where there are clusters of defects, one obtains a con­
tribution to the anisotropy term for nearest neighbors of 
the same sign, and parasitic paramagnetism where the 
signs are reversed. Preliminary estimation for the case 
of the line rather than plane defects, indicate the same 
results. 

The assumption that dislocations are arranged in pairs 
of opposite signs, has been used4 in a more detailed 
study of stresses at dislocations. I t has been argued 
there that, on the average, the number of positive de­
fects should equal that of negative ones, since there is 
no preference for any sign. Still, it is not conceivable that 
in regions of high density of defects, they are so arranged 
that everyone of them has nearest neighbors of opposite 
sign. I t is therefore not possible to compare quantita­
tively to experiment before some estimation is made for 
the statistical distribution of these defects. 


