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The general expressions for single-crystal magnetostriction correct to second order (sixth-rank magneto-
strictive tensor) are reduced and evaluated for the particular anisotropics of Dy and Tb. The magnetostric-
tive constants are determined from x-ray diffraction measurements of the crystal cell distortions. Expressions 
for the polycrystalline magnetostriction are obtained by suitable averaging and compared with values from 
the literature. 

INTRODUCTION 

MAGNETOSTRICTION is the spontaneous dis­
tortion or change in dimensions of a material, 

which is associated with its magnetic behavior.1 Such 
dimensional changes may be looked upon as due to the 
strain dependence of the magnetocrystalline anisotropy 
energy,2 or the dimensional and directional dependence 
of the magnetic exchange energy. Both aspects depend 
basically on a coupling between the magnetic and elastic 
energies of the material. The spontaneous strain will 
depend on both the direction and magnitude of the 
magnetization. Thus, in ferromagnetic materials with 
domain structure, two main types of spontaneous mag­
netostriction may be distinguished. The first and nor­
mally more important is the change in dimension upon 
application of a magnetic field. This anisotropic mag­
netostriction results from rearrangement of magnetic 
domains which exhibit an intrinsic distortion, i.e., they 
no longer possess the symmetry which the crystal would 
exhibit above the transition temperature of magnetic 
ordering. The second type is volume magnetostriction, 
a change in the volume of the crystal cell which depends 
not on domain structure but on the saturation mag­
netization. The volume magnetostriction, therefore, ex­
hibits its most pronounced changes in the region just 
below the magnetic-ordering temperature. 

For many materials, in particular, iron, nickel, and 
cubic alloys of these elements,1 the magnetostriction 
dl/l is of the order 10~5. The anisotropic and volume 
magnetostrictions are then conveniently studied by 
measurement of dilatation as a function of field and of 
temperature. For some compounds with antiferromag-
netic ordering, e.g., the cubic oxides FeO, CoO, MnO, 
and NiO, the spontaneous distortion3,4 is large enough 
to be observed by x rays as a structure change. This 
structure change is a lowering of symmetry to tetragonal 
or rhombohedral below the respective magnetic-ordering 

* Contribution No. 888. 
1 For reviews, see E. W. Lee, Rept. Progr. Phys. 18, 184 (1955); 

W. J. Carr, Jr., in Magnetic Properties of Metals and Alloys 
(American Society of Metals, Cleveland, 1959), Chap. 10; R. M. 
Bozorth, Ferromagnetism (D. Van Nostrand, Inc., Princeton, New 
Jersey, 1951). 

2 C. Kittel, Rev. Mod. Phys. 21, 541 (1949). 
3 H . P. Rooksby, Acta Cryst. 1, 226 (1948). 
4 S. Greenwald, Acta Cryst. 6, 396 (1953); J. S. Smart and 

S. Greenwald, Phys. Rev. 82, 113 (1951). 

temperatures. Although such structure changes result 
from the same basic interactions, they are not usually 
considered as magnetostriction since the application of 
normal fields cause no change in magnetization and, 
therefore, no dimensional changes. 

In the case of ferromagnetic materials, where the 
spontaneous crystal-cell distortions which give rise to 
the normal magnetostriction are usually small and not 
observable by x rays, the material is generally con­
sidered to retain its original symmetry. In the case of 
the cobalt spinel, CoFe204, Guillaud5 showed that it was 
possible to observe by x rays the normal magnetostric­
tion in the form of a 0.001-A dimensional difference in 
cubically equivalent directions in an oriented poly-
crystal. With differences as large as this, A///=1.2 
X10~4, it becomes a matter of choice6 whether one 
wishes to consider the magnetized crystal in terms of 
magnetostrictive distortions superimposed upon the 
original symmetry, or in terms of a new structure of 
lower symmetry. 

Dilatometric measurements7 of magnetostriction on 
polycrystalline dysprosium have shown values as large 
as 2.4X10 -3, i.e., nearly an order of magnitude larger 
than values of magnetostriction for other materials. In 
the ferromagnetic state of dysprosium, it has been 
shown8 that a structure change to orthorhombic takes 
place. This distortion involves relative changes in linear 
dimensions as large as 4X10~3. In the demagnetized 
state the magnetostatic energy causes equal population 
of moments along each of the six equivalent directions 
in the basal plane of the original hexagonal structure. 
The application of a magnetic field favors one of these 
equivalent directions and results in the observed ex­
traordinarily large dimensional changes. The results of 
dilatometry and x-ray diffraction are thus different 
observations of the same phenomenon. 

The purpose of this paper is to summarize the expres­
sions for magnetostriction appropriate to the hexagonal 
structure of dysprosium and terbium, to evaluate the 
magnetostrictive coefficients from the orthorhombic 
distortions observed in single-crystal x-ray studies of 

5 C. Guillaud, Rev. Mod. Phys. 25, 64 (1953). 
6 See discussion on cobalt ferrite in R. M. Bozorth, E. F. 

Tilden, and A. J. Williams, Phys. Rev. 99, 1788 (1955). 
7 E. W. Lee and L. Alberts, Proc. Phys. Soc. (London) 79, 977 

(1962). 
8 F. J. Darnell and E. P. Moore, J. Appl. Phys. 34, 1337 (1963). 

128 



M A G N E T O S T R I C T I O N I N Dy A N D T b 129 

these metals, and to calculate the magnetostriction ex­
pected for polycrystalline samples. 

THEORY 

The magnetostriction X = d//Z may be written 

\ = SifiiPi9 (1) 

where Su are the strains expressed as a second-rank 
tensor and the fti are direction cosines of the magneto-
strictive strain referred to orthogonal axes. Repeated 
indexes indicate summation. For a phenomenological 
approach, the strains may be expanded in a power series 
in the direction cosines oti of the magnetization, with 
suitable use of the requirements of symmetry, which is 
hexagonal in the present case. Then 

\ = PiPjA ijuoLkai-\ 

and the coefficients A uu are determined by comparison 
with experiment. 

An approach which permits a greater physical under­
standing starts1 with a crystal energy including terms in 
magnetocrystalline anisotropy energy, elastic energy, 
and magnetoelastic energy. In terms of the strains S-ij, 
elastic constants Cijki, first- , second- , and third-order 
anisotropy constants Kmn, Kmnov^ and Kmnopqr, and 
first- and second-order magnetostriction terms M'' ijki 
and Nfijhimm the energy is 

E= CijuSijS'&rf"M ijkiOLiOLjSkil? 

+ NfijklmnOiiajakaiSmnIs
4Jt-Km?iOimOirJs2 

(2) 

As shown by Mason,9 use of only first-order magneto-
strictive terms leads to cylindrical symmetry in the 
hexagonal case, and is, therefore, not adequate for the 
observations on Dy and Tb. The equilibrium strains Su 
are then found2 from the set of equations 

dE/dSi^O, (3) 

which give the strains in terms of the constants of the 
material. Although this approach gives more insight 
into the significance of the coefficients in the final ex­
pression for magnetostriction, in cases where higher 
order terms must be retained it leads to considerable 
complexity. To avoid this complexity, Mason9 uses, in­
stead of E, the thermodynamic enthalpy, H=E— TijSu, 
which is a function of the stresses Tu rather than of the 
strains. The enthalpy function is 

H— — s ijkiT ijT ki—M ijkiOLiajT kil s2 

— NijklmnOiiajakCiiTmnl^-\-KmnOimOLnlJ* 

-\-KmnopOimoinOioOipIs4-{-Kmn0pqramanaoapaqarIs
6, (4) 

where SUM are elastic compliances. The matrices M, N 
are now an inverted form of those designated by primes 
in (2), and their components are related to the crystal 
properties in a different way, the exact nature of which 

9 W. P. Mason, Phys. Rev. 96, 302 (1954). 

will not concern us in this paper. The strain components 
are now given by 

Sij^-dH/dTi,. (5) 

The magnetostriction is found by substitution of (5) in 
(1) with the condition 7\y=0. Thus, the expression for 
magnetostriction will contain only expressions deriving 
from energy terms linear in the stresses. 

Following Mason, we arrive at the complete expres­
sion of magnetostriction for hexagonal anisotropy in­
volving first- and second-order magnetostrictive terms. 
The orthogonal axes i , 2, and 3 are taken to correspond 
to hexagonal [2110], [0110], and [0001], respectively. 

X/ = ^ [ 2 o : 1 ^ i + (ai2-cx2
2)&]2 

+ £ a 3
2 [ M i + c * 2 / 3 2 ) 2 - (a j f t -asf t ) 2 ] 

+ C [ ( « 1 / 5 i + ^ 2 ) 2 - M 2 T - « 2 / 3 i ) 2 ] + Z ) ( l - a 3 2 ) 
X ( l - / 3 3

2 ) + f e 3 W ( l - a 3 2 ) + ^ 3
2 ( l - a 3 2 ) 

+/a3
3ft(«ift+«2ft)+/a32(l-ft2)+Wft2. (6) 

The following points should be noted: (1) Since the 
demagnetized state assumed by Mason, with Is parallel 
to the 3 axis, is not valid for Dy or Tb, we have replaced 
terms subtracted by Mason: MZIIS

2(PI2+622)+MMISW 
+NZZ1IS*(1-(3Z2)+NMJS%

2. This removal of two con­
straints leads to the addition of the / and K terms, and 
some changes in the expressions for D and G from those 
of Mason, (b) The prime on X' signifies that no de­
magnetized or ground state has been subtracted, (c) The 
magnetostriction will be written as X' (aia2a^i^z) in 
much of the following in order to make evident the par­
ticular restrictive assumptions for a* and /3; which are 
possible for Dy and Tb. 

The coefficients A, B, etc., involve constants of the 
material under investigation, the elements MUM, etc., 
corresponding to expression of the magnetostrictive 
energy in terms of the stresses. Since the subscripts of 
Mijki occur in pairs of interchangeable indexes, each 
pair is replaced by a single index according to the 
convention 

1 = 11; 2 = 22; 3 = 33; 4 = 2 3 ; 5 = 13; 6 = 1 2 . 

^ = ( ^ 2 2 2 - ^ m ) / , 4 , 

B=l3(N1n-Nn2+Nui)+Nni-2N222]Is\ 

C=2(N222~Nu1-3N12i)Is*+h(Mu-M12)Is
2, 

D= (2Nlu-2N222+3N12i)Is*+UMn+Mu)Is
2, 

£=[2(^m-iV 2 2 2 )+3(^i 2 i - iV r i 3 i - iV r i32- iVi23) 
+ 6^133+^331- N333]/*4 , 

F=[2(Nm-Nm)-Nzn (7) 
+ 3(^131+^132-^121)] / / , 

G=3N12zIs4+MuI2, 

H=Wu5I8*+2MuIs2, 

/=4(#844- t f l55) / . 4 , 
J = Nzs1Is*+MnIs2, 

K=NWIS
4+MMIS

2. 
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Single-Crystal Case 

Magnetization10 and neutron-diffraction11 studies of 
Dy have shown that for fields up to 15 kOe the moments 
are restrained by anisotropy to remain in the plane 
normal to the c or 3 axis. Pulsed-field studies12 show that 
fields larger than 100 kOe are required to align moments 
along the 3 axis. We therefore make the assumption that 
OLZ = 0. Equation (6) then reduces considerably to 

= AZ2a1a2h+(a1"-a2^2J+Cl(a1^+a2p2)
2 

- M 2 - a 2 ^ ) 2 ] + Z ) ( l - / 3 3 2 ) + ^ 3 2 . (8) 

The terms containing D and G are independent of the 
direction of magnetization and correspond to fixed 
changes in dimension. As we will see later, it is possible 
to relate these two terms to observed changes upon 
ferromagnetic ordering. For application to field-de­
pendent magnetostriction, we should retain only the 
terms in A and C. 

In Dy the easy directions of magnetization10 are the 
1 or (2110). In the demagnetized state, magnetostatic 
energy considerations and x-ray studies8 show equal 
distribution of moments among the six equivalent 
original hexagonal directions. The magnetostriction for 
the demagnetized state is obtained by summing (8) over 
six equal orthorhombic volumes in each of which the 
magnetization lies along the 1 axis, i.e., ai=\. The 
summation then requires transformation of the resulting 
functions of 0; to a single orthorhombic system. This 
leads to 

\\femzg) = U^-m+D(l-W)+GPi. (9) 

The field-dependent magnetostriction in the plane 
normal to J is 

X (aia2Otf i/320) = X' (axa20^20) -\A-D. (10) 

Parallel magnetostrictions along the 1 and 2 axes are 
then 

X (100100) = C-§A, X (010010) = i 4 + C . (11) 

Transverse magnetostrictions for magnetization along 
1 and 2 axes are 

X(100010) = i 4 - C , X (010100)=- \A -C. (12) 

These magnetostriction values for a2= 1 are not strictly 
correct for Dy. Magnetization measurements10 at low 
temperatures for applied fields parallel to (1010) do not 
give the saturation obtained for fields parallel to (1120). 
The moments apparently remain along the nearest 
(1120) for fields at least up to 8000 Oe. Actually forcing 
the moment to lie in (1010) directions may lead to a 
distortion qualitatively different from the orthorhombic 

10 D. R. Behrendt, S. Legvold, and F. H. Spedding, Phys. Rev. 
109, 1544 (1958). 

11 M. K. Wilkinson, W. C. Koehler, E. O. Wollan, and J. W. 
Cable, J. Appl. Phys. 32, 48S (1961). 

12 R. B. Flippen, J. Appl. Phys. 7, 2026 (1963). 

cell observed at low fields. We will neglect these correc­
tions since we have, at present, no way of evaluating 
them. 

Polycrystalline Case 

We now wish to calculate the longitudinal and trans­
verse magnetostrictions for a polycrystalline sample. If 
the magnetic field is applied in an arbitrary direction 0;, 
we assume that the magnetization will remain in the 
1, 2 plane of each crystallite and will saturate in the 
direction in which the projection of the magnetic field 
upon the plane is a maximum. The expression for the 
observable longitudinal magnetostriction, X,,, is found 
from (8) minus (9) by expression of a* and 0* in spherical 
coordinates: a i=cos*, 0:2= sin*, az=0, 0i=sin0 cos*, 
0 2 = sin0 sin*, 0 3 = cos#. 

\U = A sin20(9 cos4* sin2*+sin6* 
- 6 cos2* s i n 4 * - § ) + C sin20. (13) 

Equation (13) must now be averaged over the unit 
sphere to find the longitudinal magnetostriction for a 
polycrystalline material of randomly oriented crystal­
lites. I t is important to integrate only within one 
quadrant in order to avoid losing odd functions. The 
result of averaging is 

X„ = fC. (14) 

In order to calculate the transverse magnetostriction 
Xi, we calculate first the volume magnetostriction co and 
then use the relation1 co = Xn+2Xj.. We wish to express 
the volume magnetostriction of a given crystallite in 
terms of strains along an orthogonal set of axes oriented 
arbitrarily with respect to the crystallite. We can then 
average over random orientations to obtain an expres­
sion for the polycrystalline case. The new axes f, 2', 3' 
are related to the crystallite axes i , 2, 3 by the direction 
cosines: 

V: 0 i = cos0 cos*, 02 = cos0 sin*, 03 = — sin0, 

2'\ 0 i = - s i n * , 0 2 =cos*, 03=0 , (15) 

3': 0i = sin0 cos*, 02 = sinfl sin*, 03 = cos0, 

QJI=COS*, «2=sin*. 

1' is chosen to lie in the J, 3' plane for simplicity, since 
we are interested in resolution of the magnetostriction 
along any set of orthogonal axes. The volume magneto­
striction is obtained by summing the expressions for X 
given by (8)-(9) evaluated along each of the directions 
1', 2', and 3\ The terms for 3' are just XH calculated 
above, Eq. (13). 
co = A (9 cos4* sin2* cos20+sin6* cos20 

— 6 cos2* sin4* cos20—\ cos20+9 cos2* sin4*+cos6* 

- 6 cos4* s i n 2 * - J ) + C ( c o s 2 0 - l ) + X „ . (16) 

Integrating over random orientations, we have 

« = - * C + X , i . (17) 
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Since w = X n + 2 \ l , (17) yields 

X x = - * C . (18) 

Comparison of the single-crystal magnetostrictions, (11) 
and (12), with the polycrystalline, (14) and (18), shows 
that preferred orientation in the latter case can have a 
very large effect. 

In Tb the easy directions of magnetization are the b 
or (1010), as we shall see below. Analysis for the 
demagnetized state is similar to that preceding (9) ex­
cept that <X2= 1 rather than « i = 1. Summation over the 
resulting six equivalent cells gives the result (9) in this 
case also. The single-crystal and polycrystalline expres­
sions then have the form determined above, although 
the constants will have different signs. 

Dysprosium 

In the ferromagnetic state of Dy, x-ray diffraction8 

shows the crystal cell to be orthorhombic. The observed 
changes in dimensions from the hexagonal or ortho-
hexagonal cell to the orthorhombic cell are (at 86 °K) 

Al /1 = 0.0025, A2/2 = -0 .0042 , A3/3 = 0.0018. (19) 

In the present notation these correspond, respectively, 
to X' (100100) = C + D , X'(100010) = .4 -C+Z>, and 
X'(aiaj20001) = G. We evaluate D, an isotropic change in 
dimension of the basal plane, from the observed change 
in area at the 86 °K transition 

A(1X2) 7r(H-Ar)2-7rr2 2Ar 
= - 0 . 0 0 1 6 = = = 2D, 

1X2 TIT2 r 

or D= -0 .0008. Then C=0.0033, 4=0.000.1, and 
G= 0.0018. The observable single-crystal magnetostric­
tions just below 86° will be 

X(100100) = 3.3X10-3 , X (010010) = 3.3 X10- 3 , 

X(100010)=-3.3 X10- 3 , X (010100)=-3 .3X10" 3 . (20) 

Note that these will change at lower temperatures as 
described below. The magnetostriction X(aia20001) = G: 

= 1.8X10~3 at 86° is a field-independent expansion in 
the 3 direction which takes place upon transition to the 
ferromagnetic state through variation in either tempera­
ture or field. The volume change at the transition, 
A(1X2X3) /1X2X3 , is less than 0.0001. This volume 
change, the difference between the ferromagnetic state 
and the antiferromagnetic state, is not the ordinarily 
described volume magnetostriction, which is the differ­
ence between the ferromagnetic and paramagnetic 
states. 

X-ray measurements show that the orthorhombic 
distortion increases upon further cooling in the ferro­
magnetic state. With D calculated from the change in 
area 1X2, values of A and C can be calculated from the 
observed A1/1 and A2/2, and such values are shown as 
a function of temperature in Fig. 1. The determination 

6x10" 
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FIG. 1. Magnetostriction constants A, C, and D of Eq. (8) 
evaluated from x-ray data, for Tb and Dy. 

of Al and A2 involves extrapolation of the antiferromag-
netic state from above 86°. This causes the values of 
A, C, and D to be less accurate at the lower tempera­
tures. The observed saturation magnetostriction should 
increase as the temperature is lowered, with a value of 
X(100100) at 0°K estimated as 5.5X10"3. At the same 
time, the demagnetizing and anisotropy fields are in­
creasing, so that magnetostriction in a constant field 
may actually decrease; such a decrease is reported by 
Belov et a/.13 

Magnetostriction measurements on polycrystalline 
Dy have been reported by Belov et al.ls and by Lee and 
Alberts.7 Both groups found that magnetostriction was 
still increasing at their highest fields. At 20°K and 
H= 13 300 Oe, Lee and Alberts observed X,, = 2.8X10-3 

and Xj.= —1.5 X 10~3. Substituting from Fig. 1 the value 
C=5.0X10" 3 into (14) and (18), we obtain X„ = 3.3 
X10~3 and Xi== —0.8X10 -3. The agreement is not very 
satisfactory; since the calculated values assume no 
moment out of the basal plane and use zero-field x-ray 
data for which the moment lies only in (2110) directions, 
better agreement should perhaps not be expected. 

At 83°K and 15 000 Oe, Belov et al. observed X„= 1.1 
X10~3 and Xx= -0 .3X10- 3 . Substituting the value 
C=3.4X10~3 into (14) and (18), we obtain X„ = 2.3 
X10~3 and Xj.= —0.6X10~3. The agreement is again 
only qualitative. Some degree of preferred orientation, 
or effects due to impurities which decrease the effective 
saturation, may be responsible for the low measured 
values. 

13 K. P. Belov, R. Z. Levitin, S. A. Nikitin, and A. V. Ped'ko, 
Zh. Eksperim. i Teor. Fiz. 40, 1562 (1961) [translation: Soviet 
Phys.—JETP 13, 1096 (1961)]. 
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Magnetostrictions observed in the antiferromagnetic 
state are comparable to those observed in the ferromag­
netic state. This is understood when it is realized that 
small fields less than the demagnetizing fields are suffi­
cient to cause transition to the ferromagnetic state. For 
instance, at 120°K the field required to cause transition 
to the ferromagnetic state is only ^4000 Oe while the 
demagnetizing field for a sphere with M = 2310 emu/cm3 

would be ~ 10 000 Oe. Measurement of the field-induced 
magnetostriction in the antiferromagnetic state above 
86°K will show first the anisotropic distortion corre­
sponding to terms in D and G of (8), followed by 
ferromagnetic magnetostriction as analyzed above. The 
observed magnetostriction will thus be comparable in 
magnitude to that in the ferromagnetic state below 
86°K, although, of course, it will approach zero at the 
Neel temperature. 

Legvold, Alstad, and Rhyne14 have recently reported 
single-crystal magnetostriction measurements for Dy. 
In the antiferromagnetic state at 101 °K they find 
saturation for fields greater than 15 000 Oe applied in 
the basal plane. The zero-field state in this case is not 
that described by (9), but the antiferromagnetic hex­
agonal state of zero strain. In the present notation their 
values are X'(100100) = 2.2X 10~3 and X'(010100) = - 3 . 5 
X 10~3. Extrapolation of values in Fig. 1 gives D= — 0.9 
X10-3 and C=2.9X10~3 . We then estimate \'(100100) 
= C+D= 2.0X10-3 and X'(010100)- -C+D= - 3 . 8 
X 10~3, in good agreement with Legvold et al. 

The volume magnetostriction co may be estimated 
from x-ray data by comparing the crystal cell volume in 
the ferromagnetic state at 80°K, for example, with the 
volume obtained by extrapolation of cell volume in the 
paramagnetic state above 180°K. This gives a value 
co=2.8X10~3. 

Terbium 

Neutron diffraction measurements15 show that the 
moments lie in the basal plane of Tb as they do in Dy. 
The magnetostriction expression (8), therefore, applies 
to Tb. From x-ray diffraction,16 which shows expansion 
in the ferromagnetic state along the (1010) directions, 
and from the observed positive longitudinal magneto­
striction,17 we conclude that the easy directions of 
magnetization in Tb are the (1010), in contrast to the 
(2110) of Dy. This is in agreement with single-crystal 
magnetization data of Hegland, Legvold, and Spedding.18 

14 S. Legvold, J. Alstad, and J. Rhyne, Third Rare-Earth Con­
ference, Session III, Clearwater, Florida, 1963 (unpublished). 

15 W. C. Koehler, J. W. Cable, E. O. Wollan, and M. K. Wilkin­
son, J. Phys. Soc. Japan 17, Suppl. B-III, 32 (1962). 

16 F. J. Darnell, Phys. Rev. 130, 1825 (1963). 
17 K. P. Belov, R. Z. Levitin, and S. A. Nikitin, Bull. Acad. Sci. 

USSR, Phys. Ser. 25, 1394 (1961); S. A. Nikitin, Zh. Eksperim. i 
Teor. Fiz. 43, 31 (1962) [translation: Soviet Phys.—JETP 16, 21 
(1963)]. 

18 D. E. Hegland, S. Legvold, and F. H. Spedding, Phys. Rev, 
131, 158 (1963). 

Such a result is predicted by Elliott19 from crystal-field 
considerations. 

This easy direction requires that in calculating the 
demagnetized state we sum X / ^ l O / ^ / V / V ) rather than 
the X/(100ft%%*) used above. Evaluation of the re­
quired sum leads to the same result for the demagnetized 
state, (9), that was obtained previously. The single-
crystal and polycrystalline expressions derived above 
will then be valid for Tb. 

The observed distortions in Tb, Al /1 and A2/2, the 
differences between the ferromagnetic orthorhombic 
crystal lattice and the paramagnetic hexagonal lattice 
extrapolated from above 230°K, correspond, respect­
ively, to 

X'(010100) =-C+D and X'(010010) = A+C+D. (21) 

We again calculate D from the change in area of the 
basal plane, which in this case is positive and has at 80° 
a value 

2Z>=A(1.2)/1.2=1.4X10-3 , or D=0.7X10~Z. 

Values of D, C, and A calculated from the x-ray data16 

are shown in Fig. 1. At 80°, for example, 

C=3 .9X10- 3 , ^ = 0.0X10~3. (22) 

The single-crystal magnetostrictions observable at 80° 
will be 

\(100100) = 3.9X10-3 , X(010010) = 3.9X10~3, 

X(100010)=-3.9X10- 3 , X(010100)=-3.9X10- 3 . 

Belov et al.17 have reported magnetostriction measure­
ments on Tb from 85° to 200°K. As in the case of Dy 
they do not obtain saturation up to 15 000 Oe. Their 
maximum observed values at 85° are Xn = 0.8X 10~3 and 
Xx= -0 .5X10- 3 . Substituting the value of C from (22) 
into (14) and (18), we obtain Xn = 2.6X10-3 and 
Xi= — 0.6X 10~3. The lack of agreement again may arise 
from preferred orientation in the sample studied, or 
from breakdown of some assumption in the present 
calculations such as saturation, or the restriction of 
moments to the basal plane. Single-crystal measure­
ments should be more definitive in establishing the 
validity of the present magnetostriction analysis. 

The magnetostriction increases as the temperature is 
lowered, with an estimated maximum value of X (010010) 
at 0°K of C - J ^ = 5.1X10-3. The volume magneto­
striction at 80°K, estimated as in the Dy case, is 
co = 4.6X10-3. 

We observe for both Dy and Tb that | A | <0 .2X 10~3. 
While this still represents a large strain or magneto­
striction, it is small compared to values of C and Z>, and 
within the errors caused by the necessity of extrapo­
lating lattice constants for the hexagonal state from 
above the magnetic ordering temperatures. If it is con­
cluded that A is actually zero, then we may deduce 

w R. J. Elliott, Phys, Rev. 124, 346 (1961). 
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from (7) that iV"222=^Vin, and the expressions for C and 
D become simplified. Such conclusions regarding the 
magnetostriction tensor components should await more 
accurate measurements by dilatometric methods, and 
A, C, and D are here considered as strictly phenomeno-
logical constants. 

SUMMARY AND CONCLUSIONS 

The magnetostriction expressions of Mason for hex­
agonal symmetry, correct to second order, have been 
applied to dysprosium and terbium. The negative 
anisotropy of these metals and the requirement of ex­
tremely large fields to turn magnetization out of the 
basal plane allow the general expression to be consider­
ably simplified. The constants of the simplified relation 
are evaluated from x-ray measurements of the crystal-
cell dimensions of dysprosium in its ferromagnetic state 
below 86°K, and for terbium in its ferromagnetic state 
below 220°K. The maximum observable single crystal 
magnetostrictions are estimated to be ^ 5 X 1 0 ~ 3 for 
both dysprosium and terbium. On the basis of the ob­
served orthorhombic cell in the ferromagnetic state and 
the observed positive magnetostriction, it is concluded 
that the easy directions in terbium are the (1010). The 
volume magnetostriction a t 80°K is found from the 
x-ray cell parameters to be 2.8X 10~3 for dysprosium and 
4.6X10"3 for terbium. 

Polycrystalline magnetostriction expressions are ob­
tained by suitable averaging of the single-crystal ex­
pressions over arbitrary direction of measurement. The 
calculated values are found to be in qualitative agree­
ment with those for Dy observed by Lee and Alberts 
and those for Dy and Tb observed by Belov et al. Both 
of these literature measurements were made on pre­
sumably unoriented polycrystalline material with fields 
o f - 1 5 000 Oe. 

The other heavy rare earths also exhibit large crystal­
line anisotropics and may be expected to show corre­
spondingly large saturation magnetostriction. However, 
in Ho and Er the ferromagnetic state retains a spiral 
configuration in projection on the basal plane, and in 
zero field will not show any distortion from hexagonal. 
Large magnetostrictions will occur only for applied 
fields large enough to collapse the spiral and allow 
orthorhombic distortion in the plane. 

Note added in proof. Magnetostriction measurements 
on single crystals of dysprosium have recently been re­
ported by Legvold et al.20 and by Clark et al.21 Their 
data are in good agreement with the present measure­
ments as shown in the following table: 

Temp. 
(°K) Magnetostriction 

Legvold Clark This 
et al. et al. work 

(X10-*) (X10-*) (X10-3) 

22 

85 

X (100100) 
X(100010) 

X(100100) 
X (100010) 
X(aio:20001)a 

4.6 
- 4 . 7 

3.3 
- 3 . 1 

1.8 

3.8 

1.7 

5.0 
-5.0 

3.3 
-3.3 

1.8 

a This is the spontaneous expansion of c associated with transition to the 
ferromagnetic state. 
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