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The ac conductivity o-ac of ^-type Ge was measured over the frequency range of 102 to 105 cps and in the 
impurity conduction temperature range of 1.2 to 4.2 °K. Doping by transmutation insured a constant donor to 
acceptor concentration ratio of 0.4. The acceptor concentration ranged from 3X1014 to 2X1015/cc The 
observed frequency and concentration dependence of o"poi = o"ao"~o"dc can be understood on the basis of the 
polarization model of Pollak and Geballe. The observed temperature dependence can be understood by 
considering the interaction between ionized donors and electrons. From the absolute magnitude of o-poi, the 
Bohr radius of the acceptor wave function is found to be about 74 A, in good agreement with that found 
from dc measurements. 

I. INTRODUCTION 

IMPURITY conduction has been studied extensively1 

since its discovery in SiC in2 1946 and in Ge in 
1950.3 At low-impurity concentrations this conduction 
process results from charge exchange between neighbor­
ing majority impurity sites due to a small overlap of 
the localized wave functions of the individual majority 
impurity centers. Since charge is transferred only from 
occupied to unoccupied majority centers, charge 
exchange requires compensating minority impurities. 
The fractional number of majority impurities which 
are ionized at r = 0 ° K is the compensation ratio K\ it 
is the ratio of minority to majority impurity concentra­
tions. The conductivity due to this process is very 
small and can be observed only at low temperatures 
when there are a negligible number of carriers in the 
conduction and valence bands. 

Consider, in particular, a compensated ^-type semi­
conductor. Impurities are ionized as the donor electrons 
go into the lower lying acceptor states. The charged 
impurities set up random fields in the crystal which 
cause local fluctuations in the energy levels of the 
acceptors. These energy differences impede the motion 
of the electrons as they drift through the crystal from 
acceptor to acceptor under an applied dc electric field. 
This gives rise to the observed temperature dependence 
of impurity conduction.4 

The ease with which an electron tunnels between two 
acceptors depends on the distance as well as the energy 
separating them. Both the spatial and energy separation 
of adjacent acceptors in the path of the electron vary 
from point to point in the crystal because the impurities 
occupy random lattice sites. The statistics of following 
an electron through such a crystal is very complicated. 
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Hence, dc measurements offer no direct measure of 
the tunneling process between individual acceptor pairs. 

However, even if an electron is confined to two 
acceptors and cannot support a dc current, it will 
contribute to an ac current. The average fraction of 
time it spends on each acceptor will depend on the energy 
difference of the two states. An applied ac field will 
alter this energy difference and produce a net polariza­
tion which will lag behind the field because the tunneling 
(transition) rates are finite. In general, the part of the 
polarization which is out of phase with the field is 
measured as a dielectric loss or an ac conductivity. 
We will call it the polarization conductivity <7poi. 
Similarly, the in-phase part of the polarization makes a 
contribution to the dielectric constant which we will 
call the polarization dielectric constant epoi. 

Pollak and Geballe5 (PG) observed in ^-type silicon 
that the ac conductivity crac is larger than the dc 
conductivity aac They attributed this difference to the 
polarization conductivity. Thus, 

O"pol— C a c - 0"dc. 

(In their notation cra(i=o— erdc.) Similarly, 

£ p o l = Cac 6Qe * 

(1) 

(2) 

PG assumed that the only contribution to the polariza­
tion conductivity comes from pairs; i.e., from electrons 
which are confined to only two acceptors. They con­
structed a model which accounts well for the frequency 
dependence of (7poi, but not for the temperature depend­
ence. This made it difficult to compare the concentra­
tion dependence and absolute magnitude of avo\ with 
theory. 

The measurements reported here were made to test 
the applicability of the model of PG to germanium. 
Germanium has the advantage that it can be doped by 
thermal neutron irradiation to produce ^-type samples.6 

The compensation ratio K, which is very important in 
impurity conduction,? is K=0A for all samples so 
produced. Another advantage of doping by irradiation 

6 M. Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961). 
6 J. W. Cleland, K. Lark-Horovitz, and J. C. Pigg, Phys. Rev. 

78, 814 (1950). 
7 H. Fritzsche and M. Cuevas, Phys. Rev. 119, 1238 (1960). 
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is the guarantee that the impurities will be located at 
random. This method of doping is less useful in silicon 
because of the difficulty of annealing out the radiation 
damage. 

II. EXPERIMENTAL PROCEDURE 

The polarization conductivity o-poi=a-ac—Cdc can be 
meaningfully measured only when <rd0/(Tpoi<l (i.e., 
<7"dc<io'ac). This fact limits the temperature, frequency, 
and impurity concentration range available for measure­
ment. In Fig. 1, ffdc/opoi is plotted against concentration 
for 103 and 105 cps at 1.5 and 4°K. For fixed frequency, 
this ratio increases rapidly with concentration and 
temperature because Cdc increases more rapidly than 
(Tpoi with these quantities. The dc conductivity a&c 

increases even more rapidly with temperature above 
about 4°K as one leaves the impurity conduction range 
and holes are ionized into the valence band (in ^-type 
germanium). For fixed temperature and impurity 
concentration, Cdc/ow decreases rapidly with increasing 
angular frequency o>, since, as found also in silicon,5 

o-poi« o)7 in germanium. 
The measurements were made in decade steps from 

102 to 105 cps, and between 1.2 and 4.2°K. This re­
stricted the acceptor concentration to less than 1015/cc. 
In silicon these measurements can be made up to about 
20°K because of the higher ionization energies involved. 

In general, <rac is very small so it is feasible to treat 
the sample as a dielectric and calculate crac from the 
dielectric loss. Thus, the samples were cut into disks 
and placed between the electrodes of a capacitance cell 
as shown in Fig. 2. The dielectric loss was measured with 
a capacitance bridge. At the same time, the dc conduc­
tivity was measured with a vibrating reed electrometer. 

The temperature was measured with 0.1 W Allen 
Bradley carbon resistor which was calibrated against 
the vapor pressure of helium using a vapor pressure 
bulb. 

A. Bridge and Sample Holder 

The ac measurements were made with a precision 
Schering capacitance bridge.8 The bridge was used in 
the substitution mode, which means that readings are 
taken with the sample once connected and once discon­
nected at the bridge terminals. In the direct method, 
where measurements are made only with the sample 
connected, the values of capacitance and loss depend on 
all circuit elements in the bridge and, therefore, are 
subject to all of their errors. But in the substitution 
method, the errors in those circuit elements which are 
unchanged are largely eliminated. This is especially 
important when the sample has a low loss; i.e., low 
conductivity. 

The quantities <rac and epoi were calculated from the 
exact equations of bridge balance.9 To test these equa-

8 The General Radio 716-C. 
9 See Appendix A. 

tions, impedances were formed from series and parallel 
combinations of known carbon resistors and high 
quality capacitors. The measured conductance agreed 
with the calculated value to within 2 % over the range 
of the bridge in which most of the actual sample 
measurements were made. 

A sensitive detector for the bridge was required as in 
some cases the onset of the nonohmic range of the 
sample was as low as 1 V/cm. This should be contrasted 
with silicon which can tolerate fields of hundreds of 
V/cm. The detector consisted of two amplifiers, an 
adjustable filter, and an oscilloscope. This proved 
adequate in most cases to realize the full accuracy of 
the bridge. 

The sample holder sketched in Fig. 2 is a capacitance 
cell. I t is designed to exclude liquid helium in order to 
avoid a change in the capacitance due to the changing 

FIG. 1. Concentration 
dependence of <rdcAPOi 
at 103 and 105 cps at 4 
and 1.5°K. 

FIG. 2. Sample 
holder. H: hole to 
permit evacuation of 
cell. B : brass spacer 
and radiation shield. 
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TABLE I. Sample characteristics. 

Sample 

A 
B 
C 
D 
E 

Hall coefficient 
(cm3 

300°K 

38 400 
29 900 
16 700 
12 800 
5 840 

c-i) 
77°K 

32 200 
24 400 
13 300 
10 900 
4 890 

NA-ND 
(X1014cirr3) 

1.94 
2.56 
4.7 
5.7 

12.8 

NA 
(X1014cm-3) 

3.2 
4.3 
7.8 
9.5 

21.4 

helium level and fluctuations due to the boiling of the 
liquid. About 1-cm Hg of helium at room temperature 
was admitted to the cell as a heat exchange gas. 

To minimize the capacitance and conductance in 
parallel with the sample, we used rigid coaxial leads 
with an air (or He gas) dielectric and Teflon spacers for 
the center lead. 

B. Samples 

Pure single crystals, whose top and bottom room-
temperature resistivities exceeded 50 and 7 Q-cm, 
respectively, were irradiated by thermal neutrons10 for 
different lengths of time. Following neturon absorption, 
different isotopes of germanium decay into gallium, 
arsenic, and selenium, respectively. Gallium pre­
dominates and ^-type Ge results after the decay is 
complete. The crystals were annealed about eight 
months after irradiation.11 

The Hall coefficient was measured at room tempera­
ture and 77°K and the lower value was used to calculate 
NA—ND- NA and ND are the acceptor and donor 
concentrations, respectively. Since each selenium donor 
is doubly ionized and compensates two acceptors, it is 
counted here as two donors. NA—ND may be under­
estimated by about 10% because the magnetic field 
used (about 7000 G) is not in the high-field limit.7 The 
results are given in Table I; The compensation ratio K 
may not be exactly the same for all samples due to 
impurities in the samples before irradiation. This is 
most serious for sample A which received the smallest 
radiation dose. From the Hall coefficient of the starting 
material, we estimate that K deviates from 0.4 by less 
than 3 % for this sample. 

The samples were cut into discs about 2-mm thick 
and 1^ cm in diameter. I t was necessary to etch them 
to eliminate edge conduction which otherwise would 
short out the sample. The flat surfaces were lapped or 
sandblasted and then electroplated with gold or 
rhodium. A lower impedance contact was obtained when 
the surface was sandblasted rather than lapped before 
electroplating, but it made little difference whether 
gold or rhodium was used. Figure 4 illustrates the effect 
of surface treatment on crpoi for sample B. The discrep-

10 They were irradiated in the CP-5 reactor of the Argonne 
National Laboratory. 

11 See Ref. 7 for details about the irradiation and annealing 
procedures. 

ancies for different surface treatments and for different 
thicknesses are of the order of 10%. For samples 2-mm 
thick, both the ac and dc contact impedances are 
estimated to be of the order of 10% of the bulk ac and 
dc impedances, respectively. 

To test for edge conduction and other spurious 
effects, measurements were made on a pure specimen 
of germanium whose room temperature resistivity is 
54 Q-cm. At 4°K the conductance at each frequency was 
at least an order of magnitude below that of sample A, 
the least conductive of our samples, over the measured 
temperature range. 

C. Effect of Light 

Light can appreciably increase the conductivity of 
germanium in the impurity conduction region by 
exciting carriers into the valence and conduction bands. 
Even room temperature radiation can cause significant 
errors because the ionization energy of the acceptors is 
only about 0.01 eV. Great care was taken to protect 
the sample from light, especially from thermal radiation 
which originates at the top of the cryostat and goes 
down the coaxial leads. 

Despite these precautions, photoconductivity was 
detected in sample A by comparing dc measurements 
taken in the ac apparatus with those taken in a * 'light-
tight" sample holder. (The light-tight apparatus is not 
useful for ac measurements because of the large capac­
itance caused by the extra shielding.) 

However, since valence band conduction should be 
frequency-independent except at very high frequencies, 
it is clear that there can be little error from light in <rpo\ 
when (raĉ >o-dc, since both ac and dc measurements were 
performed in the same ac apparatus. This condition 
applies to sample A over our frequency and temperature 
range. To estimate the effect of light on <rpoi for the 
other samples, we note that the photoconductivity 
should be proportional to NA~ND, the concentration 
of neutral acceptors. On the other hand, we find that 
o-poi is approximately proportional to ND(NA-ND).12 

Therefore, v^oi/<rlight <* ND is least for sample A which 
has the smallest donor concentration. Hence, we 
conclude that light has caused no significant error in 
Opol-

III. RESULTS 

In general, the polarization conductivity can be 
considered to be complex. Then apo\ is the real part and 
oj€o€poi is the imaginary part, where eo is the permittivity 
of space, (mks units are used throughout.) These 
quantities are plotted in Fig. 3 for samples A and C at 
1.2 and 4°K. As found in silicon,5 crpol of germanium 
follows a power law 

(TpolKQ)3, (3 ) 
where 5—0.7. 

12 crpoi increases slightly more rapidly with concentration than 
o"poiL. The latter is plotted in Fig. 11. 
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FIG. 3.̂  The real and imaginary parts of the measured complex 
polarization conductivity, <7poi and a>eoepoi, respectively, are 
plotted against frequency at 1.2 and 4°K for samples A and C. 
The dashed lines are the theoretical curves for a>eoepoi as calculated 
from o-poi using Eq. (4). 

The real and imaginary parts of the complex polariza­
tion conductivity are not independent of each other 
but are related through the Kramers-Kronig relations. 
These imply, for the power law dependence of Eq. (3),13 

weoepoi=crpoi tanj7r.s. (4) 

o-poi for the different samples. This dependence is 
stronger at higher impurity concentrations and at 
lower frequencies. 

IV. THEORY 

A. The Model 

Consider an electron which is confined to a pair of 
acceptors and tunnels between them at a certain 
statistical rate. An applied dc electric field will polarize 
the pair in a time which is of the order of the tunneling 
time. The time derivative of this polarization is meas­
ured as a current. This is analogous to the response of 
a series RC circuit to a dc voltage. Here the current is 
given by the time derivative of the charge on the 
condenser. The real part of the ac conductance of the 
RC circuit is a>2rc/(l+co2r2), where r is the RC time 
constant. The conductance increases quadratically with 
frequency when o>r<<Cl and saturates when wr^>l. 
The conductivity due to many noninteracting acceptor 
pairs will be a sum of terms of this form, each term 
with the r value of the pair it respresents. Each term 
of the sum increases monotonically with frequency; 
hence, the total conductivity must increase mono­
tonically with frequency. 

The basic assumption of the pair model of PG is that 
the polarization conductivity is due to electrons that 
tunnel back and forth between two acceptors and not 
among larger groups of acceptors. This is valid if each 
electron is localized on a pair of acceptors for a time 
long compared with the tunneling time between the 
two acceptors. The validity of this assumption of 
localization is discussed in Part C. 

Since an electron can tunnel only from an ionized 
acceptor to a neutral one, a pair must be singly ionized 
to contribute to the polarization conductivity. 

The applicability of Eqs. (3) and (4) is illustrated in 
Fig. 3. The dashed lines are the theoretical curves of 
o)€o€Poi as calculated from Eq. (4) and the measured 
values of o-poi (actually the solid lines through them). 
The agreement between the theoretical curves of 
coeocpoi and the measured points is good. It demonstrates 
the validity of the measurements.14 Since <rpoi and epoi 
are not independent quantities, the discussion will be 
confined to (7poi. 

Figure 4 illustrates the temperature dependence of 

13 For our system, the Kramers-Kronig relations may be 
€oePoi= — (2/7r)jf0°Vpoi(:y)(co2—y2)'1^, where the principle part 
of the integral is understood. [See, for example, J. R. Macdonald 
and M. K. Brachman, Rev. Mod. Phys. 28, 393 (1956), Eq. (30').] 
This reduces to Eq. (4) when <rvoi(co) oc^*. [Bierens de Haan, 
Nouvelles Tables D'InUgrales Definies (G. E. Stechert and 
Company, New York, 1939), p. 43, Table 17, Eq. (11).] 

14 The Kramers-Kronig relations are used to determine Co, the 
capacitance in parallel with the system of acceptor pairs (see 
Ref. 5 and Appendix A in the present paper). This does not 
materially weaken the assertion that Eq. (4) is obeyed since C0 
is the only adjustable parameter and it is determined only at one 
temperature (1.2°K). 

FIG. 4. For the 
various samples, <rpoi 
is plotted against T 
at 103 and 105 cps. 
Three different meas­
urements are shown 
on two different slices 
from sample B to 
illustrate the effect 
of surface treatment: 
• —1.1 mm thick, 
rhodium plated on a 
sandblasted surface. 
O—1.9 mm thick, 
rhodium plated on a 
sandblasted surface. 
X—1.9 mm thick, 
gold plated on a 
lapped surface. ] 
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We now outline the model of PG using the terminol­
ogy of a ^-type semiconductor. 

Consider a cube of unit volume containing one 
singly ionized acceptor pair. Denote the acceptors by 
1 and 2. Let A and r be the energy and distance sepa­
rating them, and let 6 be the angle between the line joining 
the acceptors and the applied field. (A and r will be re­
ferred to as the energy and size of the pair, respectively.) 

The current in the field direction is given by 

where (taking acceptor 2 as the origin) 

p—ercosdfi. 

(5) 

(6) 

The probability / i that the electron is on acceptor 1 
is given by the solution of 

/ l + / 2 = l , 

fi=Wtlft-Wltfi, 

(7) 

(8) 

where Wu and W21 are the transition rates. 
The response of this system to a dc electric field 8 

which is turned on at £=0 is 

where 
/ i « = / i ( » ) + C / i ( o ) - / 1 ( « > ) > (9) 

(10) 

is the relaxation time of the pair. 
The difference, /1 (0) — /1 («>), is determined from 

Boltzmann statistics from A and the change in A due to 
8. In the limit of small 8 

/ i ( 0 ) - / i ( « ) = 
er cos0 

4kT cosh2(A/2kT) 
(ID 

The current j(t) follows from Eqs. (5), (6), (9), and 
(11). The frequency response of the pair is given by 

Re-
i(«) eV cos20 

S(co) 4&T cosh2(A/2&r) 1+coV 
(12) 

where j(o)) and 8(o>) are the Fourier transforms of j(t) 
and <§, respectively. 

In generalizing to the physical situation of many pairs 
in the unit volume, PG assume that there is no interac­
tion between pairs; i.e., that the field acting on a pair 
is the applied field, unaffected by the field produced by 
the polarization of the other active (singly ionized) 
pairs. Then the total conductivity is a sum of contribu­
tions from all active pairs. This assumption is valid in 
Si where the conductivity and, hence, the polarization 
in the crystal is very small. Even in Ge, where the 
assumption is not valid, the local conductivity (the 
conductivity in terms of the local field) is additive. 
This follows from the fact that the total polarization 
of the crystal must be a sum of the polarizations of 
each of the pairs (assuming that only pairs are impor­

tant). The local conductivity of a pair is proportional 
to its polarization divided by the local field acting on it. 
Also, on the average, the local field is the same for all 
active pairs [Eqs. (26) and (27)], Hence, the local 
conductivity is additive. 

The present calculation gives the local conductivity 
and this will be designated with the superscript L. 
The calculation of the local conductivity in terms of the 
measured conductivity is discussed in Part B. 

Then, after integrating Eq. (12) over 0, the local 
conductivity is given by 

e*a) 
o-por : / / 

r2dp(r,A) 

YlkTJ J (cor+l/cor)cosh2(A/2^T) 
(13) 

where dp(r,A) gives the density of singly ionized 
acceptor pairs of size r and energy A. 

Since dp(r,A) is unknown, the integral cannot be 
evaluated in the general case. Therefore, PG just 
considered the high-temperature case and reduced the 
double integral over r and A to a single integral over r 
which can be evaluated. This gives the correct fre­
quency dependence of <7poi

L but not the correct tempera­
ture dependence over the accessible temperature range. 
Unfortunately, valence band conduction (conduction 
band conduction in their case) becomes important 
before the high-temperature region is reached. However, 
to a good approximation, the double integral can be 
replaced by two single integrals, giving us some insight 
into the temperature dependence. 

We write dp(ryA) = H(A,r)dA N(r)dr, where N(r) 
gives the concentration of singly ionized acceptor pairs 
of size r, and H(A,r) gives the probability that the 
energy of such a pair is A. 

As will be seen shortly, r is an exponential function of 
r but is independent of A to first order in A/2kT. This 
strong dependence on r causes the term (cor+ 1/W) - 1 

in the integrand of Eq. (13) to behave as a 8 function. 
Equation (13) becomes 

e2a> f°° r2N(r)dr 
<7PoiL=77735c ( 2 > m a x ) / , (14) 

Jo cur+1/cor ukT 
where 

3€(7>m a x)= f #(A,rm a x)cosh-2(A/2£7>A, (15) 
Jo 

fmax being defined as the value of r which maximizes 
the r integrand. 

Because of the peaked nature of the r integrand 
(Fig. 6), the major contribution to <JVO\L comes from 
pairs whose size is near rmax. For these pairs a>r«l.15 

Since r increases exponentially with r, rmax decreases 
slowly with frequency (Fig. 7). (This is to be expected 
since reducing the distance between two acceptors will 

16 Because of the small but finite influence of its numerator, the 
r integrand (Eq. 14) is maximum when O>T>1 rather than cor—1 
(Fig. 6). 
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increase the frequency with which an electron can 
tunnel between them.) Thus, ac measurements are very 
selective as to pair size and this pair size decreases with 
frequency. 

If the acceptors are ionized at random, N(r) is given 
by 

N(r)dr=4irr2dr ND(NA-ND). (16) 

Note that an acceptor pair is counted even if there is a 
third acceptor in between them. Such a triplet would 
also contribute to the conductivity so, unless triplets 
are treated explicitly, the above form for N(r) is 
perhaps the best approximation. 

The ground-state acceptor wave function ^ is quite 
complicated but probably can be represented for our 
purpose by a weighted sum of an outer spherical one 
yp° and an inner one y//1 which is unimportant for 
tunneling processes. Then 

^ = ̂ 0+ (1-^2)1/2^7 ? (17) 

where /3 is unknown and will be assumed to be unity. 
Using the transition rates of Miller and Abrahams,16 

one finds 
r=(b/T)(a/rye^% (18) 

where 

T 9Trp0S
bWeG(?a? tanh(A/2£T) 

b= X 
P2 W e 4 

9xio-l4r 
A(mV) 

tanh(A/2&r), (19) 

and where p0= density of Ge=5.36 g/cc; S= speed 
longitudinal sound ^ 5.4X105 cm/sec; E\— deformation 
potential —4 eV; €ae= dielectric constant of germanium 
= 16; a = Bohr radius of the acceptor wave function 
«74.5 A. This value was chosen to give the best 
absolute magnitude agreement with experiment (Sec. 
V.A). 

Because of the cosh2 term in Eq. (15), only pairs with 
A<2kT make an appreciable contribution to o-poi

1'. 
Expanding the hyperbolic tangent in Eq. (19), 

b~-
9X10-14! 

2k \2kTj > 
5Xl0-1 3 OKsec. 

(20) 

Hence, to first order in A/2kT, r is independent of A. 

FIG. 5. Plot of the spatial integral as denned in Eq. (22). 

FIG. 6. Plot of the integrand 
denning the spatial integral f?4ooo 
[Eq. (22)] for 6co/r = 3X10-8. * 
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From Eqs. (16) and (18), Eq. (14) becomes 

T#ND(NA-ND) 
0"polL = 

where 
3kT 

I(bu/T) -f 
Jo 

•aW(&«/r)3C(r/max), 

y*dy 

(ei"y~2bo)/T)+ {^y-2bw/T)^ 

(21) 

(22) 

(and y—r/a). I(bo)/T) was evaluated numerically and 
is plotted in Fig. 5. To illustrate its peaked nature, the 
integrand denning I(bo)/T) is plotted in Fig. 6 for 
bo)/T=3X10~8, corresponding to a frequency of 104 cps 
and a temperature «1°K. Here ^max=^maxA=11.2. 
In general, ;ymax is given by the solution of 

bo>/T=ym^2 exp(—2;ymax) 
X [ ( ^ m a x + l ) / ( ^ a X - 3 ) ] 1 / 2 . ( 2 3 ) 

This is plotted in Fig. 7. 
From the above, b is to be evaluated at A=0. 

Perhaps it would be a better approximation to evaluate 
b at A=Aav, where Aav is defined by 

./o 
£r(A,fmax)cosh-2(A/2^r)^A = |5C(r,rmax). (24) 

In this case 3C(r,rmax) and the r integrand are coupled 
in that each must be evaluated to determine a parameter 
in the other. This is not serious, as an iteration proce­
dure converges rapidly. However, the change in a-poi

L 

by this refinement is small because I(bu/T) is a weak 

16 A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960). FIG. 7. Plot of rm a x /a (see text) and si [Eq. (39)] versus bu/T. 

file:///2kTj
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function of its argument (Fig. 5) and because b is a weak 
function of A/2kT. The extent of the effect depends on 
the form of # (A, r m a x ) ; it is less than 3 % for the cases 
considered in Sec. V.A. Hence, we use the simpler 
procedure of defining b at A = 0. 

B. Local Field 

To compare theory with experiment, we must be 
able to calculate o-poi

L from measurable quantities. 
We have 

i * = CTpol*«»pplied* = <Tpol*L<§*L , (25) 

where the asterisk signifies a complex quantity. I t can 
be shown that, when the electrons are localized,17 

<SL=a*£applied*, (26) 
where 

a * = l + 6pol*/3€Ge. (27) 
Then 

<rPoi*L=<7pol*A**. (28) 

This form for a* can be made plausible. From the 
theory of dielectrics it is known that the field at an 
atomic center is larger than the applied field by the 
factor a*=l+i(<:ac*— es), where eac is the dielectric 
constant of the material and es is that of space, i.e., 
unity. Consider a crystal of Ge in which are two 
acceptors some 1000 A apart. (This is a typical value 
of rmax.) Surely they will see the applied field and not the 
local field at the center of a germanium atom. Thus, the 
dielectric constant of pure Ge does not directly affect 
the * 'local" field at the center of an active pair. To 
account for this fact in the expression for a*, es must be 
taken as the dielectric constant of pure Ge, eae. 

The dielectric constnat of germanium is important, 
however, in that it reduces the interaction between 
active pairs. The term | (€ a c *~ eoe) represents this 
interaction and thus must be reduced by the factor 
toe. Hence, Eq. (27). 

An alteration in Eq. (27) is required because the 
electrons are not completely localized as has been 
assumed. In fact, when the electrons are completely 
free, the local and applied fields are equal and a * = l . 
A measure of the localization is a-poi/<rac: When <TVO\/V&Q 
= 1, (7dc=0 and the electrons are completely localized; 
when crpoi/(Tac=0, o-dc^Cpoi and the electrons are free. 
Exactly how a* should depend on <rpoi/a-ac is not known; 
the simplest form which is correct in the limiting cases 
of o-poi/<rac=0 and 1 is 

a*= 1 + (<rpoi/<rac) (epoi73eGe). (29) 
17 This results from the Lorentz field of the charge on the surface 

of a uniformly polarized sphere centered about the pair under 
consideration. It is assumed that the field produced by all of the 
other dipoles within the sphere is zero at the central dipole. This 
is true on the average under the assumptions that (1) the dipoles 
are points; (2) they are located at random; (3) the polarization 
of any other dipole in the sphere is independent of its location 
relative to the central dipole. The dipoles may differ in strength 
and orientation. 

TABLE II. Comparison of RA (the average distance between 
acceptors) and fmax at r=1 .5°K. 

Q)/2TT 

(cps) 

102 

103 

104 

105 

fmax/ & 

13.8 
12.6 
11.3 
10.1 

T'max 

(A) 

1030 
940 
840 
750 

Sample 

A 
B 
C 
D 
E 

RA= = (f 7riVA)-1/3 

(A) 

900 
810 
670 
620 
470 

Putting Eq. (29) into Eq. (28) and taking the real 
parts of both sides, we find 

/ T / 0-poi epoi \
2 /crpol o-poi \ 2 l 

( T p o ^ T p o l / 1 + - ) + ( ) . (30) 

The ratio 0pOi/<rPoiL varies from 1.0 to 1.5 for the present 
data. I t increases with impurity concentration and 
decreases with frequency. 

C. Localization Assumptions 

There are three assumptions of "localization." (1) The 
acceptor concentration must be sufficiently low that the 
acceptor states are localized and interact only weakly 
with each other. This requires RA/O> 5, where RA is the 
average distance between acceptors. This condition 
applies to all of the samples reported here. (RA is 
tabulated in Table I I . a « 7 4 A.) 

(2) The pair model assumes that the ground states 
of the acceptors of a pair are localized and interact only 
weakly with each other. This holds when the overlap 
of the two wave functions is small, i.e., when r/a>5. 
Since for fixed frequency, only those pairs of size 
rmax are important, this requirement becomes rm&-x/a> 5. 
Table I I demonstrates that this condition applies to 
our frequency range. 

(3) The pair model requires an electron to be confined 
to an active pair for times long compared to the tunnel­
ing time. This is the case when the distance from the 
pair to the nearest (third) acceptor is larger than the size 
of the pair because the tunneling rate decreases exponen­
tially with distance. Since for fixed frequency only those 
pairs of size rmax are important, the electrons can be 
considered localized on pairs when f m a x <^A. This 
situation is borderline (Table II) and deviations from 
the pair model are to be expected. However, as the 
temperature is lowered, the electrons become less 
mobile. Hence, the validity of the pair model should 
improve with decreasing temperature. 

Henceforth, the question of localization will refer 
only to the third, most restrictive, assumption. [The 
three assumptions are not independent of each other; 
if (2) and (3) apply, (1) must also apply.] 

The pair model breaks down when the electrons are 
no longer localized on acceptor pairs and multiple-
tunneling processes become important. In the first 
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stage of this breakdown, the electrons will still be 
confined to groups of three or more acceptors. Consider 
a group of acceptors which is polarized by a dc field in a 
time r. (This is an oversimplification because a single 
relaxation time cannot adequately describe the response 
of a group of more than two acceptors to an applied 
field.) The net dipole moment of this group will, in 
general, be larger than that of a pair with the same r, 
since a larger dipole moment can be produced in a 
given time by multiple transitions than by a single 
transition. Since, for fixed r, the contribution to the ac 
conductivity of a pair (or other polar system) is 
proportional to the square of the dipole moment [Eq. 
(12)], we expect groups to make a larger contribution to 
the ac conductivity than the pairs they replace. 

Since the importance of groups increases with 
concentration (for fixed frequency and temperature), 
we would expect the concentration dependence of 
o"PoiL to exceed that predicted by the pair model. 
Similarly, the frequency dependence s [Eq. (3)] should 
be smaller than the theoretical, and should decrease 
with concentration. Because multiple transitions be­
come more frequent as T is increased from 0°K, s 
should decrease with temperature. These deviations 
from the pair model are observed experimentally 
(Sec. V). 

V. COMPARISON WITH EXPERIMENT 

A. Temperature Dependence and Absolute 
Magnitude 

The absolute magnitude of the polarization conduc­
tivity varies as the fifth power of the Bohr radius a 
[Eq. (21)] of the acceptor wave function, and is a 
relatively insensitive function of the other parameters. 
Unfortunately, the value of a is in doubt. Kohn and 
Schecter18 have calculated a value of 43 A by a varia­
tional method. Fritzsche and Cuevas,7 in fitting their 
data on dc measurements with Miller and Abrahams' 
theory,16 obtained a= 90 A. This last value is somewhat 
uncertain due to very complicated averaging procedures 
required in the dc theory. Miller19 then made further 
variational calculations which confirmed Fritzsche and 
Cuevas' result. Because of the uncertainty in a, it will 
be treated as a parameter. 

The temperature dependence of the polarization 
conductivity is given by [Eq. (21)] 

max/ • (32) 

Unfortunately, 5C(71,rmax) cannot be evaluated as 
#(A,rm a x) is unknown. # ( A / m a x ) is calculated in 
Appendix B on the assumptions20: (1) The nearest 
acceptor to each donor is ionized by that donor and 
forms one member of an active (singly ionized) pair; 
(2) The energy A of the pair is caused only by the donor 

18 W. Kohn and D. Schechter, Phys. Rev. 99, 1903 (1955). 
19 A. Miller (unpublished). 
20 This approach was suggested by M. Pollak (to be published). 

FIG. 8. Plot of A0 
Xff(A/) versus A/Ao 
with y=r/F.A as a 
parameter. See text for 
explanation. 

which ionized it. These conditions are best met at low 
T and K, and they cannot be expected to yield quanti­
tative agreement with our data. 

The results of this calculation are plotted in Fig. 8. 
The relevant parameters are 

y = r/RA, 

Ao=eV/eGe£A 

(33) 

(34) 

where RA— (^TTNA)~1/3 is the average distance between 
acceptors. 

The product T<rpo\
L is plotted in Fig. 9 for 104 cps. 

Including the factor T emphasizes the role of 5C, which 
is largely cancelled by the T~l term in Eq. (32). [The 
temperature dependence of I(ba>/T) is small.] The 
Bohr radius a was adjusted so that the theoretical 
curve for sample A agreed with experiment at 1.5 °K. 
This yields 

a=74.5 A. (35) 

Sample A is chosen as the standard since, as it has the 

FIG. 9. Tempera­
ture dependence of 
T avo\

L for samples 
A, B, and C. The 
theoretical curves 
are based on H(A,r) 
from Fig. 8 and on 
Eqs. (21) and (35). 

2 3 
Temperature (°K) 
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lowest impurity concentration, the errors from non-
localization should be the least for it (Sec. IV.C). 

The agreement with experiment is good for samples 
A and B, but is poor for sample C, especially at the 
higher temperatures. Effects of nonlocalization (Sec. 
IV. C) are to be expected for sample C (see Table I I ) . 
As anticipated in Sec. IV.C, these effects seem to be 
more pronounced at the higher temperatures where the 
potential barriers are unable to confine the electrons. 
Of course, deviations are still expected at higher 
temperatures since the assumptions on which 27(A,rmax) 
was calculated cease to apply. More convincing evidence 
of nonlocalization effects is given in parts B and C of 
this section. 

The advantage in determining a in this way is that 
the effect of errors or uncertainties in other quantities 
is small because a appears as a5. The least certain 
quantities, E\ and 0, occur only in definition of b [Eq. 
(19)]. This is fortunate because b occurs only in the 
term I(bw/T) which is a slowly varying function of its 
argument (Fig. 5). The deformation potential Ei is 
uncertain to a factor of 2 since its weighted average 
over directions is unknown. The value of 0 [Eq. (17)] 
is uncertain and very difficult to calculate on theoretical 
grounds, but Miller19 estimates it to be of the order of 
J. An underestimation of b by a factor of 10 would lead 
to an underestimation of a by only about 7% by this 
procedure. 

There is further uncertainty in this value of a since 
the frequency dependence of (y^0\

L is not exactly as 
predicted. The measurements at 105 cps give a value of 
72 A for a. 

B. Frequency Dependence 

The frequency dependence of apoi
L is given by 

[Eq. (21)] 
<rpol

L oca>I(ba>/T)W(T,rm^). (36) 

The observed frequency dependence of crpoi
L obeys a 

power law sufficiently closely to justify writing Eq. (36) 
as 

<roca>% (37) 
where 

s = Si+S2, (38) 

si=l-

s2=-
dlnoo 

d\n[I(bo>/T)~] 

dlnco 

ln3C(7>max). 

(39) 

(40) 

Figure 7 shows Si plotted against cob/T. I t is independ­
ent of concentration. For our frequency range, Si«0.8. 
I t is a slowly varying function of its argument, increas­
ing by about 0.01 with T over the measured temperature 
range and decreasing by about 0.02 as the frequency 
increases a decade. This variation is less than the 
experimental errors. 
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FIG. 10. Temperature 
dependence of s for samples 
A, B, C, and D. 

1 2 3 4 
Temperature (°K) 

In the high-temperature limit, s 2 =0. This follows 
from the normalization of £T(A,rmax): 

lim 3C(2>„ *)= 
Jo 

H(A,fw)<*A=l. (41) 

In the general case, 3C(7>max) is very complicated and 
s2 has not been evaluated. However, we expect s2 to be 
positive and to increase with decreasing temperature. 
Decreasing the distance between two acceptors will, 
on the average, decrease the energy difference between 
them. Thus, by decreasing rmax, increasing the frequency 
shifts H toward lower A (see Fig. 8). Hence, because of 
the cosh2 term in Eq. (15), 5C increases with frequency. 
Therefore s2>0. Lowering the temperature increases 
the effect of the cosh2 term, and hence, increases s2. 

Similarly, increasing the impurity concentration will, 
on the average, increase the energy of a pair of given 
fmax. Thus, s2 increases with concentration. 

The average value of s over the frequency range is 
plotted in Fig. 10. s—0.75 in excellent qualitative 
agreement with the theory. Also, as expected from the 
discussion of s2, s decreases with temperature. 

Quantitatively, s should never be below about 0.8. 
Yet, it is seen to be about 0.7 at 4°K. Also, contrary to 
the discussion of s2, s decreases with concentration. 
These discrepancies are probably due to the nonlocaliza­
tion of electrons (Sec. IV.C). 

Small discrepancies may also result from the form of 
the local field correction [Eq. (29)] being incorrect. 

C. Concentration Dependence 

The theoretical concentration dependence of the 
polarization conductivity is [Eq. (21)] 

<rPoiL *ND(NA-ND)W(T,rm^). (42) 

In the limit of high T, this reduces to [Eq. (41)] 

(TPOIL^ND(NA~~ND). (43) 

As the temperature is lowered, the concentration 
dependence is expected to fall. The argument is similar 
to the discussion of s2 in part B. Increasing the impurity 
concentration will, on the average, increase the energy 
of a pair of given fmax. This causes 3C(r,rmax) to 
decrease with concentration. 
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The temperature is "high" when it is higher than 
To=A0/2k. J T O ~ 6 ° K for sample A at 104 cps, and is 
higher for the other samples. The high-temperature 
limit is never reached. Hence, we expect the concentra­
tion dependence to increase with temperature but to 
always be less than quadratic. 

With frequency and temperature as parameters, the 
product T<JVO\L is plotted against ND(NA-ND) in 
Fig. 11. (The factor T is included to separate curves of 
different temperatures.) The solid lines denote the 
quadratic dependence on concentration, and the 
dashed lines are drawn to connect points of one temper­
ature where necessary for clarity. As expected, the 
concentration dependence increases with T. However, 
contrary to the theory, the experimental data rises 
slightly more rapidly than quadratic with concentra­
tion. This is particularly noticeable at 4°K between 
samples B and D. This suggests that the electrons are 
not completely localized (Sec. IV.C); i.e., that there are 
interactions of higher order than pairs which are 
important. 

VI. SUMMARY AND CONCLUSIONS 

The ac conductivity of low-concentration ^-type Ge 
samples was measured in the frequency range of 102 to 
105 cps and in the temperature range of 1.2 to 4.2°K. 
This is the impurity-conduction-temperature range 
where charge is transported by tunneling from acceptor 
to acceptor. The frequency and concentration depend­
ence of the polarization conductivity o'po\=aac—crdc 
can be understood on the basis of the pair polarization 
model of PG,5 but deviations are observed suggesting 
that interactions of higher order than pairs are impor­
tant in the polarization process. Allowance was made for 
the fact that a pair responds to the local and not the 
applied electric field. I t was shown that the integration 
over all pairs can be replaced by the product of separate 

FIG. 11. Concen­
tration dependence 
of 7VPoiL for various 
frequencies and tem­
peratures. The solid 
l i n e s d e n o t e t h e 
quadratic concentra­
tion dependence [Eq. 
(43) ] and the dashed 
lines are drawn to 
connect points of one 
temperature when 
necessary for clarity. 

integrals over the energy A and size r of a pair, respec­
tively. A calculation of the probability H(A,r) that a 
singly ionized pair of size r will have an energy A 
accounts qualitatively for the observed temperature 
dependence of the polarization conductivity. From the 
absolute magnitude of the polarization conductivity, 
the Bohr radius of the acceptor wave function was 
estimated to be about 74 A. 

The selectivity to pair size may make ac measure­
ments useful in the study of other transport phenomena 
involving impurity conduction. The validity of the 
pair model can be improved by extending the measure­
ments to higher frequencies, keeping the concentration 
fixed. Similarly, by increasing the frequency, one can 
extend the concentration range for which the pair 
model applies. For a given concentration, the minimum 
frequency for which the pair model applies can be 
defined by rma-x=RA. This frequency follows from 
Fig. 7 or can be calculated from Eq. (23) by setting 

•-RA/a. 
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APPENDIX A 

The quantities cr&c and epoi are calculated from the 
exact equations of bridge balance. For the Schering 
bridge using the substitution method, the conductance 
G and capacitance C& as seen by the bridge are given by 

G=2TTF{ (0 C'{D-D') 

Ch=C-C-~ 

l+(F/F0)*(D+DQy 

(F/F0yC'(D-D')(D+D0) 

l+(F/F0y(D+DoY 

(44) 

(45) 

1 0 " 10" 
N0(NA-ND) (cm~6) 

where C is the capacitance of the standard capacitor 
and D is the reading of the dissipation factor dial. 
C" and Dr are the corresponding quantities when the 
sample is disconnected (at the bridge terminals). FQ 
is the setting of the " range selector" switch and is 
chosen close to the applied frequency F. Z)0~ 0.03 for 
our bridge.8 

These equations follow from the exact equations of 
balance21 under two assumptions: (1) the insulation 
resistance of the standard capacitor is independent of 
the capacitance setting. This is valid since the standard 
capacitor has an air dielectric. (2) The dielectric loss of 

21 AC Capacitance, Dielectric Constant, and Loss Characteristics 
of Electrical Insulating Materials, D 150-54T (ASTM Standards on 
Electrical Insulating Materials, American Society for Testing 
Materials, Philadelphia, Pennsylvania, 1954), p. 103. 
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the bridge's dissipation factor capacitor can be ignored. 
This is valid when F/FQ<1, which applies in our case. 

Then crac and epoi follow the equations 

Cac=Gg, 

€poi=(C&—Co)g/e0, 

(46) 

(47) 

where eo is the permittivity of space and g is the 
geometry factor. Co is the circuit capacitance in parallel 
with the sample plus the lattice capacitance of the 
sample. Co was estimated from the Kramers-Kronig 
relations using the second of two procedures outlined 
by PG.5 

APPENDIX B 

We now calculate the probability H(A,r) that a 
singly ionized acceptor pair of size r has an energy 
difference A between its members. The assumptions are: 
(1) The nearest acceptor to each donor is ionized by that 
donor and forms one member of an active (singly 
ionized) pair; (2) the energy A of the pair is caused only 
by the donor which ionized it. 

Consider a donor D and two acceptors A and Ai as 
shown in Fig. 12. Let A be the nearest acceptor to D. 
The distance between A and A\ is defined to be r. A\ 
may be anywhere on the sphere of radius r outside the 
sphere of radius R. H(A,r) is the probability that A is 
the energy difference between A and A±. 

A ^ / e G e ) ^ - 1 - ^ " 1 ] 

= ( e V e a e ) ^ - 1 - (R2+r2+2Rr cos0)~1/2]. (48) 

For fixed A there is a maximum and a minimum value 
of R which will satisfy Eq. (48) corresponding to 0 = 0 
and 7r, respectively. (This should be clear from the 
geometry of the problem.) They are given by 

^ m , x = I C r 2 + 4 e V / 6 G e A ] 1 / 2 - | r , 

Rmin=hr+e*/eGeA-Hr2+ (2e2/eGeA)2]1/2. (49) 

For fixed R, there is a range of A corresponding to 
a range of 0. There is a maximum value of 0, 0max, 

FIG. 12. Diagram used in calculation of 
H(A,r). See text. 

corresponding to R=Ri. I t is given by — cos0max 

= r/2R when r/2R<l. However, if r/2R>l, then 
0max=7r. Both cases are represented by the expression 

— cos0max=min(l,r/22?); (50) 

i.e., — cos0max is 1 or r/2R, whichever is less. 
For fixed R, the probability that the energy of the 

pair will be A is 

P(A,R)dA= -P1(d)dd=-smdd6 sinddO. (51) 

(The minus sign accounts for the fact that dd/dA<0.) 
By solving Eq. (48) for cos0 and taking differentials, 
one finds 

- sm6d6=Rhoeire2)-1 (1 - ReGeA/e2)~zdA. (52) 

Using Eqs. (52) and (50), Eq. (51) becomes 

P(A,R) = R2eGlre2(l-ReGeA/e2y 
Xmin(2, l+r/2R)y\ (53) 

R, of course, is not fixed. The probability of R 
occurring is given by the Poisson formula 

P2(R)dR=3R2RA-*dR e x p [ - (R/RAYI , (54) 

where RA— (ITTTVA)-173 is the average distance between 
acceptors. Then the desired probability is 

H(A 
J Ri 

P2(R)P(A,R)dR. (55) 

We introduce the parameters 

A0= eVAoel^2 , (56) 

7=r/RA, (57) 

x=R/RA. (58) 

Using Eqs. (49), (53)-(58), we get out final expression 

A o # ( V ) 

J Xn 

#4exp(—xz)dx 

(1-7#A/A 0 ) 3min(2, 1+7/2*) 

where 

^ a x = i [ 7 2 + 4 A o / A ] 1 / 2 - i 7 

m i n - 2 7 + A o / 7 A - | [ 7 2 + ( 2 A 0 / 7 A ) 2 ] ; 1/2 

, (59) 

(60) 

The integrand does not contain a singularity since 
7#maxA/A0<l. 

The integral was evaluated numerically and the 
results are shown in Fig. 8, 


