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Diffusion of electrons and ions in a plasma across a magnetic field with the interplay of an anisotropic 
dynamical friction is formulated in terms of the methods of Brownian motion. For a special symmetry of the 
dynamical friction matrix it is found that for Larmor periods of the order of the relaxation time across the 
magnetic field the diffusion takes place as an ordinary Brownian motion uninhibited by the external magnetic 
field. 

I. INTRODUCTION 

IN a previous paper1 the author has discussed the 
diffusion process in a plasma as a Brownian motion 

arising from local fluctuating electric fields in the 
plasma. However, the formulation given there leads to 
the use of a distribution operator for the calculation of 
the average values of various quantities. From a 
classical point of view the experimental observation of a 
distribution operator cannot be defined unambiguously. 
It is, therefore, necessary to give a general formulation 
of the problem based on a more conventional discussion 
of Brownian motion. Furthermore, the assumption of 
spherical symmetry for the distribution functions for 
the diffusion of charges in a fixed magnetic field suffers 
from certain drawbacks. The spherical symmetry of 
the distribution functions in momentum or configura
tion spaces is closely related to the assumption that 
the dynamical friction of charges is a scalar. 

A more natural description can be found by noting 
that a plasma placed in an external magnetic field is 
not a spherically symmetric system and, therefore, the 
dynamical friction cannot be independent of the 
possible anisotropic distribution of momenta in such a 
plasma. In a plasma one takes into account the effect 
of collisions between particles by means of fluctuating 
local electric fields which influence the motions of the 
particles in the manner of Brownian motion. One of the 
basic differences between Boltzmann and Brownian 
motion description lies in the fact that the latter 
expresses most of the dynamical properties of the 
system in friction coefficients instead of by direct use of 
collisions cross sections as in the former approach. 

The interparticle interaction does not change the 
Brownian character of the motion since the actual 
value of the electric field at any particular instant will 
depend on the instantaneous position of all other 
particles and is, therefore, subject to fluctuations. The 
processes of ionization and recombination can also 
contribute to the fluctuation of electric field. Because of 
these facts one cannot obtain the exact dependence of 
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1 B. Kursunoglu, Ann. Phys. (N. Y.) 17, 259 (1962). 

the field on the position or time. However, one can 
calculate the probability of a given electric field strength 
at a point in a plasma. This problem has been treated 
by Holtzmark.2 

What is important in this case is the cumulative 
effect of a large number of separate events each of 
which has only a very minute effect. The total sum of 
these effects, lasting about a time interval At, say, 
produces an appreciable change in the momentum of a 
Brownian particle. The resulting motion is analogous to 
a random walk problem. The random walk of the 
charge, in this case, is caused by an anisotropic dynam
ical friction superposed on local random fluctuations of 
electric field. The anisotropy in question can be estab
lished by observing that the external magnetic field has 
a definite influence on the hyperbolic orbit of a charge 
obtained upon a collision with another particle. The 
magnetic field will cause the orbits to rotate. The 
resulting increments in the momentum of the particle 
cannot be resolved into two components parallel and 
perpendicular to the initial direction of motion. This 
means that the relation between the average and initial 
momenta is not simple. 

A particle deviates from its initial state at different 
rates in different directions. Thus, we shall assume that 
a dissipative force of the form 

F/=-f\p) (1.1) 

will operate, where the dynamical friction matrix / is 
a 3X3 symmetric matrix and the symbol \p) represents 
a column vector: 

i*>= 
pl 
p2 
Pz 

and / = 
P 7 5 
y /i p 
b p v 

(1.2) 

and where the eigenvalues of / are real. In order for an 
equilibrium state to be approached, the six independent 
elements of / must be restricted by the statements 

(i) trace / > 0 ; 
(ii) ftu-72>0, p,v-p2>0, I3v-d2>0; (1.3) 
(iii) det jf>0. 

These conditions are sufficient for / to have positive 
eigenvalues. 

! A. Holtzmark, Ann. Physik 58, 577 (1919). 
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In the simple case of a scalar dynamical friction it is 
rather simple to evaluate its general form. In this case 
/3 arises from a systematic tendency of the particle to be 
decelerated in the direction of its motion by an amount 
proportional to | v |. We shall use ChandrasekharV 
formula for dynamical friction calculated for a star 
acted on by fluctuating gravitational fields. We replace 
the constant of gravitation G by e2/mM and the average 
distance between stars by the Debye length and obtain 
for the scalar dynamical friction coefficient 0, for a 
plasma with Maxwellian distribution, the result 

8n\/ir eA / m \1 / 2 

1 ) [$(*o)-*<*' (*o)] lnX, (1.4) 
M 3KT\3KT/ 

where 

• / ' • 
J o 

< £ ( # ) = / e~~x2dx, 
'o 

1/2 Xo=j(SKT/m) 

n~average number of particles per unit volume, and 
j is a parameter which measures the dispersion of 
velocities in the system. The quantity X is defined as 

X=(v2} 
\DmM 

e2(m+M) 
V D = ( ) • (L5) 

A method similar to that for the gravitational case 
used by Chandrasekhar can be developed for the 
calculation of a friction matrix. The fluctuation of the 
electromagnetic field can be analyzed in terms of 
individual two-particle collisions where each is rep
resented as a two-body problem. Because of the 
magnetic field the net change in velocity cannot be 
resolved into perpendicular and parallel components 
and, therefore, calculation of the various components of 
the friction tensor fa will be quite complicated. The 
actual computation of / # will not be important for 
purely qualitative discussions in this paper. 

At this point we would like to remark that a more 
realistic picture, for the stochastic processes in plasma, 
must take into consideration the possibility of existence 
of randomly fluctuating magnetic fields in the plasma. 
Such a possibility may give rise to a new mechanism 
effecting the diffusion of particles across magnetic 
fields with actual exchange of energy between particles 
and fields in the plasma. The solution of this problem 
would require a combined study of Maxwell's equations 
and generalized Langevin's equation where Maxwell's 
equations are to be regarded as stochastic equations, 
the source of the field being an external current superim
posed over a fluctuating internal current of the plasma. 
In this case solutions of Maxwell's equations, as 
equations for the irreversibly fluctuating electric and 

3 S. Chandrasekhar, Principles of Stellar Dynamics (Dover 
Publications, Inc., New York, 1942), p. 257. 

magnetic fields, will consist of the statistical properties 
of S(t) and B(t). Such a problem for gravitational field 
has been discussed in detail by Chandrasekhar and 
von Neumann.4 

II. GENERALIZED LANGEVIN EQUATION 

By introducing a dynamical friction matrix / , we 
modify Lorentz's equations of motion into the form 

dt 
p)=-k\p)+\F{t)), (II . l) 

where, in the absence of a fluctuating magnetic field, 
we have 

To - ; o] 
\i 0 0 , 
o o o 

A = f~icocKz, Kz= 

|-<FW)=0| &(t)) = fluctuating electric force, 

and / is defined by (1.2). The magnetic field is taken in 
the Z direction. 

The formal solution of the stochastic differential 
equation is 

\Y)^\p)-e-
Jo 

F(f)>rff. (II.2) 

Now, the left-hand side of (II.2) must have the same 
statistical properties as its right-hand side. We shall 
generalize the method used in Chandrasekhar's paper5 

to the present case where the usual dynamical friction 
term [the first term on the right-hand side of (II. 1)], 
has been replaced by —A\p). A statistical analysis of 
the solution (II.2) of the Eq. (II. l) may proceed in 
terms of time intervals At during which we can treat all 
functions of time except \F(t)) as constant. However, 
the time interval Â  is long enough for the position or 
momentum of a Brownian particle to change appreci
ably. I t is reasonable to assume that a finite time 
interval (0,^) can be divided into a large number of 
subintervals of duration At. Under these conditions the 
Eq. (II.2) can be replaced by 

where 

and 

\Yn) = $(nAt,t)\T(At)), 

|r(A0>=l | F « M 
J nAt 

(11.3) 

01.4). 

(II.5) 

represents the net force which may act on a Brownian 
particle on a given occasion during an interval of time 

4 S. Chandrasekhar and J. von Neumann, Astrophys. J. 95, 489 
(1942), and 97, 1 (1943). 

6 S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). 
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At. Because of the superposition argument in the next tion. From (11*3) and (II.4) we have 
paragraph the distribution of | Y) to tend to a Maxwel-
lian distribution as t —> <*> the probability of occurrence | u)=]£ n \ un). (II. 11) 
of different values of jr(AO) must be governed by the 
distribution function According to (II.6) the probability distribution of | un) 

is governed by 
r ( r (At)) = (1/N) e x p [ - (l/lAttnicT) 

x<r(A0|/-|r(A0)], (ii.6) , ( U n ) = _ i e x p r _ ^ 
An L 4/cJ 

X<«»| &(nAt)}%(nAt)At)-l\un)\, (11.12) 

where "n *~ 4KT 

N= exp[-(l/4A/w/cT ,)(r(A0|/-1 |r(A0)]^3r 
where 

An— 

The above distribution is valid only for times At large 

--Zdet(4wmKTAtf)Ji\ (II.7) f /4WKT ^m 

is valid only for times At large 
compared to the average period of a single fluctuation 
of |F(/)>. The period of fluctuation of |F(/)> is of the We now use the definition of the probability distribu-
order of the time between successive collisions between tion W(u,u0,/) as given in Ref. 5, p. 10, in the form 
Brownian particles. The similarity of r(T(A^)) with the 
distribution corresponding to the problem of random / 1 \ 3 r 
flights accords with the fact that the force \Y(At)) JF(u,u0,0 = (—J / exp(-*Vu)£7(e)d3p, (11.14) 
experienced by a Brownian particle, in a time interval \2w/ J 
At large compared with the frequency of interparticle where 
collisions, is a result of superposition of the large N r 
number of random forces arising from interparticle U(Q)= lim I I / rj(us) exp(i9-us)d

sus. (11.15) 
collisions. This choice of the factor I/AWKT is imposed ^°°s==1 

by the requirement that the distribution W(Y) shall 
tend to the Maxwellian distribution as / -> co. This is MarkofFs method as applied to the problem of 

With the above premises we shall prove the following random flights. 
lemma: For a quantity represented by a column vector Now, writing 
| u) in the form * 

rt *?«) = — e x p [ - ( ^ J 7 | ^ s ) ] , 
|«>= / ¥ ( £ , 0 | . F « M , (II.8) A° 

Jo and 

the probability distribution is given by -(us\y\us)+i(p\us)^ - ( X ^ l x , ) - ^ " 1 ^ ) , 

^(u,u0 ,0 = - e x P r — — { u \ U *f*dt\ k ) l ( I L 9 ) 
where 

| Xs)= \us)-liy~l\p), 7= (a/4KT)t*(nAt)f$(nAt)J-1, 

we obtain 
where a—\/m for the distribution of momenta and 
a=m for the distribution of positions. The normalization N r r 
factor A is given by U(s)= lim I I (1/A.) exp[-(X s | 7 |x s ) ]^x s 

JV->oo s = l L J 

A= f e x p l " — % * | ( / " ' * / W ) 1\u)lPu Xexp(-i(p |T-1 |p))J 

N r j J -jl/2 

r /4TTKT r* \ 1 1 / 2 = lim I I (1/^4.) - — — expC-Kply"1^)] 
= r d e t ( — / * / W ) ] , (11.10) " - 1 L d e t W J 

where the tilde over ^ implies the transposition opera-

N-*X> 8=i Ldet(7)-

exp[- (KT/O)(P I (J ^ / * i A I P>1 • (H.16) 
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Using this result in (11.14) we get 

W(u,uQ,t) 

= (l/2ir)3 / e x p ( - j p - u ) 

Xexp 

The average energy of a particle can be calculated by 
expressing p2 in terms of F as 

^ 2 =F 2 +(po]exp(~A/)exp( -A/ ) | ^ 0 ) 
+ ^ o | e x p ( - A 0 | F ) + < F | e x p ( - A 0 | ^ o ) . 

The relevant integrals are of the form 

• - / 

detf / *f$dn\ 

- (a/4KT)(u | ( I *f$dn | u) Xexp 

which is the required proof for the lemma. 

III. AVERAGE ENERGY 

(11.17) 

J i = / F 2 e x p [ - ( F | 7 | F ) ] ^ F 

l r T 13/2 

: _ £ (first minors of 7) 
2Ldet7J 

lr -K -f2 

= - (7172+7273+7173) , 
2Ldet7J 

= | Y e x p [ -• < F | 7 | F ) ] ^ F = 0 , 

where 71, 72, 73 are eigenvalues of 7 = (l/2mKT) 
X ( l - e x p ( - A / ) e x p ( - A / ) ) ~ 1 . Hence, 

From the Eqs. (II.2) and (II.8) it follows that the / <& \ 1 
operator Vfai) is given by (II.4). We can apply the / — \ = — d e t [ 2 

tion of \2m/ Am lemma above to find the probability distribution of 
I F) as defined by (II.2). Thus, 

Jo J 0 
e x p [ A ( f - 0 ] / e x p [ I ( f - / ) ] r f f 

exp[A(?~0](A+A) e x p [ A ( ^ - / ) ] ^ 

2m' Am 

X]C first minors of 

X 

\mKT(l-exY>(-At) exp ( - & ) ) ] 

L2mKT(l — exp(—At) exp(—At)). 

+—(po\ (exp(~A0 exp(-AO)Ipo) , (IIL4) 
2m 

1 rl d 

2 Jo di 
{ e x p [ A ( ? - / ) ] e x p [ A ( ? - / ) ] } ^ which is not independent of the external magnetic 

field. On this basis, one should regard the operator 
tyfyfrt as the effective dynamical friction coefficient for a 

= i [ l~exp(—At) exp(—AO], (III . l ) plasma in a magnetic field. However, if the dynamical 
where we put _ friction is a scalar (or diagonal), then 

/ = i ( A + A ) „ „ 
A=p—ia)cKz and AA=AA, 

and where the relation 
so that the distribution function reduces to 

AA^AA, (III.2) 
r 1 n3/2 

will lead to a dependence of the average energy of a W=\ 

)J particle on the external magnetic field. This is a conse
quence of the anisotropic dynamical friction which 
arises partly from the rotation of hyperbolic particle 
orbits by the magnetic field. This anisotropy gives rise 
to a coupling of the components of particle's momen
tum. Thus from (II.9), taking a— 1/m, we get 

L2TrmKT(\-e~^t). 

Xexp -
F2 

2mKT(\-e-^t)A 
(III.5) 

W(p: ' , Po ,0= • 
L 

1 l l /2 

det[27TWicr(l-exp(-A/) e x p ( - A i ) ) ] -

r 1 

In this case the average energy is independent of the 
field, 

/P2\ Po2 

(—)=§Kr(l-«r»*)+—e-W. (III.6) 
\2mf 

Xexp - < F l ( l - e x p ( - A 0 
2MKT 

Xexp(~A0) - 1 | F> 

2m 

I t is easy to verify that the distribution function 
(III.5) satisfies the differential equation 

(III.3) — 
dW d(pjW) _ dW 

Ai} \-imKT(A+A)i3 
dt dpi Bpidpj 

(III.7) 



B R O W N I A N M O T I O N I N A M A G N E T I C F I E L D 2 5 

where the summation convention over repeated sub- For times long compared to the order of magnitude 
scripts is used. In (III.7) the first term on the right can of f~l (the norm of the operator /_1) we can ignore the 
be written as exponential and the constant terms as compared to 

the first term in (IV.4), and write it as 
d(piW) d(pjW) 

A ij = [fib ij— i03c (KZ) <y] r t 
dpi dpi / */*</£== (A/^A)-1/. (IV.5) 

= 0V,-(pWO pxB.VPTF. 
mc Hence, using (II.9) with a=m, we get 

Hence the Eq. (III.7) becomes 
4 v 1 r m 1 

dW e ^(r,*;r0,p0) = - e x p (R\ (A/^A) | R) , (IV.6) 
1 pxK-vPW=l3vP-(vW)+niKTl3Vp2W. (III.8) , A L 4*77 J 

dt mc where 
r /4TKTI _ \n1 / 2 

This is the Fokker-Planck equation in momentum space ^4= detf (A/ A) \\ . (IV.7) 
for a charge in a magnetic field. The two terms on the 
right-hand side arise from Brownian motion. W e m a y n o w calculate the mean square displacements 

across and along the magnetic field, defined by 
IV. DIFFUSION & 

The probability distribution function for the displace- //AJ?\2\ / rv~ „ \2\r„ „ \2i 
4. * "D • 4.' 1 4. x- , • 4 .U4 . 4-1, \ ( ^ ^ l ) / = = " " / L W ~ %W+\PC2— KM)1] 

ment r of a Brownian particle at time / given that the 2 J 
particle is at r0 with a momentum p0 at time t=0 XW(r,t,rQ,p0)d

zR, (IV.8) 
can be obtained by using and 

\r-r0)--
1 /•« 

m Jo 
((ARU)2) = (xz-XozyW(r,t,r0yVo)d*R, (IV.9) 

and Eq. (IL2). Thus, from Eq. (II.2) we may write r ^ w t 7 ' L e t 1/Dl>VD*> 1/D* b e ? e * g e n v a l u e s of 

mAf^A/Ki corresponding to normalized eigenvectors 

1 I Xi), IX2), IX3) which span a space with a unit operator6 

mk I = I xi/\xi I + IX2XX21 + I X3)(X31 . 
\ rt cp Hence, we may write 

^ / o " P i o e A " P ) i i 7 ( ' M - ^ ^ -A/-A 1 
u Jo — ^ — = — I X x X X x H — | x 2 > < x 2 H — ] X 3 > < x 3 | , 

The right-hand side of (IV. 1) by integration by part KT Dl °2 Dz 

can be written as s o ^ a t : 

1 rl 1 m Ui2 u2
2 uz2 

mJo A 4«Tt 4Zty 4Z?2* 4Dst 

Thus, in the case, to apply our lemma we must take where 
Wi=<lqXt)==(Xt-|2£), *=1, 2, 3. 

^ = -["1 —eA(e-*)~i (jy 3) The distribution function (IV.6) assumes the form A 
so that r 1 im r ui2 u*2 u*21 

W=\ exp , 

I *f*di (IV-10) 

where Dh Z>2, Dz refer now to diffusion coefficients in 
= (A/-1A)-1/+iA-1(l-exp(-AOexp(--A/))(A)-1 the uh u2, and uz directions, respectively. 

-~ | [A- ( l -exp( -AO)+(A)- ( l~exp( -AO) f o l S L f 8 ' ^ ^ ^ " ^ * ^ 

+A-1(2~exp(^A/)-~exp(~A/))(A)~1], (IV.4) <(Ai?x)2>= (Dl+D2)t (IV. 11) 

where we have used 6 See B. Kursunoglu, Modern Quantum Theory (W. H. Freeman 
/ = £ ( A + A ) . and Company/San Francisco, 1962), Chap. I. 
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for transverse diffusion, and 

«ARuy) = 2D,t (IV.12) 

for longitudinal diffusion. 
Now in order to test the basic role of a nondiagonal 

element in the process of diffusion, we shall retain only 
one (7) of the dynamical friction coefficients 7, 8, p and 
will assume that the other two vanish (5 = p=0) . We 
further set /3=JJL=V in the dynamical friction matrix / . 
With these assumptions it is quite easy to calculate 
the diffusion coefficients Dh D2, and J93 which are 
just the eigenvalues of (KT/M) (A/^A) - 1 . These eigen
values yield the result 

2KT/3 KT 
D1+D2= , D^~~, (IV A3) 

w(jS2+coc
2—72) fim 

where 
£ > 7 - (IV. 14) 

The same results are obtained regardless which of the 
off-diagonal friction elements is retained. 

We shall consider two cases: 

(i) 7 = 0 so that 

2*773/ 2*27/ coc
2 \ 

<(A*x)2> = < = ( 1 ) • (IV.15) 
m(j32+uc

2) j3m \ (/32+coc
2)/ 

This is well-known classical diffusion where the ordinary 
Brownian motion of the particle is inhibited by the 
magnetic field. 

(ii) 7 = ±coc yields 
0 TV 

< ( A W = — . (IV. 16) 
13m 

This is an "enhanced diffusion" which takes place 
either at a critical value of B or for a certain value of 
the parameters (particle density, temperature) in 7. 
This result is, presumably, related to some relaxation 
process in the plasma placed in a magnetic field. 
In such a plasma relaxation times differ in different 
directions with respect to the direction of the magnetic 

field. According to (IV. 16) at 7 = ± c o c the diffusion 
process occurs as an ordinary Brownian motion un
inhibited by the magnetic field. 

However, it must be observed that for the enhance
ment of diffusion to occur we must, at least, have a 
plasma where the diagonal relaxation coefficient 0 ex
ceeds coc. The latter may arise from assuming that col
lision frequency is much higher than wc, i.e., 

(n(v(Tc))^>o)c. 

In this case the off-diagonal relaxation term 7 can be 
expected to increase and the condition 7 = ± c o c may 
be realized. 

V. CONCLUSION 

We have shown that in the presence of an anisotropic 
dynamical friction force, stochastic processes in the 
plasma lead to an enhancement for the diffusion of 
particles. For a special choice (5 = p=0) of the friction 
matrix, maximum diffusion independent of magnetic 
field (ordinary Brownian motion) sets in across the 
magnetic field where 7=±a> c . The significance of this 
result will depend very much on the form of 7 as a 
function of particle density, temperature, and relative 
thermal velocities. However, despite this theoretical 
incompleteness it should be of great interest to look for 
possible experimental evidence for this type of diffusion 
in a plasma placed in a constant magnetic field. 

This approach to the diffusion process may also be of 
some use in the discussion of cosmic ray accelerations. 
The assumption of randomly moving magnetic fields 
in interstellar space can form the basis for Brownian 
motion of cosmic rays across these magnetic clouds. 
The possibility of enhanced diffusion of the particles 
may be a reasonable mechanism for the acceleration 
process. 
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