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In the limit of molecular rotation sufficiently rapid to give a "white spectrum" to the dipole interaction, it 
is shown that the longitudinal and transverse components of nuclear magnetization relax in an identical 
manner for a system of an arbitrary number of identical nuclei with arbitrary spin, provided Boltzmann-like 
initial conditions are assumed. This gives generalization to the specific result obtained by Hubbard for four 
equivalently located spin J nuclei as well as to the familiar T\ — Ti for two identical spins. The Hamiltonian 
studied consists of Zeeman and dipole-dipole terms. If chemical shifts or scalar spin-spin interactions are 
included, the results remain valid for equivalent spins but cannot be applied to nonequivalent spins. As an 
example, Hubbard's three-spin calculation is repeated to include the transverse component, and it is il
lustrated that if other than Boltzmann-like initial conditions are used, the components need not relax 
identically. 

I. INTRODUCTION 

A WELL-KNOWN feature of the theory of nuclear 
magnetic relaxation in liquids consisting of identi

cal nuclei interacting through their dipole moments may 
be summarized as follows: For a system of two spin-| 
nuclei, both the longitudinal (direction of the dc mag
netic field along which the spins are aligned in equi
librium) and the transverse components of magnetiza
tion return to equilibrium via simple exponential decay, 
the longitudinal component decaying with time con
stant T\ and the transverse component with time con
stant r2,1-3 i.e., the Bloch equations4 have precise 
validity. If all molecular movements are rapid as com
pared with the precessional motion of the spins, then 
one finds the fundamental result Ti=T2. 

When the system is enlarged to contain more than 
two spins or the nuclear spin allowed to be greater than 
J, the relaxation is no longer describable in such simple 
terms. However, we are able to show in the present 
paper that in the limit of a "white spectrum," and under 
certain other conditions, the longitudinal and transverse 
components still relax in an identical manner. If the 
Hamiltonian consists only of Zeeman and dipole-dipole 
terms, the treatment is valid for an arbitrary number 
of identical spins (whose spin need not be restricted to 
i) provided that initial conditions of a Boltzmann 
nature are assumed, i.e., that the magnetization is 
initially describable in terms of a spin temperature. 
The results also may be extended to a system of identi
cal spins in equivalent locations if chemical shifts or 
scalar spin-spin interactions are included, but they can
not be applied to nonequivalent spins in such a case. 
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This is because our argument requires that all spins in 
the system have the same resonance frequency as well 
as the same spin. Since the dipolar Hamiltonian averages 
to zero at any position within a randomly rotating mole
cule, this requirement is satisfied for nonequivalent 
spins interacting only via their dipole moments, but it 
is not satisfied if scalar perturbations are included. 

Considerable generalization may thus be given to the 
original Ti=T2 result of BPP theory and to a more 
recent calculation by Hubbard5 in which he shows that 
the longitudinal and transverse components relax in 
identical fashion for the case of four identical spin-J 
nuclei equivalently placed on the corners of an equi
lateral tetrahedron. In the neglect of interactions other 
than the Zeeman and dipole-dipole ones, equal trans
verse and longitudinal relaxation occur for liquids whose 
molecules consist of identical spins, once all motions are 
sufficiently rapid to give a white spectrum to the di
polar interaction, regardless of the number of spins 
involved. The fact that large differences between T\ 
and T2 have been observed in complex liquids,6,7 and 
that the concept of a distribution of correlation fre
quencies6,7 has not been completely successful in re
solving these differences, was a motivation for this work. 

In Sec. II proof is given of the equality of transverse 
and longitudinal relaxation when Boltzmann-like initial 
conditions are imposed. In Sec. I l l Hubbard's original 
calculation of the relaxation of the longitudinal com
ponent of magnetization in a three-spin molecule8 is 
repeated in order to include relaxation of the transverse 
component as well. This example illustrates that if 
initial conditions other than those describable by a 
spin temperature are employed, the longitudinal and 
transverse components do not, in general, have identi
cal relaxation. 

5 P. S. Hubbard, Phys. Rev. 128, 650 (1962). 
6 J. G. Powles and K. Luszczynscki, Physica 25, 455 (1959). 
7 J. G. Powles, Polymer 1, 219 (1960). 
8 P. S. Hubbard, Phys. Rev. 109, 1153 (1958). 
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II. EQUALITY OF TRANSVERSE AND 
LONGITUDINAL RELAXATION 

A. Formal Preliminaries 

Abragam9 has intimated the fundamental reason 
why Ti— r 2 in the two-identical-spin case, and the ap
proach here will be to give a perhaps more detailed 
statement of the reasoning and to extend it to a number 
of identical spins. The point of departure is the semi-
classical theory of relaxation as developed by Red-
field10 in which the spin variables are treated quantum 
mechanically and the lattice coordinates classically. 
This is the same technique used in previous calculations8 

and is described in detail by Abragam.9 

Following Abragam's notation as closely as possible, 
we therefore write the Hamiltonian of the spin system as 

3C=A3Co+*3Ci, (1) 

where &3Co is the Zeeman Hamiltonian and ft3Ci is the 
relaxation-inducing perturbation. The state of the spin 
system is characterized by the time-dependent density 
matrix, a(i), and thus the expectation value of any 
operator, Q, acting on the spin variables is given by 

<e> = tr[cre] . (2) 

Development of the density matrix with time is con
veniently described by the interaction representation 
— or, equivalently, the rotating frame. If Q is any 
operator, including the density operator, then its value 
in the interaction representation, Q*, is given by 

Q* = exp(i3C0t)Qexp(-i3Cot). (3) 

Time-dependent perturbation theory then yields as the 
equation of motion for the interaction — representation 
density matrix, o-*, 

da* 
— = -rf l<[3Ci*(0, [ X * © , **H>av> (4) 
dt 

under the following conditions and assumptions: 

(1) The random motions of the lattice coordinates 
are all sufficiently rapid that the correlation function 
of 3Ci*(0 reduces to 

<3Ci*(03ei*(/-r)>av=2rc<JCi*(/)aCi*(0>avfi(r), (5) 

or, in other words, 3Ci*(£) has a "white spectrum." Here, 
as in Eq. (4), the averaging is done over the classical 
lattice variables. The above equation also serves as a 
definition of r c as used in Eq. (4). 

(2) The perturbation, 3Ci(0, is a random function of 
time so that any terms of the form (3CiM,,(/)3CiMvW)av 
are independent of time; and it is also assumed that 
(3Ci(/))av=0. The quantity a* in (4) is the difference 
between <r* and its time-independent thermal equi-

9 A. Abragam, The Principles of Nuclear Magnetism (Oxford 
University Press, New York, 1961), Chap. VIII. 

10 A. G. Redfield, IBM J. Res. Develop. 1, No. 1 (1957). 

librium value, 
8*ma*-.ffT*t (5) 

I t also should be understood that c* used in (4) is an 
average density operator since averaging over the lat
tice coordinates is assumed throughout. Detailed dis
cussion of the derivation of (4) may be found in 
Abragam's text.9 

B. Symmetry of Equations 

By multiplying both sides of (4) by Q, taking the 
trace, and noting its invariance properties and that cr* 
may be averaged independently,9 we have 

d 
~ < 0 * = - r c tr[([Xx*(0, [ W O , £D>.v**] (7a) 
dt 

= -r.«BTC1*(0, [3Ci*(0, Q]]>av>*, (7b) 

where (Q)* is the expectation value of a spin operator, 
Q, in the interaction representation. Relaxation of the 
longitudinal and transverse components of magneti
zation is obtained by using, respectively, Iz and Ix, the 
total z and x components of spin, for Q. The funda
mental argument for the equality of transverse and 
longitudinal relaxation is based upon showing that, for 
identical spins, 3Ci*(/) may be replaced by 3Ci(/) in (4) 
and (7) as a result of performing the ensemble averages. 
Hence, assuming the perturbation 3Ci(/) to be symmetric 
in the coordinates x, y> and z, i.e., independent of the 
choice of axis of quantization, if performing the opera
tion in (7) with Q=IZ yields a single exponential decay 
with time constant 7\ , then the symmetry of the prob
lem demands that one also obtain a single exponential 
decay with time constant T<i~T\ when Q is taken to 
be Ix. 

If 3Ci(/) is symmetric in x, y, and z} then the definition 
(3) shows that 3Ci*(/) itself will not be symmetric in 
the coordinates since, for the customary dc magnetic 
field, HQ} applied in the z direction, we have 

Wo=-yIzHo, (8) 

where y is the gyromagnetic ratio. We thus must show 
that ensemble averaging does permit the replacement 
of 3Ci*(0 by 3Ci(0 in (4) and (7). To do this it is con
venient to re-express (4) in matrix representation by 

d 
—CTaa>* = E R««' .&'*<rfifi'* , (9) 
dt ft*' 

in which the Greek indices represent states of the un
perturbed Hamiltonian (8). We then require that 

• # a a ^ / 3 ' * = i?aa',j3/3'- ( 1 0 ) 

From the nature of (4) it is evident that Raa',pp'* con
sists of a combination of products of matrix elements 
in the form 
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Hence the task reduces to demonstrating that 

(ID 
The perturbation is now written explicitly as the 

mutual dipole-dipole interaction, 

#3C: •I(0=EP 
'fi2y' 

h-Ik-3 
(Iyry*)(I*-tyfc) 

i<h L rjk
6 Tjha 

- ] , (12) 

where the orientation of rjk, the vector connecting spins 
Ij and Ik, with respect to any fixed set of axes is as
sumed to be a random function of time. Symmetry of 
the perturbation is apparent from the form (12); how
ever, as is common in relaxation calculations, it is useful 
to re-express (12) as 

3Ci(0=E £ FjWtW*, (13) 
)<k q=*-2 

where the Fjk
(q)(t) are lattice functions, 

^ ( 0 ) = ^ - 3 ( l - 3 c o s 2 M , (14a) 

Fjk
(1) = rjk~

z sinfl,-* cosfl^e-^'*, (14b) 

i V 2 ) = rjk~z sm2djke-2i^'k, (14c) 

where 6jk and <pjk are the, respective, polar and azi-
muthal angles of tjk with respect to the x-y~z laboratory 
axes, and Fjk

{~q) is the complex conjugate of Fjk(
q). The 

quantities Ajk
(q) are spin operators: 

AjkW=y%tIjJk,-l(Ij^k^+Ij^k+)l, (15a) 

Ajkv= -h2Hlizh++IM, (15b) 

^ * < 2 > = - f 7 2 M * J W , (15c) 

where 
IjJj. — 1 jx3Z t-L h (16) 

and Ajk
("9) is the Hermitian conjugate of Ajk

(q). 
Consider a representation in which Ie=^,jljz, and 

consequently Xo, Eq. (8), is diagonal. For a number of 
identical spins, the energy levels of the unperturbed 
system (8) are highly degenerate and may be labeled by 
the magnetic quantum number, m, of the total z com
ponent of spin, Iz. I t follows from the well-known 
properties of the raising and lowering operators, Ij+ 
and Ij-., respectively, that, in such a representation, the 
spin operator Ajk

iq) as denned in (15) has nonzero 
matrix elements only between states for which Am=q. 
Then, since the eigenvalues are equally spaced with 
separation fiu between adjacent levels, we see from (3) 
that matrix elements of Ajk

iq) in the interaction repre
sentation are given by 

•ft- jk nv — A - j k pvC * , (17) 

for a set of states in which 3Co is diagonal and where 
to—yHo. 

For the ensemble average ( ^ l ^ W ^ C i / i V * ^ ) ^ we 

have, from (13) and (17), 

<xlM/WlMv*(/)>av- E £ KF^KWKVU 
i,j,k,l q,qf 

XAm,MAwSrt*-i<*rt»t}. (18) 

By the definitions (14) of Fi/Q)(t), it is evident that 

<*V«> ( W > « > a v = < | F„<«> (*) | 2 > a v 5 9 , - a ' , 

from the orthogonality properties of spherical har
monics. Furthermore, even if the motion of r# may be 
correlated to that of r&^r^ , as is the case for a rigid 
molecule containing a number of spins, so that terms of 
the form (Fijiq)(t)Fk^

q,)(t))&v are not automatically 
zero, one may still show from an Euler-angle description 
of the isotropic rotation of a solid8 that 

(F^ (0F„<«'> (/))av= (Pi,™ (t)Fu^ W U , (19) 

Since the averaging process thus restricts one to 
q-\-q' = 0, the exponential time factor disappears from 
(18) and the expression (18) is the same in the interac
tion representation (rotating frame) as in the x-y-z 
laboratory system. Hence, the validity of (10) and 
equivalently the replacement of 3Ci*(/) by 5Ci(/) in (4) 
and (7) is established for a rigid molecule with an arbi
trary number of spins—as well as, of course, for a sys
tem in which some of the motions are uncorrelated. 

I t may be remarked that replacement of 3Ci*(/) by 
3Ci(/) in the pertinent equations means that these 
equations are automatically secularized as a result of 
ensemble averaging, i.e., all exponential time factors 
are already eliminated [(18) and (19)], and it is super
fluous to state—for identical spins—that only secular 
terms should be retained in the equation of motion for 
<7*. For nonidentical spins the longitudinal and trans
verse relaxation are not identical,3 '9 and the reason for 
this is readily seen from the above. Although (19) is 
still valid, the relation (17) no longer holds since, for 
example, in a system containing two spins, 1 and 2, with 
respective resonance frequencies o?i, and a>2, a transition 
in which spin 1 increases its magnetic quantum number 
by one unit and spin 2 decreases its magnetic quantum 
number by one unit has Am=0 but a difference in energy 
between initial and final states of ^(w2—coi). Thus, 
Aifrr^T^AifryW for such a transition, and the spatial 
averaging is not sufficient to preserve the symmetry in 
x, y, and z since the asymmetric 3Ci* (t) is not replaceable 
by the symmetric 3Ci(/). Or, in other words, for non-
identical spins spatial averaging does not completely 
secularize the equation of motion. 

Similarly, if the spins of a given molecule are identical 
but in nonequivalent positions, they will not have equal 
resonance frequencies once chemical shifts or scalar 
spin-spin couplings are included in the Hamiltonian. 
Thus, if these interactions are important, the replace
ment of 3Ci*(/) by 3Ci(t) will be rigorously correct only 
if the spins are equivalent as well as identical.11 

11 The author is indebted to P. S. Hubbard for pointing this out. 
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As pointed out by Abragam and mentioned at the 
beginning of this section, replacement of 3Ci*(/) by 
5Ci(/) is sufficient to guarantee equal relaxation for 
(Iz) and (Ix)* for the two-spin case in which the Bloch 
equations are valid. If several spins are involved, the 
decay of (Iz) or (Ix)* contains a number of exponentials, 
however. In such a case, one can argue from the x, y, z 
symmetry of 3Ci(J) that any characteristic root of the 
equation for (Iz) must also serve for (/»)* and vice versa. 
That is, if one writes as the solution to (7) 

< / . > - / o = £ y a * ' - , / r ' ' , 

where 7o is the thermal equilibrium value of (Ie), then 
he can equally well write 

with TjX— Tj2. Determination of the coefficients aJX and 
ajz, however, depends upon initial conditions; so re
placement of 5Ci*(/) by 3Ci(t) does not by itself make it 
obvious that (Iz)* and (Iz) relax identically, i.e., that 
the exponentials combine in the same manner. 

C. Initial Conditions 

Thermal equilibrium at a temperature T is described 
by the density matrix 

< r r = e x p ( - J C / f e r ) / t r [ e x p ( - 3 e / * r ) ] . (20) 

For the present case of a spin system aligned along a dc 
magnetic field, H0, in the z direction and &ri£>MCo>>^3Ci, 
we have 

(r r=(r r* = C ( l + \ / . ) , (21) 

where, from (8) and (20), 

\=yhH0/kT (22) 

and C _ 1 = t r [ l ] , the dimensions of the density matrix. 
Previous to time 2=0 this equilibrium distribution is 
rotated through a certain angle by suitable application 
of rf pulses; and at t=0 the rf fields are removed, with 
the magnetization now aligned along an axis f. Hence, 
the initial conditions are assumed to be described by 
the density matrix,12 <jr0=<7(/=0), 

er0=cro*=C(l+X.7 r), (23) 

where, for the sake of generality, \8 may or may not be 
equal to X. Initial conditions are thus said to be "Boltz-
mann-like" in the sense that a Boltzmann distribution 
is assumed for alignment about an arbitrary axis, f. 

Taking ax, ay, and az as the respective direction 
cosines of the f axis with x-y-z axes then gives for 
*o=ff(*=:0), 

<7o = <70* = C\8 (axix+ayly) — C (X—\8az)Iz, (24) 

12 For a more rigorous treatment of initial conditions see, for 
example, A. Sher and H. Primakoff, Phys. Rev. 119, 178 (1960), 
where it is shown that for application of a 90° pulse in the y direc
tion, the initial condition is given by (23) with £ = x. 

from (6), (21), and (23). Consider now (d/dt)(Iz) at 
/ = 0 . This is obtained from (7a) by using Iz for Q and 
replacing <r* by #0. We first note that 

tr[<[3Ci(0, pCxW, 7,]]/.>av] = 0 (25) 

as a result of the spatial averaging. This is because, by 
the same reasoning (19) used to replace 3Ci*(/) by 3Ci(t) 
in (4), products of energy-representation matrix ele
ments in the form (3CiM„(/)3CiM'„'(0)av are nonzero only 
if oiliV=o)v

fnf, where coM„=w(raM—-ra„) with m^ and mv the 
respective magnetic quantum numbers of the states 
H and v. But since Iz has matrix elements only be
tween states for which Aw=0 and IX has matrix 
elements only for Atn—zLl transitions, it follows that 
(pfCi(/), [3Ci W, / J]/«)av can have no diagonal elements 
in this particular representation and is therefore trace-
less in any representation. Thus, the time derivative of 
(Iz) at t=0 is given by 

/ d / r \ «/ .>*-o-/o) 
( —{Iz) I = — rc 

Xtr[<[3Ci(0, pCi(0, / J l Q a v ] , (26) 

where (24) has been used in (2) to obtain (7z)*=o—iV 
For the transverse components it is somewhat simpler 

to calculate (I±)*=(IxdrziIy)* than (/«)* itself. Pro
ceeding in an identical manner, one can show that 

(1(1+)*) -Tc{I+)^° 
\dt + A.o t r [7 , 2 ] 

Xtr[<[3Ci(/), [3Ci(0, / J ] / * > a v ] . (27) 

The argument leading to (27) is the same as that used to 
deduce (26): Spatial averaging eliminates all diagonal 
elements of (pCi(/), [3Ci(t)J±]']I±)xv as well as of 
(pCiW, [3Ci(0, ^]]^±)av. We are thus left with an 
expression of the form 

tr[<[aci(0,Caei(0,/+]]/->av], 

and invariance properties of the trace are used to show 
that 

trC<[3ei(0,C3Ci(0,/+]]/->av] 

= 2 tr[<[3ei(0, E^CiW, / J ] /«>av] . 

From (26) and (27) it, thus, follows that if 3Ci(t) is 
symmetric in x, y, and z, then 

(^< / + >*) /<I+}*<=o 
\dt /««</ 

= ( T ^ > N ) /(.V.)™-IO). (28) 
\dt It-*' 
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Higher order derivatives may also be evaluated at 2=0 
and similar reasoning employed to show that, for any 
order, 

\dtn /«»</ 

^i-T-V')) / ( ^ ) ^ o - / o ) . (29) 
\dtn Jt~J 

The procedure is to take successive derivatives of (4) 
with respect to t, perform the required trace operations, 
and note that, because of ensemble averaging, when 
calculating the relaxation of (Iz) only the term in Iz 

need be included in the expression for #o (24), and that a 
similar rule applies for relaxation of the transverse com
ponent. Assuming Taylor series expansions for (Iz) and 
(/+)* we therefore conclude that 

</,>-/„ (/+>* / x 
— = , (30) 

so that the longitudinal and transverse components 
relax in a completely identical manner. 

D . Summary 

A system containing an arbitrary number of identical 
spins coupled by their dipole interactions has been shown 
to possess equal transverse and longitudinal relaxation 
in the limit of a "white spectrum" for the molecular 
motion. The basic reason is that the averaging neces
sitated by the random character of the lattice functions 
limits the number of nonzero matrix elements to the 
point that, for the relaxation part of the problem, the 
perturbation, fi3£i(t), has the same appearance in the 
rotating frame as it does in the laboratory frame— 
provided the spins are identical and chemical shifts or 
scalar spin-spin interactions may be neglected—and is, 
thus, symmetric in x, y, and z in the rotating frame as 
well as in the laboratory frame. This enables one to say 
that any exponential characterizing relaxation of the z 
component must also characterize relaxation of the x 
component. If initial conditions describable by a Boltz-
mann distribution of spins aligned along an arbitrary 
axis (such as obtained by a rotation of the thermal equi
librium magnetization into the x-y plane by a 90° pulse) 
are assumed, the stronger statement is then made that 
the exponentials combine in the same manner so that 
the longitudinal and transverse components relax in 
identical fashion. Although only the dipole-dipole in
teraction has been explicitly treated, it is evident that 
any perturbation symmetric in x, y, and z which 
possesses the orthogonality relations necessary to re
place 3Ci*(/) by 5Ci(/) in (4) satisfies the requirements for 
equal transverse and longitudinal relaxation. 

XIL EXAMPLE: THREE SPIN-J NUCLEI ON 
VERTICES OF EQUILATERAL TRIANGLE 

By way of example and as illustration of the fact that 
arbitrary initial conditions do not produce equal relaxa
tion of the transverse and longitudinal components, we 
treat the case of a rigid molecule consisting of three spin-
| nuclei located on the vertices of an equilateral triangle. 
Hubbard8 has already discussed this problem and solved 
for the decay of the z component, and he has also shown 
the equality of longitudinal and transverse relaxation 
for four equivalent spin-§ nuclei.5 I t is, however, in
structive to extend his earlier work, which employs 
simpler notation than that used in Ref. 5, to include 
x-y components as well. He introduces a representation 
defined by the states 

| l>= l+++>, |5>=| + — > , 

| 2 > = | - + + > , | 6>= | - + - > , (31) 

|3>=| + - + >, | 7 > = | — + >, 

| 4 > = | + + - > , |8)=| ), 

in an obvious notation in which the z component of an 
individual spin is diagonal and has eigenvalue d=|. 
According to (2) and (6), we have 

< / , > - / o = i ( 3 * + y ) (32) 

and 

</+>* = « + * , (33) 

with 

#== # n — <X88, (34a) 

y = #22+ #33+ #44~ #55~ # 6 6 " #77 , (34b) 

U= #12*+ #13*+ #14*+ #58*+ #68*+ #78* , (35a) 

*>= #26*+#27*+#35*+#37*+#45*+#46*. (35b) 

Since it is necessary to solve a set of simultaneous equa
tions indicated by (9), additional matrix elements in the 
combinations 

2SE R e (#23+ #24+ #34— # 5 6 " #57~ #67) (36a) 

and 

w~= #25*+ #36*+ #47* (36b) 

are also needed for the computation of (Iz) and (/+)*, 
respectively. 

The equal distances among the spins do, however, 
present a high degree of symmetry so that three inde
pendent equations are sufficient to describe the relaxa
tion. Hubbard found that the equations for the longi-
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tudinal component could be written as13 

/20 d 23\ 
( — r o - + — ) * + } y - i * = 0 , (37a) 
V 9 dt 4 / 

and transverse components may be expressed by 

</.)-/o 

9 /20 d 59\ 19 
- x + — T0-+— )y+—2= 0, 
4 \ 9 * 12/ 12 

9 19 /20 <f 55\ 
—x-\ y+[—To—1 )z=0, 
8 24 \ 9 dt 12/ 

(37b) 

(37c) 

(61)1/2/ 8yo-(14/3)8o\n 
21+ J e" 

with 

</.>»-o-/o 

l r ( 6 i r y 
= - 1 : 

2L 183 \ 

l r (61)^7 
+ - 1+ : 

2L 183 \ 
</+>* l r (61)1/2 

-tin 
3xo+yo 

8y 0-(14/3)«o\" | 

3^o+yo 

4D0— 8o>o\ 

VJ 
e-t/TC) (4 0 ) 

r 0 - i = 7 ^ 2 r o - 6 T c </+>**-. 

* l r (61)1/2/ 4^o~8wo\n 
_ = - 1 (21+ ) \e-^ 
^ 2L 183 \ uQ+v0 / J 

where ro is the distance between any two spins. Simi
larly, we have arrived at the following set for the trans
verse components: 

/20 d 23\ 
—7V-+— k + t w - | w = 0 , (38a) 

\ 9 & 4 / 

/20 rf 73\ 
fw+( —2V-+— )v+%w^ 0, (38b) 

\ 9 <fc 12/ 

5 /20 d 41\ 
- f * H — ^+ (— 7V-+— W = 0 . (38c) 

12 \ 9 dt 12/ 

Equations (37) and (38) are solvable in terms of decay
ing exponentials with time constants given by 

To"1** (207/80) To-1, (39a) 

TV1^ (9/80)[19- tfiy^To--1, (39b) 

r , - 1 ^ (9/80)[19+ (ai)1 /2]^"1 , (39c) 

the same characteristic roots serving for either set of 
equations, as is to be expected from the general argu
ments of Sec. II. 

Only Tb and Tc contribute to the decay of the com
ponents of magnetization; and one can show that for 
arbitrary initial conditions, 

x(t=0)^xQ, y(t=0)=yo, z ( /=0) = zo, 

with similar definitions for Uo, vo, and wo, the longitudinal 

uQ+v0 

^V0—SWQ\ l r (61)1/2/ 4^o-8w0\n 
+ - 1+ (21+-

2L 183 \ uo+vo / J 
-tlTc (41) 

where, by (32) and (33), 

3x0+y0 
= W* 

Uo+V0=(I+)*t=~Q. 

We see that for arbitrary initial conditions the ex
ponentials do not necessarily combine in the same 
manner for (/+)* and for (Iz). However, it is readily 
established that Boltzmann-like initial conditions (24) 
imply Xo=y0, zo—0 and Uo=vo, WQ=0; and under these 
circumstances, identical relaxation results, as predicted, 
with 

{h)-h 

< / . > W - / 0 </+>*; :/+>*«" 2L 

23 
1 (61)1/2 \e~t/Tb 

183 

I 23 
+ - 1+-

183 

/2~L 

(61)1/2~L -t/Tc (42) 

13 The coefficient of y in (37c) is erroneously typewritten as 
19/12 in Ref. 8. 

as found by Hubbard for the longitudinal component 
and in which the coefficient of e~t/Tb is somewhat less 
than 1 % of the coefficient of e~t!Te. 
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