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A new technique is developed in this paper for solving Hamiltonians of the form 

# = 2 ek(ak+ak+a-k+a-k)— 2 G(k,l)ak
+a-k

+a-iai, 
k>0 k,l>0 

where G{k,l) may have the forms: G(k,l) = G (independent of k and I), G(k,l)=GkGi, or G(k,l)=G(k,l) 
(nonseparable in k and /). The eigenvalues obtained with this technique are compared with the exact solutions 
of Kerman, Lawson, and Macfarlane. The agreement with the exact solutions is fairly good. 

TH E purpose of this work is to develop a technique 
for obtaining the low-lying eigenvalues of the 

nuclear pairing Hamiltonian. Our approach differs from 
the original version of the quasiparticle formulation1 

in that we drop no terms from our Hamiltonian, nor 
are there any intermediate parameters to be used in 
the description of the system, such as X (the chemical 
potential). Our approach is similar to that of Bayman2 

in that we always deal with a definite number of par
ticles, but we avoid any errors that may arise from a 
use of the saddle-point method. The assumptions which 
we make are (1) protons and neutrons may be treated 
as separate systems3 and (2) the pairing interaction is 
constant over some finite energy interval and zero 
elsewhere. 

The Hamiltonian, which we consider, for one type of 
particle (e.g., neutrons) is of the form, 

# = L ekWak+a-kta-id — G X a^a^a^m, (1) 
fc>0 k>0,l>0 

where €& is a single-particle energy, a&+ (#&) are the 
usual fermion creation (annihilation) operators, a-h1 

creates a particle in the state which is the time reversal 
conjugate to state k, and G is the pairing interaction 
constant. We note that the Hamiltonian of Eq. (1) is 
equivalent4 to that used by Kerman, Lawson, and 
Macfarlane5 (KLM) in their exact calculation of pairing 
eigenvalues. We shall make use of their exact calcula
tions to test the method formulated here. 

I t is easiest to develop the ideas involved in the 
present formulation by having in mind a definite 
number of pairs of particles, P , and some number of 
levels, L, which can hold a pair of particles. If we have 
only one pair the problem is too simple, so we choose 
P—2 as the simplest system which we may treat in 
which all of the complications arise. The solution of 

* Based on work performed under the auspices of the U. S. 
Atomic Energy Commission. 
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Eq. (1) may be written, for P = 2 , as 

(2) 

where dj is the probability amplitude for having levels 
i and j occupied and all other levels vacant. Using 

H* = X*y (3) 

we may obtain4 sets of equations of the form 

C u ( V W = G E C M + G i ; c i l ( , (4) 

where 
Eij—2ei-{-2€j~Ei-\-Ej (5) 

and X is the eigenvalue of the pairing Hamiltonian. 
The amplitude of the most probable configuration is 

Ci i 2(£i l2-X) = G E C M + G E C M , (6) 

and the equation for some configuration Ci,m is 

C u ( E u - X ) = G E C u + G E C B p t . (7) 

We next subtract Eq. (6) from Eq. (7) to obtain 

Citm{Ei>m — X) 

= C M ( J E i i 2 - X ) - G E C 2 , « - £ C M ] . (8) 

At this point, we introduce the only approximation 
to be used in our work 

Cm,t—C2,t\Ci,m/Cit2) • (9) 

I t is of considerable interest to consider the approxima
tion of Eq. (9) in terms of the quasiparticle formulation 
of the problem. In the quasiparticle approximation, the 
wave function of the system is given as 

*=n(^+^w)io>, (10) 

where |0) indicates the vacuum and both Uk and Vk 

are numbers. In terms of the quasiparticle wave func-
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tion, we have 
Cmtt VmU2 Cl,w 

C2,t UmV2 Cl,2 
(11) 

As Eq. (9) is the only approximation in our treatment 
of the Hamiltonian of Eq. (1), it is clear that our 
approach should give the best possible solution of the 
separable type, which includes all quasiparticle-type 
solutions. By separable we mean 

Ci,i=(Ci)(Ci). (12) 

Actually our solutions should be a little better than any 
approximation of the separable type, since we make 
use of it only to evaluate E*7*mCWi*. When Em^>E2) 

JLty*mCm,t will be much less than E**2C2,« and the 
approximation is unimportant. 

Next, we substitute from Eq. (9) to Eq. (8) and 
obtain 

Cl,m(El,m~— X) — Cl f2(^l,2""X) 
/ C i , m \ 

- G [ E c2,(] i - — - ) , 
t9±2,m \ C i ? 2 / 

(13) 

and using Eq. (6), we obtain 

Cltm(Ei>m — X) = Ci,2(jEl,2 — X) 

— [Cl,2(El,2 — \) — GYl Cl,t—GC2,m] 

X [ l - ( C i , m / C i , 2 ) ] , (14) 

which may be rearranged to give 

r Ci,t c^.tni 
C\ J Em—E2-\-GYl \~G 

L t9*l C\,2 C\t2 J 

= G E C M + G C 2 i m . (15) 

We next divide both sides of Eq. (15) by Ci,2 and by 
the coefficient of Ci,m and summing over m, we obtain 

E — 

Ci,t 

t*l Cl ,2 1 2 \m^l,2\_ t^l 

+G E 

C\,t C2,m~~y1\ 

C\,2 C\,2-± / 

(C2,w/Ci,2) 

«*.* £Em-E2+G E (C l l t/C1,2)+G(C2,m/C1,2)] 

(16) 

The term C2,ro/Ci,2 is, in general, small, but unfor
tunately, it is far from negligible. We also note that 

E — = E 1. 
m^l,2 Ci ,2 m9*1 C l ,2 

(17) 

By using a similar series of steps, we obtain 

C2 / C2,m \ 

E — l) 
\m^2 Ci f 2 / 

'1,2 W ^ . 2 L 

c2 

=GE 
«̂ 2 C l 

+G E 

C"2,« Cl,TO"T 

- E i + G E + C 
t^2Ci,2 Cl ,2 

(Cltm/Ci,2) 

"') 

m î.2 [ £ m - £ H - G E(C2,(/C1>2)+G(Ci,m/Ci,2)] 

(18) 

Our procedure for solving Eq. (16) and Eq. (18) is 
iterative. We set C2,m/Ci,2=0 in Eq. (16) and Ci,m/Ci,2 

= 0 in Eq. (18), and solve for the quantities Em*iCi,m/ 
Ci,2 and Sm^2C2,m/Cii2, and using these numbers with 
equations of the type of Eq. (15), we obtain estimates 
of C2.ro/C1,2 and Ci,ro/Ci,2 and continue the iteration. 
After finishing the iteration procedure, we determine 
the eigenvalue of the ground state using Eq. (6). The 
result is 

-— ^i,t _ C2(* 
\=Elt2-G E G E . (19) 

Ml Ci ,2 ^2 Ci,2 

To obtain the eigenvalues of the low lying excited 
states, we break one pair and put, e.g., one particle in 
level two and one particle in level three and obtain for 
that particular case 

Ct 
X = E i + 6 2 + e 3 - C E —, 

M2.3 C l 
using 

r c<~ 
1 = G E (Em-E1)+G E — 

m^2,3l_ . M2,3 C i J 

(20) 

(21) 

The treatment is exact4 when we deal with only one 
pair; it is also exact4 if all of the single-particle energies 
are degenerate. When all single-particle energies are 
degenerate, the amplitudes C are all equal, which makes 
the calculation quite simple. 

For the more complex cases, we solve the equations 
given here on an electronic computer. The problem is 
solved rapidly and conveniently (we obtained ^ 1 0 
eigenvalues per minute on an IBM 704). The agree
ment between this method and the exact treatment of 
KLM is fair and the present method may be used quite 
easily when the matrices involved in the KLM treat
ment are too large to be handled on a computer. 

In Table I, we compare our results to those of KLM 
for the Ni isotopes. We also compare our results to 
those of KLM for the most complex system that they 
were able to handle, i.e., Pb198 which has five pairs and 
17 levels to be treated for the ground-state eigenvalue. 
The discrepancies between the exact eigenvalues and 
those computed in the present treatment are a measure 
of the approximate nature of the notion of separability. 

C2.ro/C1
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TABLE I. Comparison*>h of approximate and exact 
eigenvalues in MeV. 

where 

Isotope 

Ni6 0 

Ni62 

Ni62 

Ni62 

Ni6 4 

Ni6 4 

Ni6 4 

Ni6 6 

Ni 6 6 

p b 1 9 8 

p b 1 9 8 

Pb1 9 8 

p b 1 9 8 

Spins of 
blocked 
levels 

None 
None 
i,i A 3. 
2) 2 

None 
i f 
i i 

None 
i j 2 

None 
hi 5 1 
2> 2 
^) 2 

(ft.p.) 
Energy of 
configura

tion without 
pairing 

0 
1.56 
1.56 
2.34 
3.12 
3.12 
3.90 
4.68 
5.46 
5.22 
5.22 
5.55 
5.88 

Aexact 

-2 .10 
-1 .75 

0.35 
0.68 

-0 .50 
1.60 
1.89 
1.70 
3.76 
3.29 
4.33 
4.55 
4.78 

^approx 

-2 .02 
-1 .66 

0.36 
0.70 

-0 .40 
1.62 
1.92 
1.84 
3.77 
3.49 
4.38 
4.62 
4.85 

Aapprox ^exac t 

xioo% 
-tie. p . Aexact 

4 
3 
1 
1 
3 
1.5 
1.5 
5 
1 

10 
5 
7 
7 

xA 

a Single particle energies and values of G are given in Ref. 5. b We do not include some of the levels in Ni for which P =1 . 

I t is interesting to note that, using the same approxi
mation as in Eq. (9), it is possible to solve the somewhat 
more complicated Hamiltonian 

k>0 

+ 2 GkdJa-JGia-iai (22) 
fc>0,l>0 

in essentially the same way that we solve Eq. (1). 
Finally, we note that using the approximation of 

Eq. (9), it is possible to obtain a set of cumbersome, but 
tractable, equations for a nonseparable interaction of the 
pairing type. We take 

# = X ) ekia^ak+a-k^d-k) 
k>0 

+ Z) G(l,k)ak
fa-.k'

fa-iai (23) 
k>0,l>0 

considering again, e.g., P=2. Again using the same 
steps as before, we arrive at the analog of Eq. (15), 
which has the form 

r G(2,t)Citt Cg.TO 
CiJ £T O-£8+E +G(1,») 

L *^l Cl,2 Cl,2-I 

= EG(»,0Cu+G(l!«)C2,m. (24) 

We divide both sides of Eq. (24) by Ci,2 and multiply-
both sides by G(A,m). We divide by the coefficient of 
G(A,m)Ci,m/Ci,2 and sum over tn, which gives 

XA' = T, 
G(A,m)lXm'+G(.l,m)Ca,m/C1,i\ 

ZEm-Et+Xt'+G(\,m)C,,JC1.tl' 

Ci,t 
-T,G(A,t)—. 

M l C l , 2 

(26) 

We handle the problem of the term C2,m/C 1,2, using 
the same iteration procedure as before. 

To solve the set of equations given by Eq. (25), we 
may also use an iteration procedure, i.e., guess at X2', 
solve Eq. (25) by diagonalizing a matrix, and obtain 
a new value for X2 ' . The advantage of the present 
method is that we have to diagonalize P matrices which 
are (L—P)X(L—P) rather than one matrix which is 
Ll/(L-P) IPIXLl/(L-P) IP! for an exact solution. 

In order to make clear how the present techniques are 
to be used for any number of pairs, we consider the case 
of P=3 for the Hamiltonian of Eq. (1). 

For the most probable configuration, for P = 3, we 
have 

Ci,2,z(Eit2,Z~\) = G X) Ci,2,t 
<5*1,2 

+G E Cw+G £ Ci.,,«, (27) 

and for some other amplitude Ci,2,m, we have the 
relation 

Cit2,m{El,2,m—A)~G iL Cl,2,i 
^ 1 , 2 

+G E C,,m,t+G E Ci,m,,. (28) 

We use the approximation of separability to obtain 

C2,m,t— C2,3, t(Cl, 2,m)/(Cl,2,z) ( 29 ) 

Citmtt=Cirz,t(Cii2,m)/'(^1,2,3) • ( 3 0 ) 

and 

(25) 

We may then carry through the operations equiva
lent to Eq. (13) through Eq. (15) and obtain 

[ Cl,2,t (C2,3,m+Cl,3,m)" 
Em-Ez+G £ +G 

«5*1,2 Cl,2,3 W.2,3 

— G £ Cit2,t-{-G(C2,z,m-\-Ciiz,m), (31) 

and by the series of steps that we used to go from Eq. 
(15) to Eq. (16), we obtain an equation for E M M C I ^ V 
CI ) 2 ) 3 of the same type as Eq. (16). In exactly the same 
way, we obtain equations for £^2,3C2,3,*/Ci,2,3 and 
X)**l,3Ci,3,</Ci,2,8. 

I would like to thank M. Macfarlane for providing 
me with the numerical values of the eigenvalues ob
tained in the exact calculation of KLM. 


