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An extension of Goldberger and Treiman's approach to charged pion decay is attempted. Derivation of a 
generalized Goldberger-Treiman relation is studied without recourse to the nucleon-antinucleon pair ap­
proximation. A certain type of dispersion relation is presupposed f'or the annihilation amplitudes of inter­
mediate states into a lepton pair, which contribute to the imaginary part of the decay amplitude. Also 
discussed is the determination, in principle, of the weak-coupling constants reponsible for the decay. 

I. INTRODUCTION 

FIVE years ago, Goldberger and Treiman investi­
gated the decay processes of the charged pion1 and 

of the neutral pion,2 as well as the problem of the weak-
current form factors of the baryons.3 Their works were 
a great step toward the dynamical understanding of 
weak processes. Although they used somewhat question­
able assumptions, they obtained a surprisingly good 
result for the charged-pion decay amplitude, which has 
received much attention since then, and is usually called 
the Goldberger-Treiman (G-T) relation.4 These sub­
sequent authors tried to find a physically more reason­
able basis for the Goldberger-Treiman relation. The 
present work is closer in spirit to the original papers1,3 

than to these later works, but the connection between 
the various approaches will be mentioned. 

We shall confine ourselves here mostly to charged-
pion decay because neutral-pion decay can be discussed 
in almost the same way. They assumed charged-pion 
decay proceeds predominantly through a virtual dis­
sociation of the pion into a nucleon-antinucleon pair, 
the latter annihilating through the axial-vector Fermi 
interaction to produce a lepton pair. It was also neces­
sary to assume that the pion-nucleon vertex is damped 
for large momentum transfers. Indeed, one is led to a 
paradox if it is not damped. 

Very recently, Barrett and Barton5 have shown that 
the pion-nucleon vertex tends to a nonvanishing con­
stant if one accepts a Regge behavior for the nucleon-
antinucleon phase shifts at high energies. They propose 
a dispersion relation with a subtraction at infinity for 
the invariant decay amplitude, in order to resolve the 
difficulty within the one-channel approximation. 

* This work was supported by the National Science Foundation. 
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It seems worthwhile to remove the limit set by this 
approximation, although one then encounters the 
formidable barrier imposed by the intervention of 
strong-interaction effects. However, one can go ahead, 
at least formally, much farther than it appears at first 
sight if one supposes we know every quantity concerned 
with only strong interactions. Investigation of the 
problem from this standpoint is the aim of this paper. 

The weak interaction responsible for the decay is 
assumed to be axial vector, which reasonably explains 
the experimental ratio, ~1.2X10 -4, of IT—>e-\-v decay 
to 7T—>n+v decay. We treat the weak interaction in 
lowest order and neglect all electromagnetic corrections. 

In Sec. II the imaginary part of the invariant decay 
amplitude F(s) is studied by presupposing a certain type 
of dispersion relation for the annihilation amplitudes of 
intermediate states into a lepton pair. The ImF consists 
of two terms. One corresponds, loosely speaking, to a 
perturbation-theoretical result, and the other is exactly 
equal to what is obtained under the assumption that 
the axial-vector current is proportional to the derivative 
of the pion field. Derivation of a generalized G-T rela­
tion is discussed in Sec. III. It is important to distinguish 
the cases according to whether the renormalization con­
stant Zz for the pion propagator is finite or zero. 

In Sec. IV we discuss a possible method to determine, 
in principle, four axial-vector coupling constants of the 
baryons with the leptonic current by use of the hy­
pothesis of universal Fermi interaction. When Z% 
vanishes, we have an additional condition on strong-
interaction parameters. 

Two supplementary remarks are made in the final 
section. First, the case of a pseudoscalar coupling is 
studied to see a parallelism of nonperturbational results 
with perturbational ones for the types of divergences in 
various weak couplings. Finally, neutral-pion decay, 
7T° —» 27, is briefly discussed. 

II. DISPERSION RELATIONS FOR TT DECAY 

The invariant amplitude F for the process, w —»1+ v, 
is defined by 

( 2 ^ O ) 1 / 2 ( 0 | A A ( 0 ) | 7 T ) ^ ^ X F , (2.1) 

where J\A (x) is the strangeness-conserving axial-vector 
current and p\ is the four-momentum of the pion, 

401 



402 M A S A K U N I I D A 

-p2=fjL2. The pion decay rate w is then given by 

ix /mi 

4 x \ 

W A V mi£\* 
G^)2. (2.2) 

Using the standard method, one can obtain an 
analytic function of a variable s, such that F = F(s=n2). 
An essential assumption to be made here is that the 
function F(s) satisfies a dispersion relation without 
subtractions: 

lmF(s') 1 r00 ImF(s') 
F(s) = - / 7dsf. 

7T J (zn)*sf—s—ie 
(2.3) 

The imaginary part of F (s) is expressed as 

ImF(s) = (7rA)En(01 dxJxA | *,»> 
X < J , » | / , | 0 > 5 ( ^ n - # ) , (2.4) 

where / » is the source of the pion field, (fx2~- n)<p*, and 
n denotes all the variables other than s. The divergence 
of the current rather than the current itself is considered 
here because only the pseudoscalar states contribute to 
the ImF. 

By summing up over spins and separating out kine-
matical factors, (2.4) can be written in the form 

ImF(s) = (7r/Y)£m Lm*(s)pm(s)Km(s), 

or in matrix notation, 

lmF(s)= (T/S)V(S)9(S)K(S) . (2.5) 

The two invariant amplitudes, K(s) and L(s), represent 
virtual dissociation of the pion into intermediate states 
and their annihilation into a lepton pair, respectively. 
The kinematical factor commutes with channel projec­
tion matrices P»(^=3x, NN, etc.): 

[p(5),P0 = 0. (2.6) 

Our approach is based on presupposing dispersion re­
lations for K(s) and L(s) of the form 

K M KG*1) 

s—/r s 

Us) L(0) 

M 7T J (; 

-KGu2)-

V(s'Ms>)K(s>) 

(3M)! (s'—ix2)(s'—s—ie) 

F 

•ds' (2.7) 

S — fJL 

1 

+-* Jm% sr{s'—s—ie) 
•ds'. (2.8) 

T(s) is the scattering amplitudes in the pseudoscalar 
sector and can be expressed as 

T(*) = IH(*)N(*) , (2.9) 

where N(s) is real in the physical region and D(s) is 
given by 

^ r N(S')Q(S') 
D ( » = l — / ds'. (2.10) 

w J(z»)2sf(s'—s—ie) 

We note that T(s) is symmetric under time-reversal 
invariance. 

Solutions of (2.7) and (2.8) will not be unique due to 
ambiguities similar to those of Castillejo, Dalitz, and 
Dyson.6 We shall concern ourselves with the simplest 
solutions. One then finds7 

K(5) = D-1(5)D(^)K(M
2) 

= D-i(5)K(0), (2.11) 

L(s) = M ( * ) - KW[V(*- /»*) ]F , (2.12) 
where 

M(^)=D-1(^)L(0). (2.13) 

Substituting (2.12) into (2.5), we get 

ImF(*)= (T/j){Mt(j)e(j)K(*) 
-LS/(S-S)1FW(S)Q(S)K(S)} . (2.14) 

We note here that 

K(s)9(s)K(s) = Zn\(s,n\Jv\0)\*d(tn-p) 

where a(s) denotes the spectral function of Kallen and 
Lehmann8 for the pion propagator, and that 

Kt(*)9(*)P<K(*) = (s-v*)*<n(s), (2.16) 

where ai(s) is the contribution from the channel i to 
the spectral function, so that <r(s) = ^Tli<ri(s). For later 
convenience another function of s for each channel will 
be introduced by 

Hi(s)^Re{M^s)9(s)r^(s))/ai(s), (2.17) 

which is defined for s larger than the channel threshold 
Si. The convention of one-half the sum over "out" plus 
"in" states has been used in order to maintain the 
reality in each channel. (2.14) may then be written as 

(l/ir)ImF(s) 

= (l/s)W(s)9(s)K(s)- (s-»2)v(s)F 

(s-ix2)2 f s 
X<n(s)\Hi(s) F 

S i I S — /X2 
(2.18) 

At this point we can compare our approach with that 
of Bernstein et al.* These authors assumed an un-
subtracted dispersion relation for LNN{S) of the form, 

ix2F 
LNW (S) = KNN (M 2 )+ 

1 /•» ImLNw(s') 

7rJ(3M)J s'—s—ie 
-ds'. (2.19) 

By supposing the dominance of the pole term for small s, 

6 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 
453 (1955). 

7 S. W. MacDowell, Phys. Rev. Letters 6, 385 (1961). 
8 G. Kallen, Helv. Phys. Acta 25, 417 (1952); H. Lehmann, 

Nuovo Cimento 11, 342 (1954). 
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they found 
LNft(0) = 2tnNGN

A 

~FKM»2), (2.20) 

which is equivalent to the original Goldberger-Treiman 
relation.1 

I t is to be noted that if we assume, instead of (2.8), 
an unsubtracted dispersion relation for L(s) and if we 
take the simplest solution, then we would have 

L(*) = [ y F / 0 i * - j ) ] K ( 5 ) , (2.21) 

the result known to Gell-Mann and Levy,4 who con­
jectured the relation, 

dxJx
A=v?F<pT. (2.22) 

The approximate equality, (2.20), would then be 
replaced by 

LNw(0) = FKNw(0)- (2.23) 

I t is easily seen that F(s) cannot vanish at infinity if 
L(s) is given by (2.21). 

The assumption that L(s) satisfies an unsubtracted 
dispersion relation is very appealing in that the Gold­
berger-Treiman relation is an almost automatic conse­
quence. But if F(s) vanishes at infinity, this assumption 
must be abandoned and one returns to Eq. (2.8). 

III. GENERALIZED GOLDBERGER-TREIMAN 
RELATION 

There are four baryon-antibaryon pair channels with 
nonvanishing contribution to the charged pion decay, 
which are 

tip, (1/V5)(AS++S+A), ( l /v2)(S°S+-2+S°), andg+E0 , 

for 7r+ decay and their charge conjugated states for w~ 
decay. We note here that only the odd G-parity states 
contribute to ImF with the neglect of electromagnetic 
corrections. These states need special consideration 
because they are probably the only channels ' 'directly" 
coupled to the lepton pairs, if we may use Lagrangian 
language. For simplicity, they will sometimes be repre­
sented by N, A, 2 , and S. We shall give expressions for 
some quantities, which appeared in the previous section, 
for these channels. Hereafter, we assume even A-2 rela­
tive parity, which seems favored by recent experiments.9 

For the amplitudes of pion dissociation into baryon 
pairs, we write 

( E t t E ^ A T a M a ) ^ , (3.1) 
i=N, A, 2 , S . 

For the annihilation amplitudes of baryon pairs, we 
write 

(EaEn/MixMi^iBaBx \ JX
A | 0) 

= Ui2lai(s)iy\y5+bi(s)p\yz+bi (s)<rx»ip»752uii, (3.2) 

9 See, for instance, J. W. Cronin and O. E. Overseth, Phys. Rev. 
129, 1795 (1963). 

where s= -p2= - (pi+pzY, and ^ ( O j s f t A From (3.2) 
we have 

(EaE^/MnM^iBa^ \ dxJx
A |0) 
= Uiiiy^Ui\Li{s), (3.3) 

where 
Li(s) = (Ma+Mi2)ai(s)+sbi(s). (3.4) 

The functions Hi(s) defined in (2.17) can be expressed 
for baryon-pair channels as 

Hi(s) = ReMi^/Ktis), (3.5) 

which has a meaning not only for s larger than Si but also 
for s smaller than s^ As M(0) = L(0), we see that 

Hi(0) = Li(0)/Ki(0)=(Mil+Mi2)G^/Ki(0). (3.6) 

The right-hand constants in the above equation will be 
called Goldberger-Treiman's constants and denoted by 
FiGT. Elementary calculation also shows that 

1 s 
<n(s) = —els- (Ma+Mi2y] 

8x2 (*-M2)2 

r (Mn+M^-i^ 

X [ l - ( M , i - M , 2 ) 2 A ] 3 / 2 | ^ W | 2 . (3.7) 

In the dispersion relation, (2.7), we assumed a once-
subtracted form for all Ln(s). According to the usual, 
although rather questionable, Lagrangian theory all the 
channels except for those of the baryon pairs have no 
direct coupling to the lepton pair. In dispersion theory 
we claim that Ln(s) for channels indirectly coupled to 
the lepton pairs satisfy unsubtracted dispersion rela­
tions. Ln(0) for those channels will then be determined 
by GiA, F, and quantities concerned with strong inter­
actions. Therefore we have the five weak-coupling 
constants, GNA, GAA, G%A, G%A, and F. 

Determination of F in terms of the axial-vector 
coupling constants can be done by the unsubtracted 
dispersion relation for F(s). In carrying out the inte­
gration of (2.3), with ImF given by (2.18), we have to 
distinguish the two alternative cases according to 
whether 

Zt-^l+f a(s)ds (3.8) 

is finite or infinite. 

A. Z 3 ^ 0 

On substituting (2.18) into (2.3) and putting s = /z2, it 
immediately follows that 

F= f LJL^cri(s)Hi(s)ds/l+f a(s)ds, (3.9) 

which may be called a generalized Goldberger-Treiman 
formula. 
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In the nucleon-antinucleon pair approximation one 
finds from (3.5) that HN(S) is constant since D~1(s) is 
not a matrix in this approximation, and from (3.6) that 
it is equal to FNGT. Thus, (3.9) becomes identical to the 
formula obtained by Goldberger and Treiman,1,8 

F= / aN(s)ds/l+ / aN(s)ds FN
G?. 

L^(2M)2 S ' J (2M)2 J 
(3.10) 

They derived the G-T relation, 

(3.11) 

from (3.10) under the assumption that the denominator 
in (3.10) is much larger than unity. This last assumption 
means that Z3 in their approximation is much smaller 
than unity, although it does not vanish. If Z3 vanishes 
in this approximation, one encounters a difficulty that 
will soon be discussed. 

B. Z3 = 0 

Substitution of (2.18) into (2.3) causes a divergence 
of^the Zf1 type if no cancellation occurs in the high-
mass limit, and the generalized G-T formula is no longer 
valid. In order that the dispersion relation for F (s) need 
no subtractions, or in other words, in order that the 
expression 

•'E<ri(s)Hi(s)-F<r(s) \ds (3.12) 
(3M)2 

be meaningful, we must have 

F = lim [ E cri(j)ff.-(j)/(r(j)], (3.13) 

which can be regarded as a generalized G-T relation. 
In the nucleon-antinucleon pair approximation, (3.13) 

means that 
F=FN

G?, 

which leads to a difficulty because we then obtain the 
absurd result, 

1 = — / —a^(s)ds<0y 
J (2M)2 S 

as was noted by Barrett and Barton5 and by Nishijima.10 

In order to avoid this difficulty, the former abandoned 
the unsubtracted form of the dispersion relation for 
F(s) and the latter thought electromagnetic corrections 
should be important, all of them working in the one-
channel approximation. 

IV. WEAK-COUPLING CONSTANTS 

In the previous section the four axial-vector coupling 
constants, dA with i — N, A, 2, and S, were regarded as 
given parameters. I t will be very appealing to see how 

10 K. Nishijima^ (private conversation) 

they can, at least in principle, be determined, except for 
a scaling factor, if we assume we know every quantity 
concerned with strong interactions. I t seems difficult to 
present a unique method since our knowledge of weak 
interactions is still very restricted. We shall suggest a 
method based on the hypothesis of the universality of 
weak Fermi interactions.11 

According to this hypothesis, the "bare-" coupling 
constants of the vector and the axial-vector currents are 
equal to the coupling constant of the fx-e decay inter­
action, G. I t should be noted that bare coupling con­
stants of weak interactions seem to have a physical 
meaning, although those of strong interactions do not. 
Indeed, it is to explain the experimental fact of no 
renormalization for the vector coupling constant, 
GNV=G, that the hypothesis of vector current conserva­
tion was introduced.11,12 

The vector and the axial-vector form factors of the 
nucleon, CN(S) and <IN(S)7 are, under the universality 
principle, supposed to tend to ZNG as s —* <*> ? where ZN 
is the renormalization constant Z2 for the nucleon.13 I t 
will be convenient to introduce the function defined by 

ZN-t(s) = l-(s-MN>) i (MN+^s'—s—ie 
-ds', (4.1) 

where <rm(s) is one of the spectral functions of Kallen 
and Lehmann for the nucleon propagator: 

/.CO 

SFN' (X) = SFN (%) + / [SF (x,s)criN (s) 
J (MN+V)2 

+AF(x,s)cT2N(s)2ds. 
As we know that 

lim Zjsf~l (s) = ZJST1
 y (4.2) 

we now express the condition that CIN(S) tends to ZNG 
as s —» oo in the form 

lim Z]f~x (s) ax (s) — G. (4.3) 

Similar equations may be written for the form factors of 
other baryons. We thus claim that 

lim Zr1(s)ai(s) = G) (4.4a) 

for i, i=N, 2 , S, and that 

lim Zrm(s)Zx-m(s)aA(s) = G. (4.4b) 

11R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 
(1958). 

12 S. S. Gershtein and I. B. Zel'dovich, Zh. Eksperim. i Teor. 
Fiz. 29, 698 (1955) [translation: Soviet Phys.—TETP 2, 576 
(1956)]. 

13 G. Kallen, Proceedings of the CERN Symposium on High-
Energy Accelerators and Pion Physics, Geneva, 1956 (European 
Organization of Nuclear Research, Geneva, 1956), Vol. 2, p. 187. 
K. Symanzik, Nuovo Cimento 11, 269 (1959); M. Gel-Mann and 
F. Zachariasen, Phys. Rev. 123, 1065 (1961). 
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Let us suppose we know a>i(s) in terms of the axial-
vector coupling constants, GiA, and strong-interaction 
parameters. Then, from the above four equations, we 
may, in principle, determine the G%A's by G (and strong-
interaction parameters). 

The functions Hi(s) are now expressed by G and F. 
What we have to do is to express F by G. I t can be done 
by use of the generalized G-T formula, (3.9), if ZZT^O, 
or by use of the generalized G-T relation, (3.13), if 
Z3=0. In the latter case, however, one is put in a some­
what paradoxical situation because there is one more 
equation, (3.12). If we divide the both sides of (3.12) 
by F, we obtain 

'=/" [: Hi(s) -i 
-!>*(*) <r(s) Ids, 

i F J 
(4.5) 

which should be regarded as a condition imposed on 
strong-interaction parameters.14 

V. SUPPLEMENTARY REMARKS 

I t might be of theoretical interest to see the case of 
a primary pseudoscalar Fermi interaction, although the 
axial-vector character has been established experi­
mentally by the measurement of ir —» n+ v and T—>e+v 
decay rates. As the argument is almost the same as 
before, we shall omit all its detail. Corresponding to 
(3.12) we here have 

Fp= 1 
• / (3/x)2L M2 * 

E <n(s)H*(s) a(s)Fp Ids, (5.1) 
M2 J 

where Fp is the invariant decay amplitude of the pion 
in the case of pseudoscalar coupling and Hip(s) is 
defined in the same way as Hi(s). Therefore, (5.1) has 
self-mass type of divergence if there occurs no cancella­
tion in the high-energy limit. Even when we have a 
condition for cancellation similar to (3.13), (5.1) may 
still have Zz~l type of divergence if Z3 vanishes. Such a 
situation certainly corresponds to the well-known fact 
that in a perturbation-theoretic treatment of pion decay 
one encounters a quadratic divergence for pseudoscalar 
coupling, while one has only a logarithmic divergence 
for axial-vector coupling. 

The final remark is concerned with neutral pion 
decay, 7r° —» 2y. This decay process2 is evidently more 
complicated than that of the charged pion, for two 
photons come out from two different points, while in 
the latter decay a lepton pair come out from a single 
point if we neglect electromagnetic corrections. We shall 
apply, without proof, to the neutral-pion decay the 
method used in the previous sections. 

The invariant amplitude F is defined by 

(4W)1/2(WVI^r|0> 
= ttM,x,€Me/M^[- ( * + * ' ) 2 ] , (5.2) 

where e and e' denote polarization vectors of the two 
photons. We demand that F (s) satisfies an unsubtracted 
dispersion relation: 

F(s) = ~ / 7dsf. (5.3) 

ImF(s) is expressed in terms of matrix notation as 

ImF(s) = (w/s)V(s)9(s)K(s), (5.4) 

where ^-1L(^) denotes the annihilation amplitudes of 
intermediate states into the two photons, the factor s~l 

being separated just to keep a parallelism with 7r-/x 
decay. I t has been assumed here that in the annihilation 
matrix elements the four-momenta and the polarization 
vectors of the two photons form a pseudoscalar in­
variant by themselves, not with the vectors of inter­
mediate states, because the two photons are in a 
pseudoscalar state. 

L(s) are then supposed to satisfy the dispersion rela­
tions of the form 

L(s) 
-K(M2)+ 

l r TteL 

v J(.%„)'sf (s'—s—it) 

1 r b(s>) 
+- / ds', (5.S) 

where a=L(0) and T represents unphysical cuts. The 
last term in the right-hand side of the above equation is 
due to the two-point character of the decay interaction. 
Discarding again CDD ambiguities, one finds 

with 
L ( , ) = = M ( , ) - K ( , ) [ V ( ^ - M 2 ) ] ^ , 

D(*')b(*') 

(5.6) 

14 E. R. McCliment and K. Nishijima, Phys. Rev. 128, 1970 
(1962). 

M(s) = D~l(s)a+-D-1(s) I — — d s ' . (5.7) 
7r J r s'(s'—s—ie) 

ImF(^) is then given by (2.14) with M(s) defined above. 
The difficulty in practice here is that we must express 
a and b(s) in terms of the fine-structure constants and 
strong-interaction parameters, even when D(s) is sup­
posed to be known. 

The rest of the argument is almost the same as before. 
We obtain a generalized G-T formula [see Eq. (3.9)] 
for the decay amplitude when Z3 does not vanish, and 
a generalized G-T relation [see Eq. (3.13)] if it vanishes. 
We may note that although no divergence occurs in the 
lowest order perturbational calculation of w° decay one 
encounters a logarithmic divergence if one takes into 
account the anomalous magnetic moments of the 
nucleons. 
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INTRODUCTION 

THE elastic scattering of positrons by nuclei differs 
from that of electrons. For point nuclei with no 

magnetic moment, Feshbach1 has computed cr+/o-_, the 
ratio of positron to electron cross sections, at a given 
angle and energy. For backward scattering by high-Z 
nuclei, this ratio is « l / 5 and it approaches 1 as the 
scattering angle and the atomic number are made small. 
The effect can be understood in terms of different spin-
orbit interactions arising from the different classical 
trajectories of positrons and electrons scattered through 
the same angle. Alternatively, the effect can be ascribed 
to different distortions of the incident and of the 
scattered waves by the Coulomb field of the nucleus. 
In the first Born approximation, which takes into 
account only 1-photon exchanges, such distortions are 
neglected, and positron and electron scattering are 
identical. The difference in scattering is, thus, a meas­
ure of the importance of the exchange of two or more 
photons. 

For finite nuclei, the difference between positron and 
electron scattering is sensitive to the distribution of 
nuclear charge. Figure 1 shows qualitatively the ex­
pected behavior of the difference in positron and electron 
scattering as a function of the scattering angle 6 for 
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fixed and equal incident energies. The difference is 
characterized by the quantity R, defined by 

i?=(<r_-<r+)/(a_+ (r+), (1) 

where o-_ and 0+ are the differential scattering cross 
sections for electrons and positrons. The initial increase 
of R corresponds to the point nucleus behavior. At 
angles where the classical trajectories begin to penetrate 
the nuclear charge distribution, R becomes negative. In 
terms of the classical trajectories, the deeper penetration 
of electrons into the charge distribution causes the 
electron cross section to become smaller than the posi­
tron cross section. Finally, as the angle is further in­
creased, R oscillates. The de Broglie wavelengths of 
the positrons and electrons differ at the nucleus, and 

(T--0-+ 
R = 

cr_+ cr+ 

FIG. 1. Qualitative 
behavior of the ratio 

_ R as a function of 
0 scattering angle for 

nuclei of finite size. 
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Scattering of 300-MeV Positrons from Cobalt and Bismuth* 
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(Received 16 May 1963) 

Positrons and electrons from the Stanford Mark III linear accelerator have been scattered from cobalt 
and bismuth at 300 MeV. The ratio R, equal to (c_—<r+)/(o-_+o-+), has been measured at a number of 
angles from 10° to 45° for cobalt and from 5° to 45° for bismuth. Two experiments are reported: a hi&h-
percision experiment with poor energy resolution, suitable for measuring the small values of R found at small 
angles, where inelastic scattering is not important; and an experiment with somewhat lower precision but 
better energy resolution, suitable for measuring the larger values of R found at angles where inelastic scat­
tering must be taken into account. The elastic scattering data are in good agreement with phase-shift calcu­
lations of Herman, Clark, and Ravenhall, who used nuclear charge distributions which fit earlier electron 
scattering data. The inelastic data, for which no reliable predictions exist, indicate that î meiastic is generally 
smaller than i?eiastic- This suggests that the inelastic scattering is better described by the first Born approx­
imation, in which R = 0, than is the elastic scattering. 


