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Possible dynamical mechanisms that give rise to the unitary-symmetry mass formula of Gell-Mann and 
Okubo are discussed with special emphasis on a model based on u-y mixing. In addition to accounting for 
the mass formula in a rather natural manner, the cc-<p mixing model has the following distinctive features: 
(1) I t explains why the mass formula fails for the vector meson octet. (2) It requires mp<mM provided 
mnKmR- (3) It leads to | m%—mN\^> | m%—m& \, provided the couplings of the vector mesons to the baryons 
are predominantly of the F type (as expected from the point of view of the conserved-vector-current theory). 
(4) It justifies the conjecture that it is more proper to use, in the mass formula, (mass)2 for the mesons, but 
just the mass for the baryons. (5) The corrections to the mass formula are expected to be of the order of a 
few percent if the major contribution to the self-energies of the strongly interacting states comes from the 
region of a few BeV. A quantitative estimate of the ca-cp mixing is made, and it is shown that the observed 
1020-MeV <p meson (the observed 780-MeV co meson) is about a 60-40 mixture (a 40-60 mixture) in in­
tensity of the T — Q member of a unitary octet and a unitary singlet. We also show that a pair of mass 
formulas of the Gell-Mann-Okubo type are "self-consistent" provided the cutoff momentum (in the per­
turbation-theoretic sense) is much greater than a typical difference within a unitary multiplet. 

AMONG the various schemes of strong-interaction 
symmetry proposed in the past several years, the 

most promising and attractive scheme appears to be the 
"eightfold way" (the octet version of unitary symmetry) 
of Gell-Mann1 and Ne'eman.2 From the theoretical 
point of view, this model is the simplest model of higher 
symmetry that can accommodate vector mesons which 
are coupled to conserved and quasiconserved currents 
of strong interactions.3-6 From the experimental point 
of view, the various strongly interacting states are 
beginning to fit into multiplet patterns characteristic 
of the model.7 

There is, however, little doubt that the real charm of 
the eightfold way lies in the success of the unitary-
symmetry mass formula,8 first derived by Gell-Mann1 

for a unitary octet and, subsequently, generalized by 
Okubo9 to any unitary multiplet. It is now well-known 
that the relations 

\{m +ms) = J(3mA+ms)3 (1) 

mK
2=i(Sm^+m^), (2) 

«(F 1*)- i»( iV r8/2*) = w ( S i / 2 * ) - i » ( F i * ) , (3) 

which follow from the more generalized formula 

m=m0{l+aY+blT(T+l)-iY^}, (4) 
are satisfied to somewhat embarrassing degrees of 
accuracy.1,9,10 We wish to discuss possible mechanisms 
responsible for the success of these simple mass relations. 

II. 
From the group-theoretic point of view, the Gell-

Mann-Okubo mass formula is nothing more than the 
statement that the masses of the members of a given 
unitary multiplet transform like the superposition of a 
unitary singlet and the T=0 member of a unitary octet. 
In the baryon octet case, the Gell-Mann formula (1) can 
also be rewritten so that the sum of the mass terms in 
the effective Lagrangian for the baryons read 

~Lm=fn0 Tr(®8)+wi Tr(Sx8S8)+m2 Tr($$8X8), (5) 
where 

33= 
(SVv2)+(A/V6) 

2 -

(2Vv2)+(A/V6) 

V 

2+ 
(-2jyV2)+(AA/6) 

2 -
-2Vv2)+(A/V6) 

-(2/V6)A 

-(2A/6)Aj 

(6) 

* This work supported by the U. S. Atomic Energy Commission. 
f Alfred P. Sloan Foundation Fellow. 
1 M. Gell-Mann, Phys. Rev. 125, 1067 (1962). (See especially Sec. VIII); California Institute of Technology Synchrotron Laboratory 

Report, CTSL-20, 1961 (unpublished). 
2 Y. Ne'eman, Nucl. Phys. 26, 222 (1961). 
3 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954). 
4 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960). 
5 A. Salam and J. C. Ward, Nuovo Cimento 20, 419 (1961). 
6 M. Gell-Mann and S. L. Glashow, Ann. Phys. (N. Y.) 15, 437 (1961). 
7 See, for example, S. L. Glashow and A. H. Rosenfeld, Phys. Rev. Letters 10, 192 (1963). 
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and 

1 

\5 

1 0 0 

0 1 0 

0 0 - 2 

Note that it is the absence of a term of the type 

Tr($X833X8) 

that enables us to express the four baryon masses in 
terms of the three parameters wo, mi, and m^ leading to 
the nontrivial relation (1). Similarly, the mass formula 

' ' ' for the pseudoscalar mesons (2) is completely equivalent 
to the statement that the sum of the mass terms in the 
effective Lagrangians for the pseudoscalar mesons is 
given by 

-ZW=M 0
2 Tr((P(P)+Mi2 Tr((PX8(P) , (8) 

where 

(P= 
(TV>0)+(I7/V6) 

T 

[ K~ 

T+ 

(-xyv2)+(„A/6) 
K° 

K+ 
K° 

-(2/VVv 
(9) 

Because of charge conjugation invariance which requires 
that K and K (but not N and S) be degenerate, Eq. (8) 
contains one less parameter than Eq. (5). 

Before we consider various (fictitious and realistic) 
models that lead to (5) and (8), let us first observe that 
the success of the mass formula would be much less 
surprising in the symmetric Sakata model11 than in the 
octet version of unitary symmetry. In the Sakata model, 
the most natural cause for the breakdown of unitary 
symmetry is the mass difference between N(=p,n) and 
A, analogous to (and as mysterious as or no more 
mysterious than) the \x—e mass difference.12 If we start 
with a symmetry-breaking term in the Lagrangian of 
the form 

—|(WA~ mN){pp+nn—2AA) 
= - C(WA- mN)/\/f$>\Jb, (10) 

where 

w 
b= \n , d=(p,n,A), 

[AJ 
then bound states constructed out of fundamental 
Sakata particles and anti-Sakata particles, such as the 
pseudoscalar mesons, are expected to satisfy the Gell-
Mann-Okubo mass formula, provided the forces re­
sponsible for binding the Sakata particles and the anti-
Sakata particles are unitary symmetric. (We may con­
ceive of an analogous situation in nuclear physics; if the 
binding energies of the nucleons in nuclei were inde­
pendent of electric charge so that the only isospin 
violating effects were due to the n-p mass difference, 
then the members of a nuclear isospin multiplet would 
satisfy a simple mass formula linear in the third com­
ponent of isospin TV) Even in the octet version of 
unitary symmetry, it is possible to give an entirely 
analogous "derivation" of the mass formula (1) by re­
garding the baryon octet as the bound state of two 

11 M. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys. 
(Kyoto) 22, 715 (1959); Y. Yamaguchi, Suppl. Progr. Theoret. 
Phys. (Kyoto), 11, 1 (1959); J. Wess, Nuovo Cimento 153 52 
(1960). 

12 A. Gamba, R. E. Marshak, and S. Okubo, Proc. Natl. Acad. 
Sci. U. S. A. 45, 881 (1959). 

fictitious unitary triplets, one transforming like the 
representation 3, say (D+,D°,S°) with baryon number 
one and MD^MS, and the other transforming like the 
representation 3*, say (<5~,5°,cf0) with baryon number 
zero and mh9^ma.

lz Such a "derivation," however, does 
not seem realistic since, in the octet version of unitary 
symmetry, the primitive unitary triplets themselves do 
not correspond to physically realizable states. 

An alternative approach to the unitary-symmetry 
mass formula has been advocated by Okubo9 who starts 
by postulating the existence of a symmetry-breaking 
Hamiltonian HA that transforms like the T—Q member 
of a unitary octet. The mass formula then follows to 
first order in HA, but to all orders in unitary-symmetric 
Hamiltonians Hs. 

As an example of a symmetry-breaking interaction 
that satisfies the Okubo criteria, let us consider a model 
in which the t\ meson is a "schizon" in the sense of 
SU(3) [just as the photon is a "schizon'' in the sense 
of SU(2)2- The usual unitary-symmetric interaction be­
tween the pseudoscalar octet and the baryon octet can 
be written as 

Ls=gi Tr($m(P«)+g2 Tr($;T593(P). (11) 

Let us add to (11) another interaction, 

ZW*Tr(8m»). (12) 

In (11) the rj meson appears as the T=0 member of the 
pseudo-scalar octet, whereas in (12) it appears as a 
unitary singlet; or, alternatively, if we always regard the 
rj as the T=0 member of the pseudoscalar octet, then 
(11) transforms like a unitary singlet, while (12) trans­
forms like the T=0 member of a unitary octet. By 
considering baryon self-energy diagrams, it is easy to 
see that the combined effect of (11) and (12) would lead 
to the Gell-Mann mass formula (1) to first order in g'y 

but to all orders in g\ and g2 provided the eight baryons 
are degenerate to start with. 

We may parenthetically remark that we would not, 

13 J. J. Sakurai, in Proceedings of the 1962 International Summer 
School of Physics uEnrico Fermi" Varenna, Lake Como (to be 
published). 
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<X>o4l° FIG. 1. Tadpole diagram that may 
/ give rise to the unitary-symmetry 

mass formula. 

in general, obtain a mass formula of the Gell-Mann-
Okubo type if unitary symmetry were violated in a 
random way. For instance, by taking seriously the once 
popular idea that the pion-baryon couplings are 
"strong," we may increase uniformly all pion-baryon 
coupling constants that appear in (11) leaving the K 
baryon and the rj baryon coupling constants unchanged; 
the result we get for the baryon mass levels in lowest 
order is quite different from the Gell-Mann relation 
(l).14 Indeed, the most remarkable aspect of the "eight­
fold way" is not so much the approximate symmetry 
itself, but the singularly elegant way in which the 
symmetry is broken. 

As another, perhaps more esoteric, example, let us 
consider a model in which we postulate the existence of 
a scalar meson octet, say ir\ K', K', %'? a n (3 the non-
invariance of the physical vacuum under unitary sym­
metry. In such a model, the vacuum expectation value 
of the r = 0 x ' field may not necessarily vanish; if so, 
the famous "tadpole" mechanism,15-17 symbolically 
represented by Fig. 1, will give rise to the unitary-
symmetry mass formula. 

III. 

None of the mechanisms discussed in the previous 
section appear to simultaneously satisfy the require­
ments of aesthetical appeal and physical plausibility. 
In fact, until recently, it has been rather difficult to 
construct a realistic symmetry-breaking interaction that 
gives rise to the Gell-Mann-Okubo mass formula. 
(Okubo himself gave no examples of HA in his paper.9) 
Fortunately, the very recent discovery of the 1020-MeV 
meson by the BNL-Syracuse group18 with exactly the 
same quantum numbers ( r = 0 , JPG=1 ) as the 780-
MeV co meson enables us to construct a more natural 
and realistic mechanism that may account for the 
success of the Gell-Mann-Okubo mass formula. 

Whenever we have two strongly interacting states 
with the same quantum numbers, it is, in general, im­
possible to prevent mixing between them unless there 
exists a strict selection rule that forbids such a mixing. 

14 In the first paper of Ref. 10, S. L. Glashow and J. J. Sakurai 
state that the mass formula follows to lowest order in any sym­
metry breaking interaction. This statement is obviously incorrect. 
In contrast the global-symmetry mass formula of M. Gell-Mann 

Phys. Rev. 106, 1296 (1957)] and D. Kleitman [Phys. Rev. 
07, 1453 (1957)] i(wAr4-ws)=i(wA+3w2) is true to lowest 

order in any asymmetric K couplings. 
16 J. Schwinger, Ann. Phys. (N. Y.) 2, 407 (1957). 
16 A. Salam and J. C. Ward, Phys. Rev. Letters 5, 390 (1960). 
17 A. Salam, Rev. Mod. Phys. 33, 428 (1961). See also J. Gold-

stone, Nuovo Cimento 19, 154 (1961). 
18 L. Bertanza, V. Brisson, P. L. Connolly et at. Phys. Rev. 

Letters 9, 180 (1962); P. Schlein, W. E. Slater, L. T. Smith, D. 
H. Stork, and H. K. Ticho, ibid. 10, 368 (1963); P. L. Connolly 
JE. L. Hart, K. W. Lai et al.} ibid. 10, 371 (1963). 

In the case of co and <p, exact unitary symmetry will 
forbid o)-(p mixing, but we know that in the real world, 
unitary symmetry is only approximate. So the observed 
780-MeV co meson and the 1020-MeV <p meson are 
expected to be linear superpositions of the form 

| ^ ) = cosX|^^)+sinX|co(0)), 

|a>)=-sinX|^°>>+cosX|«<°>), (13) 

where co(0) transforms like a pure unitary singlet, and 
(pi0) is the T=0 member of a pure unitary octet (whose 
other members are p ^ 0 , M+>°, M~y and M°). In writing 
down (13), we have assumed that there are no vector 
mesons other than p, M, M, cp, and co. The observed co 
and cp are, of course, eigenstates of the mass-squared 
operator which is diagonal in the cp-a) representation. 
On the other hand, the mass squared operator is not 
diagonal in the <^(0)-co(0) representation. 

More formally speaking, the two Proca equations for 
the <p(0) and co(0) "fields" (which are assumed to be 
coupled to conserved currents) can be written as 

/V 0 ) \ /V 8 ) \ 
(•2-$0i2)( )= - ( )' (14) 

W°>/ \/M<i>/ 
where 

W=( f ) . (15) 
\ tn<pj m^V 

Here j y 8 ) and 7M
(1) respectively transform like the 

r = 0 member of a unitary octet and a unitary singlet. 
The off-diagonal elements m^J (which can be taken as 
real and positive in the stable-particle approximation 
by suitably adjusting the phase of the <^(0) state) 
characterize the strength of the transition 

<p(°)<=±co(0). 

In the Hamiltonian formalism, the presence of nt<pj in 
W2 implies the existence of a symmetry-breaking 
interaction 

^ = | w ^ V ° V 0 ) + ^<0V0)>. (16) 
We are not necessarily suggesting that there exists 

a "fundamental" interaction of the form (16) in our 
Lagrangian. I t may well be that exact SU(3) symmetry 
is dynamically unstable against co-<p mixing, and a 
phenomenological interaction of the form (16) emerges 
"spontaneously," even though the theory itself is com­
pletely symmetric to start with, along the lines sug­
gested by Heisenberg,19 Nambu,20 Baker and Glashow,21 

and many others. In any case, from an immediate 
practical point of view, it does not make too much 

19 W. Heisenberg, Z. Naturforsch. 14, 441 (1959). 
20 Y. Nambu, in Proceedings of the 1960 Annual International 

Conference on High-Energy Physics at Rochester, edited by E. C. 
G. Sudarshan, Z. H. Tinlot, and A. C. Melissinos (Interscience 
Publishers, Inc., New York, 1960) p. 858; Y. Nambu and G. 
Jona-Lasinio, Phys. Rev. 122, 345 (1961). 

21 M. Baker and S. L. Glashow, Phys. Rev. 128, 2462 (1962). 
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difference whether we regard (16) as "fundamental" or 
"phenomenological." 

In the subsequent sections, we calculate the self-
energies of the various strongly interacting particles by 
taking (16) seriously. To the extent that (16) satisfies 
the Okubo requirement of transforming like the T=0 
member of a unitary octet, it is of no surprise that we 
obtain the Gell-Mann-Okubo mass formula in lowest 
order. But as we go along, we will encounter other 
interesting features unique to the oo-<p mixing model. 

IV. 

Let us start with the self-energies of the pseudoscalar 
mesons. Using charge conjugation invariance and 
unitary symmetry, we readily see that the only simple 
diagrams (involving two-particle intermediate states) 
that give rise to lowest-order violations of unitary sym­
metry are of the type shown in Fig. 2(a). Now, the 
trilinear interaction between the pseudoscalar meson 

The couplings among the vector octet, the pseudoscalar 
octet, and the vector singlet are also unique: 

gou(0)Tr((TO). (19) 

The space properties of the vertices in both cases must 
be of the form 

t W / ^ ^ x ^ ^ , (20) 

where ¥l) (&(2)) and e(1) (e(2)) refer to the four-mo­
mentum and the four-polarization vector of the vector 
meson 1 (2). Using 

= 2 / v 3 : - l / v 3 : - 2 / v 3 , (21) 

which follows from (17), we can readily write down the 
self-energies for the pseudoscalar mesons due to Fig. 2(a): 

dmK
2= - (l/v3)go£im,co2/(1), (22) 

8mv
2^-(2/^)gogim,JI^, 

where 7(1) is an integral common to all three meson 
states. Eq. (22) is, of course, completely equivalent to 
the mass formula (2). Note that it is (mass)2, rather 
than just the mass that arises naturally, in agreement 
with Feynman.22 

We now consider the vector-meson octet. We again 
have only one kind of simple symmetry-breaking dia-

R. P. Feynman (private communication). 

FIG. 2. Mechanism re­
sponsible for the mass for- (a) 
mula for the pseudoscalar (o) . . 
mesons (a) and the vector w _ / > / w 0 a v J 
mesons (b). ^^^^JT ^ ^ x ^ 

7T,K,7? 

(b) 

octet and the vector meson octet of the pseudoscalar-
vector-vector form is unique; it must necessarily be the 
kind Gell-Mann calls the D type: 

v2g1[Tr(eU(PeU)+Tr(eUeU(P)] = 2^2gx Tr(W)(P), (17) 

where 

grams, as shown in Fig. 2(b). Using (21), we obtain 

8mP
2=(2/^)g0gim^JI^, 

8mM
2= - (l/^3)gogmvJI(2), (23) 

5[m^o)]2== -(2/V3)g0gm^2I™, 

leading to 
^ 2 = i { 3 [ ^ ^ ] 2 + w p

2 } . (24) 

There is a well-known theorem based on the Lehmann 
spectral representation that states that the self-energies 
of interacting bosons must be negative.23-25 In our case, 
the sign of g0 and gi are not known, and this general 
theorem is not directly applicable. However, we know 
that the general theorem would be applicable if the 
internal <^(0) line were replaced by an co(0) line (which 
physically means that we are considering an co(0)-a>(0) 

junction due to, say, baryon pairs, in place of the 
coco)-^(0) junction). So both 7(1) and J(2) must be nega­
tive. Since the coupling constants g0 and gi are common 
to Figs. 2(a) and 2(b), we get the interesting result 

(mM—mp)(mK—m7r)>0. (25) 

In other words, if we take seriously the idea that the 
meson mass differences within the unitary multiplets 
are due to Fig. 2(a) and 2(b), then we can actually 
"predict" that the M ( = K* SS8) mass must be higher 
than the p(750) mass, provided the K(495) mass is 

23 H. Lehmann, Nuovo Cimento 11, 343 (1954). 
24 W. E. Thirring, Principles of Quantum Electrodynamics 

(Academic Press Inc., New York 1958), Chap. 14. 
25 K. Johnson, Nucl. Phys. 25, 435 (1961). 

V = 
(p0/V5) + (^(0)/v/6) 

P 
M-

p+ 

(-p%2)+(^>A/6) 
M° 

M+ 
M° 

-(2/V6V0) 
(18) 
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•<f (!0!9) 

(o) ' 
*f J(930) ' 

M(888)-

o>(o) (870) \ 

/>(750)-

M(888) 

V w(782) 

p(750) 

FIG. 3. Energy-level diagram for the vector mesons. 

higher than the 7r(137) mass. This agrees with 
observation. 

Equation (24) gives a <p(0) mass of 930 MeV when 
the observed p and the M mass are substituted. This 
value is to be compared with the observed <p and co mass 
of 1020 and 782 MeV, respectively. It has already been 
argued that this discrepancy may be attributed to 
u-(p mixing.1,26 

In the presence of a strong oo-<p mixing we cannot 
directly observe m/°K But from the computed m/0 ) 

and the observed mu and m9 we can solve for the mixing 
angle X that appears in Eq. (13). All we have to note is 
that the matrix 

/ cosX sinX\ 
( (26) 
\ — smX cosX/ 

transforms the SDl2 matrix (15) into the diagonal form, 

fmj- 0 

m ( 0 ) 2 _ 

fm2 0 \ /m^+m^2 0 \ 

\ 0 mjJ \ 0 mJ-^-m^) ' 
(27) 

Solving this straightforward eigenvalue problem, we 
have 

tan2X= . (28) 
2w^(0)2—m^+mj 

Numerically we obtain X«38°. This means that the 
observed 1020-MeV <p mseon is the T=0 member <p(0) 

of the vector-meson octet 61% of the time (in intensity) 
and the unitary singlet co(0) 39% of the time.27 It is 
important to note that despite the approximate mass 
degeneracy between co and p, the 782-MeV co meson is 
the r = 0 member of the vector meson octet only 39% 
of the time. Figure 3 summarizes the situation. 

26 J. J. Sakurai, Phys. Rev. Letters 9, 472 (1962). 
27 This point has been discussed independently by J. Kalckar 

(to be published). 

From a more practical point of view, a knowledge of 
X is of some interest in connection with the partial 
decay width of the process 

<P->K+K. 

Previously, we have remarked that the partial width 
for this process would be 3.2 MeV if the <p were the 
r = 0 member of the vector-meson octet, and zero if the 
<p were a unitary singlet.26 A mixing angle of 39° then 
implies 

T(<p~>K+K)~ 1.9 MeV, 

which is not in contradiction with the data of the 
BNL-Syracuse and UCLA groups18: 

r t o t« l - i + 2 MeV (r t ot>0) BNL-Syracuse 

r t o t<5 MeV UCLA 

T(<p-+ p+w)/T(<p -»K+K) =0.35±0.2 BNL-Syracuse 

We now turn our attention to the baryon mass 
differences. As far as the couplings of the unitary-singlet 
vector meson co(0) to the baryons are concerned, there 
is no ambiguity; omitting the 7M's and the o>'s, we have 
the unique form 

/ W 0 ) Tr($23) 
= fBui0)[pp+nn+AA+2+2+-{ ] . (29) 

Note that it is impossible to couple the co(0) meson to 
bilinear vector currents constructed out of the pseudo-
scalar fields in a unitary symmetric way and that at 
zero-momentum transfer, the o> couplings of the type 
(29), as well as couplings of the type w(0) Tr((TO), 
[cf., Eq. (20)] vanish. So the unitary-singlet vector 
meson o)(0) is precisely the kind coupled "universally" 
to the baryon current.4,28 

In constrast to the couplings of the unitary singlet, 
the couplings of the vector meson octet to the baryon 
octet are not unique. Omitting the YM'S and the o^/s, 
we have,1 for the effective Lagrangian, 

+ (1-
As is well known, one of the most attractive features of 
the octet version of unitary symmetry is that it can 
accommodate, in a very natural and elegant manner, 
the vector mesons coupled to the exactly conserved 
isospin and hypercharge currents3'4,29 together with 
strangeness-bearing M mesons coupled to partially 
conserved strangeness-changing currents. In order that 
this attractive feature be realized, however, the y^ 
couplings of the D type must necessarily vanish at 

- j8)Tr(»0»-®»D)]. (30) 

28 Y. Fujii, Progr. Theoret. Phys. (Kyoto) 21, 232 (1959). 
29 In contrast, in the vector meson theory of A. Salam and J. C. 

Ward6 based on the symmetric Sakata model, the T — 0 member 
of the vector-meson octet is not coupled to the rfypercharge 
current. 
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zero-momentum transfer, or in the language of (30), 
P must be zero for the Dirac form factor at zero-
momentum transfer. Even within the framework of such 
a theory, it is possible that the YM couplings at finite 
momentum transfer and the o> couplings contain D 
type components, especially if the couplings of the 
pseudoscalar octet to the baryon octet involve a mixture 
of D and F (as suggested by the dynamical calculations 
of Martin and Wali,30 Cutkosky,31 and others32,33 based 
on the idea that the observed / = f + baryon isobars are 
due to attractive forces generated by Yukawa-type 
couplings of the pseudoscalar mesons) or, more generally 
speaking, if R (hypercharge-reflection) invariance is 
violated. We may recall that a similar situation exists 
in the couplings of the A^ field to the neutron; although 
the 7M coupling of the photon to the neutron must be 
strictly zero at zero-momentum transfer, its o> coupling 
need not (and, in fact, does not) vanish. 

We calculate the baryon mass differences using 
Fig. 4(a) to obtain 

5m^=M[v3( l - ^ ) - ( ^ /v3 ) ]w^ 2 / ( 3 ) , 

8mA= - ( 2 / ^ M ) m ^ 2 / < 3 > , 

5 W s =:(2/^ /v3)m^ 2 / ( 3 ) , 

5 m s = M C - ^ ( l - « - ( / 5 / v 3 ) > ^ 2 / ( 3 ) , 

where 0, y, and fB now represent some kind of "over-all" 
mixing parameter and coupling constants that simulate 
and average over the effects due to the y^ and the o> 
couplings with appropriate form factors. Equation (31) 
immediately gives the Gell-Mann mass formula (1). 

It is interesting to note that if we had pure F-type 
couplings (corresponding to 0=0) for both the YM and 
GnV couplings for all q2, then we would have an equal 
spacing rule 

w = m 0 ' ( l + a ' F ) , (32) 

even for the baryon octet with A and 2 being degenerate. 
The actual experimental situation is not too far from 
this: 

WE—w* = 380 MeV, 

W S - W A = 75 MeV. 

If we solve for the "average" mixing parameter 0 in 
(31) using the observed baryon mass differences, we 
obtain 

0«-O.4, 
(fr/l-/3)2~0.09, 

which corresponds to a mixing angle of 78° (to be com­
pared with 90° for pure F; 0° for pure D) in Cutkosky's 
notation.31 In obtaining this value we have ignored 
many effects; for instance, the internal baryon line in 
Fig. 4(a) may be replaced by a line corresponding to 

30 A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963). 
31 R. E. Cutkosky (to be published). 
32 R. H. Capps, Nuovo Cimento 27, 1208 (1963). 
33 Y. Hara and Y. Miyamoto (to be published). 
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any baryon isobar that transforms like a unitary octet 
(fortunately, the lowest-lying 7=f+ isobars, being 
members of a decuplet, do not contribute). For this 
reason, it might not be too meaningful to attach much 
significance to our numerical value of /?. It is, however, 
gratifying from the conserved-vector point of view that 
the Jf̂ -type couplings are dominant, on the average, if 
we take Fig. 4(a) seriously. 

Before we leave the subject of the stable / = J + baryon 
octet, we briefly comment on the electromagnetic-mass-
difference formula of Coleman and Glashow34: 

m(S~)~m(S°)+m(n)-m(p)^m(i:-)-m(X+), (33) 

which gives a E~~—E° mass difference of 5.2 MeV, in 
rough agreement with the very preliminary experi­
mental data.35,36 The point of view that the mass 
differences within a unitary multiplet are due to oo-p 
mixing naturally leads us to the speculation that the 
mass differences within an isospin multiplet are also due 
to vector-particle mixings. To the extent that p°, co, <p, 
and the photon are all vector particles with Q=0, 
C- — 1, 7 P =1~, electromagnetic mixing among them, 
e.g., p° —» 7 —» co, may be appreciable.37 For this reason, 
it is conceivable that mechanisms of the type shown in 
Fig. 4(b), which lead to the Coleman-Glashow formula 
irrespective of the relative strength of the p°<->7, 
w(o) <_» y^ (̂o) <_> y amplitudes, may account for the 
major parts of the electromagnetic mass differences 
within isospin multiplets. 

VI. 

It has already been suggested that the low-lying 
/ = § + baryons #8/2*(1235), 7^(1380), and 3i/2*(1530) 
belong to the tenfold representation of SU(3) together 
with a metastable F=—2, T=0 hyperon predicted at 
1685 MeV. The mass formula for this representation 
reduces to the famous equal-spacing rule (32), which 
seems to be very well satisfied. 

More recently, Martin and Wali30 have performed an 
approximate multichannel N/D calculation to obtain 

34 S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423 
(1961). 

35 F. Solmitz, Bull. Am. Phys. Soc. 7, 610 (1962): D. H. Stork, 
ibid. 8, 46 (1963). 

36 J. Leitner (private communication), based on the work of 
the BNL-Syracuse group. 

37 See, for example, S. L. Glashow, Phys. Rev. Letters 7, 469 
(1961); Y. Nambu and J. J. Sakurai, ibid. 8, 79 (1962), 
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the positions, as well as the widths, of the / = f + 

baryons. In their calculations, N is approximated by the 
Born matrix corresponding to the exchange of baryons 
in pseudoscalar meson-baryon scattering amplitudes, 
and the dynamical J=%+ resonances emerge as zeros 
of the determinant of D. The observed asymmetric 
masses of the pseudoscalar mesons and the baryons and 
unitary-symmetric coupling constants are used as input 
parameters. Their work indicates that the calculated 
positions for the J=f + isobars satisfy the equal-spacing 
rule to an accuracy of about 30%. 

On the other hand, it is likely that the observed 
masses of the / = f + baryons satisfy the equal-spacing 
rule much more exactly than such N/D calculations 
indicated. Therefore, it is worth examining an alterna­
tive approach to the mass levels of the J= f + decuplet. 

Unlike Martin and Wali, we do not propose to 
"explain" the existence of the J = § + decuplet. Instead, 
let us just assume that the / = f + baryons exist and that 
they are degenerate before we turn on u-cp mixing. We 
again compute the self-energy contributions from dia­
grams of the type Fig. 4(a) where the J=%+ baryons 
are now replaced by 7=f+ baryons. Now, in contrast to 
(30), the unitary symmetric couplings of the vector-
meson octet to the bilinear currents formed out of the 
/ = § + decuplet turn out to have a unique form. This 
follows from the decomposition 

10X10*= 1+8+27+64 , (34) 

in which the 8 appears only once. (In contrast the 8 
appears twice in the decomposition of the product 8X8.) 
Meanwhile, the idea that the <p(0) is coupled to the 
hypercharge (which transforms like the T=0 member 
of a unitary octet) is consistent with unitary symmetry 
(even though it is not necessarily required by it). Since 
there is only one way to couple the <p(0) to the baryon 
decuplet, the strength of the coupling of the (p(0) to the 
/ = § + baryon must necessarily be proportional to the 
hypercharge Y in any theory based on the octet version 
of unitary symmetry. As for the unitary singlet co(0), it 
must, of course, be coupled "universally" to each mem­
ber of the 7=f+ decuplet. Therefore, our co-cp mixing 
model immediately gives the equal-spacing rule (32). 

VII. 

We have succeeded in obtaining various mass 
formulas of the Gell-Mann-Okubo type by considering 
graphs in which the a>(0)-<p(0) junction appears only 
once. The reader may naturally ask: What about the 
corrections to the mass formulas due to graphs in which 
the co(0)-<£>(0) junction appears more than once. 

In our model, the problem of justifying the unitary-
symmetry mass formula is essentially the same as the 
problem of justifying perturbation theory with the 
perturbation Hamiltonian 

where the coupling constant m^J is numerically equal to 

m^J^m^-lm^J^O.n BeV2. 

Therefore, the dimensionless constant that characterizes 
the strength of the perturbation is 

fn<pj/(m2)&v 

where (w2)av is some characteristic-mass squared. The 
larger (w2)av is, the less surprising will be the success of 
the mass formula. 

The self-energy diagrams considered in the previous 
sections are badly divergent.38 So just from dimensional 
considerations, we see that diagrams in which the 
co<0>-̂ <-> junction appears twice are less divergent than 
similar diagrams in which the w(0)-<p(0) junction 
appears only once, by a factor of m^J/A2, where A is of 
the order of the cutoff momentum, or, more generally, 
the typical virtual momentum responsible for the 
dominant contributions to the self energies. With A 
of the order of 2 BeV/c, we have 

which is not very large [especially if we recall that the 
right-hand and left-hand sides of the Gell-Mann 
formula (1) differ by as much as 7 MeV which is to be 
compared to the observed AN mass difference of 175 
MeV]. In other words, we have a plausible explanation 
of the success of the Gell-Mann-Okubo mass formula, 
provided the major contributions to the self-energy 
integrals come from virtual momenta of the order of 
a few BeV/c or greater. 

VIII. 

So far, we have considered only diagrams with 
co(0)-<p(0) junctions. Once we have mass differences in 
one unitary multiplet, diagrams that may "look" uni­
tary symmetric can produce symmetry-violating effects 
in some other unitary multiplet. For this reason, let us 
study, as an example, the effect of the baryon mass 
differences on the pseudoscalar meson self energies. 

We have, for the self energies of the ith. meson, 

8m 
/* (2T¥ J 

XTr 75-
1 1 

-75-
iy - p+mj iy -(p—k)+mk 

(35) 

where m3- and mk refer to the actual asymmetric masses 
of the jth and &th baryons that appear in the lowest-
order self-energy diagram. Let us expand the baryon 

38 The only exception to this remark is the baryon diagram of 
Fig. 3(a) with pure 7^-type couplings. 
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propagator in powers of mass differences as follows: 

1 1 

iyp+nij iyp+niB 

dnij (Snij)2 

- + , (36) 
(iyp+niB)2 (iy'p+mB)z 

drnj^Mj—fUB, 

where WIB is some reference mass which may be taken 
to be K^iv+ws). We can then write 

+ E Cm^(dmj)(8mk)I2+ • • • , (37) 

where C;(0), C#(1), and Cijk(2) can be expressed in terms 
of the coupling constants gijk, and Io, Ii, and 1% are 
integrals that depend only on MB and the cutoff A. 

If gijk2 satisfy the requirements imposed by unitary 
symmetry, the zeroth-order term Ct-

(0)/o is independent 
of i and does not give rise to meson mass differences. 
It is easy to show (by group-theoretic considerations 
or by explicit calculations) that the first-order term 
XL* Ci3

xi)dmjli gives rise to the meson mass differences 
that satisfy the octet mass formula (2) provided we 
start with the baryon mass differences that satisfy the 
mass formula and the coupling constants that obey 
unitary symmetry. Conversely, if we start with the 
pseudoscalar mesons whose mass differences satisfy the 
mass formula, then we can generate, by considering 
baryon self-energy diagrams, baryon mass differences 
that satisfy the mass formula (1) to first order in hm?. 
Thus, a pair of mass formulas of the Gell-Mann-Okubo 
type are "self-consistent" if we terminate the series at 
this stage. 

It is crucial to note the degrees of divergence of the 
integrals that appear in (37). The zeroth-order term is 
quadratically divergent; the first-order term, which is 
really responsible for the mass formula, is only linearly 
divergent; the second-order term, which violates the 
mass formula, is only logarithmically divergent; and the 
rest gives convergent results. In other words, the correc­
tions to the mass formula are expected to be of the 
order of dnij/A. So, once again, for large values of A, 
the success of the Gell-Mann-Okubo formula is not 
too mysterious.39 

Although we have used the language of perturbation 
theory both in this section and in the previous sections, 
we feel that, even in a more realistic treatment of the 
mass-difference problem, one of the necessary conditions 
for the success of the unitary-symmetry mass formula is 

89 S. L. Glashow [Phys. Rev. 130, 2132 (1963)] also emphasizes 
the role played by the smallness of 8mj/A in his attempt to 
understand the success of the mass formula within the frame­
work of a four-fermion model in which unitary symmetry is 
broken "spontaneously." 

the existence of substantial contributions from high-
energy or high-mass states. 

IX. 

To summarize, we have shown that co-<p mixing pro­
vides a very natural symmetry-breaking mechanism 
that leads to the mass formula of Gell-Mann and Okubo. 
Some of the distinctive features of our model are the 
following: 

(a) The model does not require the existence of any 
additional particle or resonance yet to be discovered. 

(b) We must have mp<mM provided mr<mK^ where 
Figs. 2(a) and 2(b) are assumed. 

(c) The failure of the mass formula for the vector 
mesons is not surprising. 

(d) The model leads to \m%—m^\^\m^—mt\ pro­
vided the couplings of the vector mesons to the baryons 
are predominantly of the F type (as expected from the 
conserved-vector-current point of view), where Fig. 4(a) 
is assumed. 

(e) The mass formula of Coleman and Glashow can 
be explained along similar lines. 

(f) We can justify the conjecture that it is more 
proper to use, in the mass formula, (mass)2 for the 
mesons and just the mass for the baryons. 

(g) The corrections to the mass formula are expected 
to be of the order of a few percent if the major contribu­
tions to the self-energies of strongly interacting states 
come from the region of a few BeV. 

We have also shown in Sec. VIII that there is some 
kind of "self-consistency" between a pair of unitary-
symmetry mass formulas provided contributions from 
high energies play important roles in determining the 
mass spectrum of strongly interacting particles. 

We have not explained why there is u-<p mixing to 
start with. But this might no necessarily be regarded as 
a defect of the model; after all, nobody has succeeded in 
explaining why the electromagnetic couplings destroy 
charge independence in such a way that Q is equal to 

Note added in proof. In writing down Eq. (27) we 
have assumed that w/0)2=wu

(0)2 . More precisely, we 
should have 

w^=Kww
( 0 ) 2+w^°> 2 )+[^ 

This, however, does not significantly affect our numeri­
cal values of X and w^w

2. Meanwhile 00— <p mixing has re­
cently been discussed by a number of authors: S. Okubo, 
Physics Letters 5, 165 (1963); S. L. Glashow, Phys. 
Rev. Letters 11,48 (1963); J. Ginibre (to be published). 
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