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A method is presented for calculating the time-dependent irreducible clusters, 8,(f) which appear in the
kernel of the equation of evolution derived in the preceding article. The clusters 8:(f) and B.(¢)—which
correspond to binary and ternary collisions, respectively—are calculated in detail. They are each found to
divide into the two following parts: (1) a “completed’ collision part which corresponds to collisions which
are eventually completed (scattering processes) and (2) an “incompleted” part which corresponds to those
collisions not completed by time ¢. The incompleted collision parts contribute to the “memory” of the
equation of evolution and are shown to be relatively small when ¢ is large. The completed collision parts,
which play a central role in the theory of transport coefficients, are time-independent scattering operators in
momentum space and do not contribute to the memory. By means of the “binary-collision expansion” a sys-
tematic method is presented for the calculation of the three-body scattering operator [lim;.,. t782(f)]
which is directly applicable to interaction forces with infinite repulsions. An approximate formula is then
derived for this scattering operator in a form which can be readily used to calculate the density correction

to transport coefficients which arise from ternary collisions,

I. INTRODUCTION

HE kernel of the equation of evolution derived

in the preceding article! involved time-dependent
irreducible cluster integrals 8,(¢) which correspond to
multiplet collisions in configuration space. The purpose
of the present article is to indicate how these time-
dependent cluster integrals (collision integrals, scat-
tering operators) are calculated in general, and to
calculate Bi(¢) (binary collisions) and B.(¢) (ternary
collisions) in detail.

These cluster integrals are important for two reasons:
(1) The kinetics of approach to equilibrium is deter-
mined by the time dependence of the cluster integrals
Bs(£).r (2) Macroscopic transport coefficients may be
determined by the scattering operator

lim 3 8./(0).

t—>o00 s=1

Several authors? have discussed various forms of the
asymptotic three-body operator B8.’'(«). By integrating
B2’ (=) over all particle momenta but one, we obtain
the operator which appears as the density correction
in Green’s Boltzmann equation. The relationship be-
tween the latter operator and the first density correction
to transport coefficients for homogeneous systems has
been derived by Choh and Uhlenbeck, and a comparable
result for transport coefficients has been recently
obtained by Zwanzig, from a different approach. The
three-body operator discussed by Resibois may be
viewed as the expansion of Green’s operator in powers
of the interaction potential.

In none of the above references, it will be noted, has
an attempt been made to calculate the three-body
scattering operator, nor has the time dependence of
the general operator 8y’ (f) been considered.

In this article we shall present a systematic method
for the calculation of the three-body scattering operator

1 J, Weinstock, preceding paper, Phys. Rev. 132, 454 (1963).

B'(«) which is directly applicable to interaction
potentials with infinite repulsions. We shall then obtain
an approximation for B8:'() in a form which can be
readily used to calculate the density correction to
transport coefficients which arise from ternary collisions.

We shall also determine the time dependence of 81 (¢)
and Bs(¢) by means of the binary-collision expansion.
We shall find that 8:(f) and Bs(¢) each divide into a
completed collision part and an incompleted collision
part. The completed collision part corresponds to
scattering processes and plays a central role in the
theory of transport coefficients. The incompleted colli-
sion part corresponds to those collisions which are not
completed by time ¢ and contribute to the “memory”
of the equation of evolution. The latter part is shown
to be relatively small when ¢ is large.

In Sec. ITIA and IIB we calculate B1(¢) and Ba(f).
In Sec. III we determine the explicit relationship
between incompleted collisions and the memory of the
equation of evolution. There we also find disagreement
with Resibois” claim that only situations in which all
three particles are simultaneously interacting play a
role in the asymptotic three-body scattering operator.
In Sec. IV we devote our attention to the three-body
scattering operator

By ()= Eim[fhlﬁz 7.

II. CALCULATION OF TIME-DEPENDENT
CLUSTER INTEGRALS §;(¢)

A. Calculation of 3:(¢)

The cluster integral 8:(¢) has previously been calcu-
lated under the assumption that binary collisions are
instantaneous.® This is equivalent to calculating

2 M. S. Green, Physica 24, 393 (1958); S. T. Choh and G. E.
Uhlenbeck, Navy Theoretical Physics, Contract No. Nonr
1224(15), University of Michigan, 1958; R. Zwanzig, Phys. Rev.
129, 486 (1963); P. Resibois, J. Math. Phys. 4, 166 (1963).

3 R. Brout, Physica 22, 509 (1956).
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THREE-BODY SCATTERING OPERATOR

lim st B81(£). We shall not make this assumption.
Instead, we shall calculate Bi(¢) very carefully and
determine the effects of the finite duration of a binary
collision upon the time dependence of B1(¢) as follows.

We combine Egs. (26) and (12) of Ref. (1) to obtain,
with g(0)=g(P,P,,---) denoting any function of the
initial momenta of the particles of a system such that
B1(£)g(0) converges,

305 0= V- [ RGO ~Go0 )

=Z:V4/dRU

i<j

X[g@y,- - - Po()- - Py(0)- - -)—g(0)]. (1)
Here, in the notation of Ref. 1,
Gisly=eraerian,

Go(t)=eion®,

N
LNOE’I: Z m“‘Pk' a/aRk s

Lij=i[8/0(Ri—R,) IV (R;—R;)- (9/0P;—0/P;),

so that G;;() involves the formal Green function
solution of the equation of motion for the pair of
interacting particles ¢4 and j [V(R;—R;) is their
interaction potential | and satisfies

Gi;()8(0)=g(Pr---Pi(1)- - - P;(1)---),

where P1(¢) and P;(f) denote the momenta of the two
interacting particles ¢ and j (considered isolated) at
time £, given that at time zero they were at a relative
separation R;; with initial momenta P; and P;. That
is, P;(¢) and P;(¢) are the solutions of the two-body
problem.

Obviously, the integrand of (1) is nonzero onmly if
particles 7 and j are aimed to collide within time ¢ in
which case

P.(5)=P;, P;¢)=P;.

If < and j do not collide within time ¢, then
P:)=P:, P;()=P;,

so that the integrand of (1) will be zero. Since ¢, P;,
and P; are all fixed parameters in (1) it follows that
whether or not a collision will take place is determined
by Rij.

The region of R;; space from which a collision between
7 and 7§ will be “aimed” to take place within time ¢ is
called a collision cylinder® and is denoted by Q(ij;¢).
This cylinder has its axis along P;;, its length equal to
m L P;;t, and its cross section equal to the total scatter-
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ing cross section o of the collision defined by

G'TE/ dw U(Pij,w):/dd’/d@ o (Pij0,¢) sind,
4r

where o(P;;w) denotes the differential scattering cross
section, and w denotes the “solid” scattering angle
(azimuthal angle ¢ and scattering angle 8). In addition,
we note that the collision cylinder has hemispherical
“caps” at both its ends.

Particles ¢ and j will not collide within time ¢ if R;;
lies outside Q(i7;¢) and, hence, the integrand of (1)
will vanish when R;; lies outside of Q(i7; f). We may,
thus, restrict the region of integration over R;; to lie
within Q(i7;¢). We may then divide the integration
over R;; into integrations over the components of R;;
parallel to and perpendicular to P;; (R;; and R,) so that

/ ARG (1) —Go(H)Jg(0)
all space

_ / AR Lg( - Pi(t), - Py(0), ) —g(0)]
Q(ig;t)

—m~L1Pgjt—e
=/ dR”/ dR,
e o

XLg( - Pi), - Pi(0),- - )—g(0)], (2)
e=[a’— | Ri;XP;[2Pi 2]

where

and a is equal to the range of the force.

The calculation of (2) is quite simple in cylindrical
coordinates. We transform the variable R;; into the
variable ¢° by means of the transformation equation

IfloE ——mPﬁ“‘ (R“+ E) s

so that #° is the time at which ¢ and j “begin” to collide.
If, in addition, the integration over R, is transformed
into an integration over the solid scattering angle w
we find that (2) becomes

V”1/dRij[Gij ()—Go(1) 1 (0)

t
= Vﬁlf dho/ dw G'(f)ij,w)
—2emPy;t 47

XLg( - Pi()), - B3 (1),- - ) —g(0)].  (3)

The negative lower limit (—2emP;;!) accounts for the
case in which ¢ and j are initially within each other’s
force field.

When #,° lies within the interval

Osilosl—"fc,

where 7, is a time interval on the order of the duration
of a binary collision, then at time ¢ particles 4 and j
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will have completely passed through each other’s force
field, and they will be moving away from each other
with their asymptotic momenta. In such an event we
say that the collision between ¢ and j has been “com-
pleted.” Under these circumstances the momenta P, (¥)
and P;() will only depend upon the scattering angle w.
These momenta will not depend upon #° (or R;;). In
fact, P;(¥) and P;(¢), after a completed collision, are
given by

P;(t)=P,—P,;-1,

P;()=P;+P;-1, (0<u°<i—ro) (4)

where 1 is the unit vector in the perihelion direction.
If, on the other hand, #° lies within the intervals
—ZemPi,-“1<t1°<0 , i— Tc<t10<t ,

then ¢ and j will either begin or end up within each
others force fields and, hence, P;({) and P;(?) will
depend upon #° (or Ry;).

If we substitute (4) into (3) and then introduce the
operator A;;(I) (momentum substitution operator)
defined by

Aij(Dg(Py- - Py-- - Py o)

=g(Py, -+ - Pi=Pijell, - - PiA-Pijell, - -), {Sa)

we find
yi / ARG ()= Go(1)Tg(0)

t—rc
= V—I/ a0 m_lPij/dw (T[A”(l)—[]g(())
0

0
—I—le/ di® m‘lPij/dw
-1
—2emPyj

Xolg(---Pi(®)---)—g(0)]

t
—+ V_I/ dho m“‘Pij/dw
t

Xolg(---Pi(®)---)—g(0)]. (Sb)

The ¢#° integral in the first term on the right-hand
side of (5) may be carried through immediately to
obtain for (5)

v / dR;;[Gi; () —Go(1)1g(0)
= (t—71c)As;g(0)+M;(1)g(0), (6a)

where A;; is the time-independent scattering operator
defined by

A=V m Py /dw O'EA ”(l)-‘lj (()b)

JEROME WEINSTOCK

and
an’+

M ()= V—1</ dt1°>
Xm‘lPij/dw G'EGij(t)—Go(t)]. (6C)

To obtain the order of magnitude of M ;(t) we apply
the mean value theorem to the #° integral in (6¢) and
so obtain, since (emP;;)=0(7.),

M i;(t)=0(rcAi;)<<tAs; (large 1). (7)

The scattering operator (VA) is just the binary-
collision integral which appears in the well-known
Boltzmann equation. We see, from the derivation of
(6a), that A;; corresponds to completed collisions of a
finite duration—not necessarily to instantaneous colli-
sions.

The operator M;;(¢) arises from “incompleted”
collisions and, as can be seen in (7), is much smaller
than fA,; for large ¢ (£>7,).

To obtain B1(f) we substitute (6) into (1),

Bi()g=[(t—71)2 Aij+2 M;(H)]g

<7 <7
=[({t—r)A+M ()8, (8)

which is exact for all . When ¢ is large we see from (7)
that the incompleted collision term M ) (?) is relatively
small.

My (@) =0(rA 1)) <tA 1y

Differentiating (8) with respect to ¢ we obtain
B()=Aw+Mw' (1), B(*)=lim~8:i(H)=Aq).

t—>0

The scattering operator A, is the ‘“master” binary
collision operator which appears in the low-density
limit of the master equation.

From Eq. (38) of the previous paper we see that the
incompleted collision operator M (1)(f) contributes to
the non-Markoffian memory of the exact master
equation. The scattering operator A, for completed
collisions does not contribute to the memory. This
operator is relevant to zero-frequency transport coeffi-
cients. The frequency dependence of transport coeffi-
cients may be obtained from the time dependence of
M ()4

B. Calculation of 3:(¢)

In this section we shall calculate the ternary collision
integrals B2(ijk; £) [see Eq. (26) of Ref. 17]. We shall

4The formal frequency and density dependence of various
transport coefficients can be obtained by combining the Laplace
transform solution of the generalized master equation [Eq. (36)
of Ref. 1] with the corresponding autocorrelation functions.
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find that

(8/08)B2(123; £) = A1a3+ (8/08) M 125(2) ,
=A125+ O 7eA12s)

where A1s3 is a time-independent scattering operator for
ternary collisions and is the three-particle analog of
the binary-collision scattering operator Aj,. The scat-
tering operator Ajs; corresponds to completed ternary
collisions just as Ajs corresponds to completed binary
collisions. The time-dependent operator (9/9¢)M 125(t)
arises from incompleted ternary collisions and ap-
proaches zero as ¢ approaches infinity.

To begin the calculation of 3:(123; ¢) we first obtain
its binary-collision expansion. Thus, we combine Egs.
(26), (15), and (7) [with N=3] of Ref. 1 to obtain

,82(123, f)E V—Z/denglg V2(123 H l)

= V'Z/ande i %3 Jarfarr* JaGo- (9)

n=3 {a}

This expansion contains time-dependent irreducible
clusters of three particles such as fisfisf12, f12f15f23f15,

frafisfafesfrsfre, fiafisfos.

We shall first calculate the integral of the simplest
cluster, fisfisfis, in detail. We shall then find that all
the other cluster integrals in (9) have the same time
dependence as the integral of fisf13f1e.

We thus consider [see Ref. 1, Eq. (6)], with the
integral Of f12f13f12 denoted by 1(12)(13)(12),

1(12)(1:«3)(12)1‘,’E V“2/dR12dR13 f12f13f12g

t t t
= V_2[dR12dR13/ dh/ dfz/ dls Glz(t)ing
0 t1 123

Xma (ts—11)3L13G12 (53— to) 1 L19Go (t—t3)g.  (10)

It has been proven® that the time integrations in (10)
may be exactly performed for the special case of
hard-sphere interactions to yield

T agyanang= V'2/dR12dR13 ﬁgnt LGr()—Gi()]
To>t—t]

X TzlirjlmoGo(— 71)[G13(r1) —Go(1) ]
‘ XGo(—19)[Gra(72) —Go(r2)], (11)

where ¢ is simply the instant of time at which an
isolated pair of particles ar [a1=(12), ao=(13),
az=(12)] will collide if their initial separation and
relative momentum are R, and P,,, respectively, and
is defined by the relation

b= —mP o {Ru Py Py
+ (@ — [ Ry X Poy [2P o)1}
5 J. Weinstock, Phys. Rev. 126, 341 (1962).
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[We shall use Eq. (11) to calculate s a3 with
the understanding that it is only exact for hard-sphere
interactions. At the conclusion of this section we shall
show that the main results may be carried over to
more general interaction potentials. ]

To evaluate (11) we recall, from the previous
section, that the term [Gi;(#)—Go(¢)] is nonzero for
only those initial values of R;; which lead to a collision
between particles ¢ and j within time ¢; i.e., for only
those values of R;; which lie within a collision cylinder.
The binary collision propagator G;;(¢) “prescribes” the
changes in momenta of particles ¢ and j corresponding
to this collision, whereas the free-particle propagator
Go(t) ‘“‘prescribes” no changes in momenta. [Go(t)
“prescribes” ¢ and j to pass “through” each other
without changing momenta, as if they were free
particles.] For this reason, when integrating [G:;(¢)
—Go(2)] over a collision cylinder, we say that Gi;(¢)
produces a real collision between 7 and j, whereas Go(t)
produces a kypothetical® collision between ¢ and j.

In the cluster function in the integrand of (11) we
see that the binary collision propagators Gi;(¢) always
occur together with the free-particle propagator Go(#)
in the combination [G;;({)—Go(f)]. Each such combi-
nation is only nonzero for that region of R;; space
which leads to a collision between particle ¢ and j
within the interval f. For this reason the integrand in
(11) is nonzero for only those regions of Riz and Rys
space which lead to the sequence of three binary
collisions (both real and hypothetical) in which a
collision between 1 and 2 s followed by a collision
between 1 and 3 followed by a recollision between 1
and 2. [Since each collision in this sequence may be
real or hypothetical there will be eight combinations
of these successive collisions depending on whether a
given collision is real or hypothetical. These eight
combinations correspond to the eight terms which are
obtained by multiplying out the integrand in (11)—
see Figs. 1 and 2.] The evaluation of (11) essentially
consists of determining the regions of Ry and Ry; for
which this sequence, (12)(13)(12), of successive colli-
sions takes place.”

The first and second collision in this sequence will
occur when Ry, and Ry; lie within appropriate collision
cylinders. Whether or not the third collision (the
recollision between 1 and 2) takes place will depend
upon the specific values of Ry and R;; within these
collision cylinders. That is, once specific values of Ry,

8 M. S. Green, J. Chem. Phys. 25, 836 (1956). This reference
introduces the notion of hypothetical collisions of which our use
is a specialization.

7 The point of view of this calculation resembles that of Ref. 3.
Our calculation involves an extension of the calculations in Ref. 3
to what is there referred to as a “correlated” sequence of binary
collisions. These “correlated” collision terms are actually the
clusters which appear in the binary collision expansion of the
time-dependent irreducible, B%(¢), and they correspond to three
or more particle collisions. [See also R. Mazo, J. Chem. Phys.
35, 831 (1961).]
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and Ry; are chosen the future relative motions of 1, 2,
and 3 are determined for all time, and one can calculate
whether or not the third collision will take place. We
shall find that when R;» and Ry; are restricted to lie
within certain regions of the collision cylinders then,
and only then, will the third collision take place.

The calculation of (11) will, thus, consist of first
finding the collision cylinders which lead to the first
and second collisions, and then determining the regions
of these collision cylinders which lead to the third
collision.

1. First and Second Collisions

In this section we shall calculate the regions of Ry,
and Ry; space (collision cylinders) for which the
operators in (11) which correspond to the first two
collisions do not vanish. Thus, the operator [Gi2(¢)
—Go(t)]- -+ (corresponding to the first collision) will
vanish and, hence, the integrand of (11) will vanish
unless particles 1 and 2 are aimed to collide within
time ¢ Consequently,

f dR1o[ G2 () —Go(t)]- - -
:/ dRu[Gi()—~Go(0)]- -+, (12)
Q12;1)

where the region of integration Q(12;¢) is the collision
cylinder whose length is w|P;—P,|¢ and whose cross
section is op(|P1—P2|). Substituting (12) into (11),
and then dividing the right side of (11) into two parts
according to whether the first collision is real, Gi2(2),
or hypothetical, Go(t), we obtain

1(12)(13)(12)g=/ dRu/ dRi3 Graz 13 128
Q(12;¢)

—f an/de?, Grananang, (13)
Q(12;¢)

where we have defined

Grranapyan= lim Gu,o() lim Go(—71)

71>t—110 To->—190

X [G13(11) —Go(11) JGo(— 72)[Gra(72) — Go(r2) ].

[The integrand, Gr(12)(13)(12)g, of the first multiple
integral on the right-hand side of (13) contains the
operator Gi2(f) and, hence, corresponds to a real first
collision between 1 and 2. That is, if f(P1,Ps,P;) is any
function of Py, Py, and P, then when Ry, lies within
Q(12; ) we must have

G2 (@) f(P1,Po,P5) = f[P1(1),P2(1),P5],

where Py(1) and P(1) are the momenta of 1 and 2
after the first collision. ]
In the first multiple integral on the right side of

(14)

JEROME WEINSTOCK

(13) we have the operator

lim Gi(8)Go(—710)[G13(r1) —Go(71)]- - -,

T1>t—10

(corresponding to the second collision when the first
is real), which will vanish unless 1 and 3 are aimed to
collide between the time #° (at which the first collision
occurred) and the time ¢ Hence, just as for (12), we
must have

/ dR13 hm Glg(l)Go(—’rl)[Gm(Tl)_GO(TI)]' te
all space i .

t—t10

:/ dea lime(l)GO("‘Tl)
(135 t—2,°)

X[Gis(r1)—Go(r1)]- -+, (13)
where ©,(13;¢—#°) is the collision cylinder whose
length is m | P1(1) — P3| (t—#°) and whose cross section
is op(|Py(1) —P2|). [The subscript ‘7’ denotes that,
due to the operator Gi2(#), 1 and 2 have undergone a
real collision so that the momentum Gi.(#)P;=P;(1)
appears instead of Py.]

Similarly, we see that the second multiple integral
on the right side of (13) contains the operator

lim Go()Go(—7)[G13(r1)—Go(71) ] - -

71->t—¢10

(corresponding to the second collision when the first is
hypothetical), which will vanish unless 1 and 3 are
aimed to collide between time #° and time {. Hence,

/ dRy; lixlnhOGo(t)Go(—71)[613(71)—(;0(71)]‘ -
all space T

:/ dR13 llmG()(l)GO(—Tl)
Qn(13;¢—4°)

X[Gis(r1)—Go(r)] -+, (16)

where Q,(13;¢—¢,) is the collision cylinder whose
length is m~'|P1—P;| ((—#°) and whose cross section
is or(|P1—P;|). [The subscript “4” denotes that the
previous collision between 1 and 2, in this integral, is
hypothetical so that P; appears instead of P;(1). That
iS, Go(t)PlzPl.j

Substituting (15) and (16) into (13) we obtain

I(12)<13)(12)g=/‘ dez/ dRy; G¢(12)(13)(12)g
Qr(12;1)

JQ(12;5¢)

—f dRm/ des Gh(m)(w)(mg- (17)
Q2;¢) Qp(13;t—11%)

To facilitate the calculation of (17) it is convenient
to transform the variables of integration Rje and Rj;
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into cylindrical coordinates as was done in (3). Ac-
cordingly, the component of R, parallel to Py, is
transformed into the time of the first collision #° and
the component of Ry, perpendicular to Pj, is trans-
formed into the solid scattering angle of the first
collision w;. Similarly, for the first term on the right of
(17) the component of Ry; parallel to [P;(1)—Ps] is
transformed into the time #* at which the second
collision is aimed to take place (when the first collision
is real, and the component of Rj; perpendicular to
[Pi(1)—P,] is transformed into the solid scattering
angle wy. In the second term on the right of (17) the
component of Ry; parallel to Py; is transformed into
the time #° at which the second collision is aimed to
take place (when the first collision is hypothetical),
and the component of Ry perpendicular to Py; is
transformed into the solid scattering angle w,. Making
these changes of variables to cylindrical coordinates
in (17) we find

t t
1(12><13)>(12)g=m—2V—2/ dtlﬂ/ dt2*/dw1[dw2
0 °

X P1s| P1(1) =Pyl o1a(ws, Pro)ors(ws, |P1(1)—Ps|)

t t
XGrazasang — M2 V“Z/ dhO/ d[2°/dw1/dw2
0 t1°

X P12P13019013Ghan apang, (18)

and we wish to emphasize that the set of variables
10, ts, wy, wy is entirely equivalent to the set of variables
R12, R13-

2. Third Collision

The integrands [Gr(12)(13)(12)g and Gh(lZ)(l:i)(lZ)g] iIl
(18) both contain the operator - :-[Gia(72)—Go(72)]
which will vanish unless 1 and 2 are aimed to recollide
[the third collision in the sequence (12)(13)(12)]. We
may, thus, restrict £,°, ¢, w1, and w in (18) to lie within
those regions of the collision cylinders which lead to
the third collision. This may be accomplished as follows:

We note that P;, Py, and P; are fixed parameters
in (18), so that once specific values of R;; and Ry;
(#:0,t5,01,w2) are selected, the relative motions of parti-
cles 1, 2, and 3 are determined for all time. Since Ri,
and Ry; are restricted to lie within collision cylinders,
the first two collisions will be aimed to take place.
But, at the instant following the second collision,
particles 1 and 2 will be at a relative distance Ry(2)
with a relative momentum P12(2) and, hence, particles
1 and 2 will recollide only if, at that instant, they are
moving towards each other with an impact parameter b3,

bs=| Ri2(2) X P12(2)| P12(2)7,

which is less than the range of force a (hard-sphere
diameter a). That is, particles 1 and 2 will recollide,
within time ¢, if and only if at the instant following the
second collision their relative distance Rjp(2) and
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momentum Py5(2) satisfy
lez(z)XPm(z) | P12(2)<a, (19a)
R12(2)-P12(2)<0, (19b)
*<t, (19¢)

where (19a) ensures that their impact parameter is less
than the range of force, (19b) ensures that they are
moving towards each other rather than away from
each other, and (19c), with #* denoting the time at
which this third collision takes place, ensures that the
collision sequence occurs within time ¢ But Rjy(2),
P1,(2), and #3* are uniquely and, as we shall see, easily
determined functions of £,°, {5, w;, and ws:

Ri2(2)= Rua (110, t0,001,002) ,
P12(2) =Pra(t:t2,01,09)

t5% = 15* (10, ta,01,02)

so that the inequalities (19a,b,c) exactly define the
only regions of #° f, wi, and w, for which the third
collision will follow the first two collisions.

This means that the inequalities define the only
regions of t10, 12, w1, W for which Gr(12)(13)(12) and
Ghrazasaz are nonvanishing. Consequently, we may
write (18) as

t t
I<12)<13>(12>g=/dt1‘]/ dfz*/dwlf dwy C.Graz am a2)g
0 t1° JVy
t t .
—/ dho/ dl20/dw1f dws ChGraz as ang
0 00 Va

=Layanang—liananang, (20)

where V, and V' denote those regions in the spaces of
1, 1%, w1, w2 and £,°, £°, w1, ws which satisfy (19a)-(19c¢)
when the first collision is real and hypothetical, respec-
tively, so that

/ dwy and / dws
Ve Vh

mean that the integration over #°, £* (or #0), w;, and
wy must be restricted to the regions of the collision
cylinders which satisfy (19a)-(19¢) when the first colli-
sion is real (or hypothetical) ; and where we have defined,
for convenience,

CTE V’2m”2P12| Pl(l)—-Pg]
XG'IZ(wI;Pm)U'I:i(OJz,|P1(1)—-P3| ),
Ci= thm_szPlaUlz(w1,P12)013(wz,Pls).

(21)

The calculation of I (12)a13)a12) now consists of four
steps: (1) to determine Ryz(2), Pi2(2), and #4* as
functions of &, ¢, w1, and w,; (2) to solve (19a)-(19¢)
[for those regions of %, 5, w;, and w, which lead to all
three collisions ]; (3) to explicitly restrict the integra-
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tions in (20) to the regions of #°, {5, w;, and wy which
are determined by step (2); and (4) to replace the
propagators G;;(r) which appear in (20) by their
corresponding momentum substitution operators 4 ;;(1).

The details of this calculation are given in Appendix
A where it is found that 7 19y 13y 12y (£)g is given, exactly,

by »
Iasyas an Wg=[Aan anan+M ananan ()]g, (22)

where Aaszyasaz 1s a time-independent scattering
operator for completed collisions defined by

Aazyasaz

E/ dn/ dwidws CA12(1)A13(1)[A12(13)—I]
0 Dy

The
—/ dThf dwldwg ChA 13(]2)[14 12(13h)—I] . (23)
0 Dy,

[Here D, and D, denote regions of integrations over
wy and are defined as those regions of ws which satisfy
I,-P,12(2)<0 and 1,-Py12(2), respectively; li=1;(w;)
and l,=I;(wy) are the unit vectors in the perihelion
direction of the first and second collision, respectively,
and are known functions of the solid scattering angles
w; and wg; 13, and 1y, are unit vectors in the perihelion
direct of the third collision when the first collision is
real and hypothetical, respectively, and are given by
(A23); P.12(2) and Py12(2) are the relative momenta, of
particles 1 and 2 at the instant following the second
collision when the first collision is real and hypothetical,
respectively, and are given by (A3) and (A17); 7,, and
The are time intervals of the duration of a binary
collision and are explicitly given in (A6); and 7,=¢*
—110, ThEtgo'—tlo.:l

The time-dependent operator M (12132 (#) corre-
sponds to an incompleted sequence of collisions and is
defined by (A20), (A13), and (A18). [We note that the
integration fdwldwz in the deﬁnition Of M(12)(13)(12) (t)
contains the restriction #*>¢. This restriction means
that the last collision, in the collision sequence
(12)(13)(12), must occur after time ¢ and, hence, is
referred to as an incompleted collision. ]

Equation (22) expresses the fact that the collision
integral I (12)13) 12y (£) divides into a completed and an
incompleted collision part. The notion of completed
and incompleted collisions is quite general and is a
useful concept with which to understand the kinetics
of approach to equilibrium and the frequency depend-
ence of transport coefficients.

The completed collision part A sy as)i2) is a “‘simple”
scattering operator which may prove useful in calcu-
lating transport coefficients. The more complicated
incompleted collision part M g2)3yaz)(¢) is relatively
small when ¢ is large. This is because of the restriction
t3%>¢ upon the region of integration over w; and ws.
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This restriction can not be satisfied when ¢ is infinite
and leads to a relatively small value of M (12ya3)as2) (£)
when ¢ is large. The asymptotic time dependence of
M 12y 13y 12y (£) can be shown to be given by

M 2y a3y a2 () =E Int+E', (24)

where E and E’ are independent of ¢ and have their
order of magnitude given by O(A a2 asaz) [the
logarithmic time dependence in (24) is a consequence
of the fact that the volume of w; and w, space which
satisfies #3*>¢ is proportional to /=2 when ¢ is large]
so that

Tayapan(Dg~thananang (7).

3. Time Dependence of the Remaining
Three-Particle Cluster Integrals

To complete the calculation of 8; we must determine
the time dependence of the remaining cluster integrals
of particles 1, 2, 3,

I(ax)"-(an)E V_Z/dengw falfa2' N 'fanGO (25)

[for example: 7qs)as) a2 as) s as s ], which appear
in the binary-collision expansion of 8:(123;¢), Eq. (9).
This is done in Appendix B where it is found that

I (e @) 8= (1A apee camy T M (ay)ene () (D) 18 -

Here, A¢yyee-(a) 1s a (time-independent) scattering
operator for the completed sequence of successive binary
collisions, in which a collision between the pair of
particles e is followed by a collision between a, and so
on up to a, This scattering operator is explicitly
expressed in (B8). The time-dependent operator
M (ay)...(an)(f) corresponds to an incompleted sequence
of binary collisions and is defined in (B9). [This
operator is associated with incompleted collisions
because it contains the restriction £,*>¢, where £,* is
the time at which occurs the last collision in the
sequence (o) (@s) - - - (@x). ] It can be shown that

M (ay)er(an) @) =0(Int)

so that #A(ap)...(ay) is the dominant part of 7 ay...(ay)
for large ¢.

The ‘“full” triple-collision integral [B»(123;%) is
obtained by simply substituting (26) and (25) into (9).
We thus obtain

B2(123; ) =tA193+ M 123(2) ,

where Ajs3 Is a ternary-collision scattering operator for
completed collisions,

(26)

(large ¢)

@7

w 123

A1os= 3" 3= Atap)ee(am

n=3 {a}

=1limt1B:(123; %),
t—>c0 (28)
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and

w 123

Mis()= 22 3 M (ay)er-(an) (&)

n=3 {a}

=0(In) (29)
corresponds to incompleted ternary collisions.

Equation (27) is exact for all ¢ It expresses the fact
that the ternary-collision integral (three-particle cluster
integral) B2(123;¢) divides into a completed ternary-
collision part (dominant part) and an incompleted
collision part. The completed ternary-collision part Ajss
is a scattering operator analogous to the binary-collision
scattering operator Ajs. It occurs in the Markoffian
limit of the generalized master equation and will play
a central role in the calculation of density dependent
transport coefficients. The more complicated incom-
pleted part M3(¢) is relatively small when ¢ is large.
The time dependence of Miyp3(f) is relevant to the
kinetics of approach to equilibrium as well as to the
frequency dependence of transport coefficients. We
shall discuss the connection between B5(123;¢) and
the master equation in the next section.

Thus far, we have only proven (27) for hard-sphere
potentials. An equation of the same form as (27) may
be derived for any repulsive pair force of finite range.
This is because when (7./f) is small we may use the
mean value theorem to expand (82(123;¢) in the small
parameter (7./f). The first term of such an expansion
will be asymptotic to (27) [for large ¢] and the remain-
ing terms will be relatively small for large ¢. We thus
find that following is exact for repulsive forces.

B2(123; ) =tA 13+ M125(2)

providing A and Mip;3(¢) are defined by the formal
relations

(30)

Arzg=1im/™8,(123; ) =By’ (123; ),

t—>c0

(1)
M123(Z)EBZ(123 5 t)—tA123 .

In view of (31), M12;(¢) satisfies
limt_1M123 (t) =0,

>0

III. TERNARY-COLLISION OPERATOR AND THE
NON-MARKOFFIAN BEHAVIOR OF THE
EQUATION OF EVOLUTION

We wish to elucidate the connection between incom-
pleted collisions and the non-Markoffian memory of
the master equation. The master equation for the
evolution of ¢ involves the “master” ternary collision
operator B:(f) which is obtained by summing B:(ijk; ?)
over all of the particles of the system. That is,

B()= 2 kﬁa(ijk; )

i<j<

(32)
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appears in the non-Markoffian kernel of the master
equation.
Substituting (30) into (32) we obtain

Ba(t)=tA @+ M 3 (?),

where Ay and M (5 are “master” ternary-collision
operators defined by

A= Z Asjr,

1<j<k

(33)

Moy()= 2 Mu(@).

1<j<k
Differentiating (33) with respect to ¢ gives
B (=B +M ' (1).

From Eq. (38) of the previous paper we see that the
non-Markoffian memory of the master equation con-
tains M.’ (t) but not A,. But, from (B9) we see that
M (%) is entirely due to incompleted ternary collisions
(t.*>1). This, indeed, shows that non-Markoffian
behavior arises from incompleted collisions.

We further note that instantaneous ternary collisions
do not contribute to the three-body scattering operator
Ajes. To understand why we consider Ajs3 expressed in
terms of A(ap)eee(an), i (28), we recall that A (ay)...(an)
is the scattering operator for a sequence of successive
binary collisions among 1, 2, and 3 in which pair o
collide at time #,°, pair o collide at time #*, and so on
up to time #,*. In order for this sequence of collisions
among particles 1, 2, and 3 to be instantaneous we
must obviously require that

t10=t2*= e =tn*,
that is, the time interval during which this sequence
occurs must vanish. But we see from (B8) that if
t*—1"=19=0, then A (4,)... (o) =0 and, hence, from (28)

Az=0  (t*=1").

This proves that the three-body scattering operator
vanishes for those collisions which are literally instan-
taneous or, in other words, instantaneous ternary
collisions do not contribute to the three-body scattering
operator.

The essence of ternary collisions, then, is not that of
a single instantaneous event but one in which three
particles collide, successively, many times in a highly
correlated fashion. For example, see Figs. 1 and 2.
(Hence, if an experiment could be devised which would
measure the kinetic energy of a particle undergoing a
ternary collision we would find that a curve representing
the kinetic energy of such a particle as a function of
time shows several local maxima and minima.) The
duration of such a ternary collision will, in general, be
larger than the duration of a single binary collision.
Furthermore, it is not necessary that all three particles
in such a collision be simultaneously interacting—
particularly if the pair force is short ranged—hard
spheres, for example.
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This contradicts Resibois’ claim that only situations
in which the three particles are simultaneously inter-
acting play a role in the asymptotic three-body scat-
tering operator Ajs;. This is immediately clear for the
simple example of hard spheres, since then simultaneous
ternary collisions are necessarily instantaneous, and, as
we have shown, instantaneous ternary collisions do not
contribute to Aqes at all. (It is obvious that the cross
section, or region of configuration space, for three hard
spheres to come simultaneously into contact is equal
to zero.)

Finally, the above discussion supports our assertion
that it is the concept of completed collisions of a finite
duration, rather than instantaneous collisions, which
is fundamental in understanding nonequilibrium phe-
nomena.

IV. TRANSPORT COEFFICIENTS

In view of the role played by the scattering operator
A2z in the calculation of transport coefficients it is
desirable that it be cast into a form that is readily
amenable to calculations. Since Ajg; involves the solu-
tion of the three-body problem, one must inevitably
consider approximate methods. Approximations based
upon expansions in the interaction strength are to be
avoided since all the terms, in such an expansion,
diverge for infinite repulsions. The binary-collision
expansion, on the other hand, is well suited to infinite
repulsions. In this section we shall use the binary-
collision expansion to obtain an approximate expression
for Ayes in such a form that it may be readily applied
to calculate transport coefficients.

The binary-collision expansion of Aj.; is given by
(31) and (9)

Ars=lims™13,(123; 1),

t—>o0
o« 123
=limt‘1V'2/dR12dR13 222 far fans
- =3 fa)
w 123
=2 2 At (an) (34)
=3 {a}

where the scattering operator Acs)...(a,) for hard
spheres is given exactly by (B8). [Equation (BS8) is a
good approximation for other interactions when the
corresponding cross sections are used. ]

But, the summand in (34) decreases with #. That is,
it can be seeni from (B8) and (B2) that

Aapyeen an1) > Aiar) e (an_p) (an) - (35)

This is because the region of integration over 7, wy,
and w2 (over Rys and Ry; space) in A (ayy.e. (a,_y) is greater
than the region of integration in A (a)...(ay_) ey That
iS, A(ap)-+-(an_1)(ay) contains all the restrictions implied
by (32) with k=3, 4, ---(n—1), and n, whereas
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A (e (an_y) Only contains the restriction with k=3, 4,
... (n—-— 1).

Taking advantage of the fact that (34) is a decreasing
series in », we approximate (34) by

123

A123zz A () (a2) (e -
(o}

(36)

The rate at which (34) converges and, hence, the
validity of (36) is a matter that could and should be
investigated since it-may lead to a good approximate
solution of the three-body scattering problem in classical
gases.

The scattering operator Aasyasyas in (36) is ex-
plicitly given by (23), and the various quantities
contained there are given in the Appendix. Equations
(23) and (36) may be directly used to calculate an
approximate first-order density correction to transport
coefficients by means of the autocorrelation function
method.
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APPENDIX A: CALCULATION OF Iusasas(t)g

The calculation of Iasyasyaz (g from Eq. (20)
involves the four steps enumerated in Sec. B2. Since,
however, P15(2) will depend upon whether the first and
second collisions are real or hypothetical, we must make
a separate, but similar, calculation for each of the four
possible cases. The number of cases may be immediately
reduced to two since there can be no contribution
when the second collision is hypothetical. This is
because a hypothetical second collision, in the sequence
(12)(13)(12), implies that 1 and 2 will collide two times
with each other without either of them suffering any
momentum change in between. This is clearly impos-
sible for hard-sphere collisions. That is, the following
hypothetical second collision terms in (20) must vanish :

/ desz,o(t) hm OG()(_Tz)
Q(12; ) Tty

X[Gie(12)—Go(r2)] (A1)
and, hence, we may replace G, 112 a3 a2 in (20) by

G raananan= lim Gua(f) im Go(—11)
71>t—t10

X G13(11)Go(— 72)[G12(12) — Go)72) ]

There thus remains two cases depending upon
whether the first collision is real or hypothetical. We
shall first focus our attention upon the real first collision
term I,aoanang in (20). If we let the subscripts 7
and /% denote that the first collision is real and hypo-
thetical, respectively, then for step one we find the
relative momenta of 1 and 2 at the instant following

To->—1t90

(A2)
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the second collision (when the first collision is real) is
given by (see Fig. 1)

PT12<2)=P1'12(1)‘[Pw—Pm' 11]1]‘ L1, , (AS)
Prm(l) = P12— 2P12' 1111 5
R,10(2)=m 7 (t* — ") Priz(1)+-aly, (A4)

where I;=1;(w;) and l,=1;(w;) are unit vectors in the
perihelion direction of the first and second collisions
and are known functions of the solid scattering angles
w; and ws, respectively.

According to step two in the calculation of 1,(12)13)12)8
we substitute (A3) and (A4) into (19a) and solve for
(t:*— 1Y) to obtain®

(AS)
where 7., is of the order of the duration of a binary
collision and is given as a function of 1; and 1, (or,
equivalently, of w; and wy) by
TrcEmal Pr12(1) XP112(2) I—Z
XAL1XPr12(2) - Praa (1) X Pr1a(2))?
+ (I Pr1a(2))? | P2 (2) X P (1) [ 212
—1LiXP12(2) - Pra (1) XPr12(2)}.  (A6)

The inequalities (19a) and (19b) are partially
redundant and it can be shown that the inequality

1i-P,1s(2) <0 (AT)

together with (AS) are exactly equivalent to the two
inequalities (19a) and (19b).

For step three in the calculation we substitute (AS)
and (A7) into I.az2asang in (20) to obtain, with the
change of variables t,*—t,°=17,,

t t~£10
]7-(12)(13)<12>g=/ dho/ dTr/ dw1dws
0 0 Dy

CiGr 1y sy 108

* —_
to"— tlo < Tre™= Tre (w17w2) y

(A8)

where D; is the region of 7, wi, we which satisfies
77<7re, l1-Pr12(2)<0, t5%<t. (The region D is, of
course, the same as V,.) But

l*= (5* = 4*)+ o H 002 710,
so that

t—t10 Tre
/ dTT/ dwldeZ/ dTT/ dwlde,
0 Dy 0 v Do

8 Inequality (AS5), which follows directly from (19a), is the
most significant relationship of this derivation. It states that in
order to satisfy the condition of “impact parameter small enough
for the third collision to occur” [Eq. (19a)] the time interval
(82*—19) between the instants at which the first and second
collision occur must be bounded by 7. Since 7+ is of the order
of the duration of a binary collision it follows that during the
time interval between the first and second collision all three
particles must be relatively close to each other—close within
orders of magnitude of molecular size. This, in fact, is the essence
of a ternary collision,

479

INITIAL
TIME

Fic. 1. Schematic diagram of particle trajectories for a three
successive binary-collision term which contributes to the three-
particle scattering operator.

where D, denotes the region for which l;-P,;2(2) <0,
t3¥<¢ and, hence, (A8) becomes

t Tre
Lv<12)<13>(12>g=[dt1°/ dTr/ dwidws
0 0 Dy

XC.Grananang. (A9)

We see in (A9) that #° 7, w1, and w; have been
restricted to those regions for which all three collisions
in the sequence (12)(13)(12) are aimed to take place
within time ¢ This means that the binary-collision
propagators G2 and Gi3 which appear in G’»as) a3y a2
will produce the real momentum changes corresponding
to these collisions and, hence, these propagators may
be replaced by their corresponding momentum oper-
ators (412 and Ais). The free-particle propagators
produce no changes in momenta and may be replaced
by identity operators. We thus have, for an initial
phase point in which all three collisions are aimed to
take place within time ¢,

Granayan=A12(l) A1) [412(1;)—1]

=Sranasna . (A10)

The momentum operator S,agasye 1S a time-
independent scattering operator in momentum space
and not a propagator. This operator merely transforms
the miomenta of a group of particles from the momenta
that they have before they interact with each other to
the momenta they will have after they interact with
each other in a sequence of binary collisions.

We next substitute (A10) into (A9), divide the
resulting integral into two parts by dividing the region
of integration into two parts [ /p,= /p,— S,; Where
D, is the region of w; which satisfies 1;-P,12(2)=0, and
D,; is the region of w; and 7. which satisfies both
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F16. 2. Schematic diagram of particle trajectories for three
successive binary collisions in which the first collision is Aypo-
thetical.

I;-P.12(2)<0 and #*>¢]°, and then freely integrate
over #;° in the first part (D,) to obtain

Iananang=[Arananan+M-ananan (t)]g, (All)

where Ar(l?)(13)(12) is defined by
Tre
Ar(m)(la)(lz)E/ dTrf dwidws C,Sranasazy  (A12)
0 D,

and is a time-independent scattering operator for
completed collisions.

The operator M .2 asyaz (£) corresponds to incom-
pleted collisions (¢3*>¢) and is defined by

t Tre
A)‘[7*(12)(13)(l2)E _/ dtlo/ dTr/ dwldw‘l
0 0 Dy3

CiSranana) - (A13)

[The ¢ integration in M,z asyaz (f) is complicated
by the fact that the region of integration depends
upon 4° through the inequality #5*> .7

9 This division of the collision integral in (A9) into two parts,
according to

"/. dwldw2=--~/dw1dw2—~~'/’, dw;dwz,
ty <t 3 >t

separates out incompleted collision events (#5*>1). The integration
over 7,=71,*—14° in all these integrals is bounded by ,. which,
for most of w; and ws, is of the order of the duration of a binary colli-
sion. This means that in the first integral on the right (completed
collisions) the main contribution corresponds to sequences of
collisions in which the time interval between successive collisions
is relatively small and, hence, for which all three particles are
simultaneously close to each other at some time. In the second
integral on the right (incompleted collisions), however, there is
the restriction #*>¢ which, when ¢ is large, can only be satisfied
for a very small region of w; and ws space for which, it turns out,
7re 1s very large. In this integral, then, =, may assume large
values and, hence, the dominant contribution corresponds to
large time intervals between successive collisions. In this case
all three particles will not be simultaneously close to each other
at any time,
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Thus far, we have only calculated the real first
collision term Ir(l?)(lS) a8 in (20) There still remains
the calculation of I12)3)12)g Which corresponds to a
hypothetical first collision. The operator ;a2 as)a2
may be calculated in the same way as I.u2)as)asz-
The only difference is that in the hypothetical collision
case the particle momenta do not change as a result of
the first collision (see Fig. 2) so that the results of the
real collision case may be carried over to the hypo-
thetical collision case by merely changing the appro-
priate particle momenta. It is thus found that

Thaz an ang=[tAraz an ant+Mran an an () g, (Al4)

where An12) 13y a2y 1s a scattering operator for completed
collisions defined by (with 7,=2"—#°)

The
Ah(12)(13)(12)5[ dTh/ dwidw,
0 Dy

XCrA(I)[A(lsn)—1]. (A15)

Here D), is the region of w, which satisfies I;- P112(2) <0,
and 7. is given by (A6) when the momenta P, s (1)
and P,12(2) are replaced by

Ph12(1)=P12,
Ph12(2) = P12— Pl3' 1212 .

(A16)
(A17)

The operator Mua2)asyae (?) for incompleted colli-
sions is given by

t The
Mh(12)(13)(12)E_/ dho/ dTh/ dwdws
0 0 Dhps

XCrAu(l)[A12(an)—1], (A18)
where Dj; is the region of 7, and ws which satisfies
1;-P112(2) <0, 2> 2.

The entire cluster integral Ias)asyazg in (20) may
be finally obtained by subtracting (A14) from (A11).
Thus,

Ianyanang=[AananantMananan(®)lg, (A19)

where

A 12) (13) (12 =A 12)(13) 12)_Ah 12) (13)(12)
(12) (13) (12) 7(12) (13) ( ( ) (A20)

M(IZ)(13) (12)'——__Mr(12) (13)(12)_Mh(12) (13)(12) -

We have thus far computed all the quantities in
A(12)(13)(12) as functions Of w1, W2, and Trh [1n terms Of
li(w1) and ly(wz)] except for 13, and Iz To compute
I3 (I3, or 13,) we refer to Fig. 3 and denote the scattering
angle and ‘“vector’” impact parameter of the third
collision by 83 and b, respectively. We then find, after
a little algebra,

l3= Cos (%03)b3_‘b3+sin(%03)P12(2)_1P12(2) , (AZI)
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I
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F16. 3. Vector dia-
gram for the third
collision.

] Ri2(2) 2

where [with (A4)]

bs=P15(2)"*{aP12(2) X [LX P12(2)]
+TP12(2) x [Plg(l)x P12(2):|} .

The scattering angle 63 is related to the impact
parameter b; by the law of force and, hence, 1; must
be computed separately for each law of force. For hard
spheres we have simply

(A22)

bs=a cos(36;),
so that (A21) becomes

13= G_1b3+ (1—b320_2)1/2P12(2)_1P12 (2) . (A23)

The unit vectors I3, and 13, are obtained from (A23)
by replacing P12(2) by P.12(2) and Py12(2), respectively,
and replacing 7 by 7. and 74, respectively.

APPENDIX B: CALCULATION OF I,)...,(f)g

The calculation of 7 (ay)..-(an),
I(u1)~-~(an)E V_2/dR12dR13 fal' : ’funGOy (Bl)

proceeds in the same way as I 19)13)(12). The integrand
[farSfas* * fand Of I(ayy--e(any is @ nonzero for only those
regions of Rys and Ry; which lead to that sequence of #
successive binary collisions between particles 1, 2, and
3 [Ref. 1 Eq. (6) and Ref. 5 Eq. (25)] which we denote
by (a1):--(as). Each collision may be real or hypo-
thetical, and the sequence must be completed by time ¢.

We, thus, restrict Ris and Ry, in 7 (ay)(ag)-+(an), 10
lie within collision cylinders so as to ensure that the
first two collisions occur. For the third collision we
must require, similar to (19a,b), that R;, and Ry, in
I (a))e(an), satisfy

] Ras(z)XPaa(z) I Pus(z)_1<a y Ras(Z)'Pa3(2)<0.

Similarly, for the kth collision to take place we must
have, for all %,

| Ray(k—1)X Po(k—1)| Pay(k—1)"<a,
Rak(k_l)'Pak(k_1)<0y (B<k<n)

where R, (k—1) and P,,(k—1) denote the relative
position and momentum of the pair a; at the instant
following the (k—1)th collision. Furthermore, since
the sequence of collision must be completed by time ¢
we must require that the time, ¢,%, of the last collision

(B2)
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satisfy
¥ <1,

The integration of Ry; and Ry; over collision cylinders
now proceeds as for 7 (12)13)az). We transform the R;.
and Rj; integrations into integrations over scattering
angles and times of collisions, and then divide the
integral into a real and a hypothetical first collision
part, exactly as for /a2 as 2. Equation (B1) then
becomes, in condensed notation,

Iy amg

t t
= / dto [ di* / dewrders[C,'S,—Ci'Si]e,
0 t° VirVin

where we have defined

C/= ~2V_2P011Pa2(1)0'(""11Pax)0'(“’21P¢12(1))r
Ci'=m2V72P 4P 4,0 (01,P o) 0 (w2,P o)

and Vy, or V1, denotes those regions of £,°, ¢, w;, and
we which satisfy (B2) for all 2(3<k<u), when the
first collision is real or hypothetical, and which also
satisfy ¢,*<t. We have also replaced the propagators
in fa** fa, by their corresponding momentum oper-
ators in .S, and S}, since when (B2) is satisfied for all &
then all collisions in the sequence will be aimed to take
place and, hence, the corresponding momentum changes
will occur. The scattering operators S. and .S, are thus
given by

SrEAdl(ll)[Aaz(IZ?—I:l' : '[A"‘n(l")—‘[]’
Si=l[Aa(l)—1] - -[4a,1)—1],

where 1, is the unit vector in the perihelion direction
of the nth collision.

From the solution of (B2) with =3 we obtain a
restriction of the same form as (AS)—just as we did
for 1(12)(13) (12)- That iS, the solution of (BZ) with £=3
yields

(B3)

ta— t10< Tc/= Tc/ (wlwa) ) (B4)
so that (B3) may be written, with the change of
variables t—t°=7,,

t t—t10
I(ul)"-(an)g:/ dho/ d7’2/ dwidws
0 0 V'ir b

XC,/'S,—Cy'Silg, (BS)
where V’y, 1 denotes the regions of 7, wi, we which
satisfy 7.< 7./, Eq. (B2), and ¢,*<{. [The region V1, 1
is the same as Vi, ,—the dependence upon 7, has
simply been made explicit in V1, 3. ]

We may now divide the time integrations in (BS5)
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into two parts, as in (A11),

t—t0 ol
. / dTg/ dwdws= -+ / dre dwidws
0 V'irh 0 D'yp
dwldwz,

7!
[
0 < D'r3, k3

where D', denote the regions of 75, w1, ws which
satisfies Eq. (B2), and D’,3 53 denote the regions of 7,
w1, we which satisfies Eq. (B2) as well as ¢,*>¢.
Furthermore, we note that the restrictions upon the
region of integration in (B5) which come from (B2)
with 224 will be independent of £° This is because
R.,(k—1) and P, (k—1) are independent of £,° [ Ry, (%
—1, and P,,(k—1) only depends upon 7, w1, and w,].
We may, thus, freely integrate the first term on the
right-hand side of (B6) over #,° to finally obtain

I ey (8= [t (ap)ov ey T M (@)oo (an) I

(B6)

(B7)
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where A(ap)...(a,) i the time-independent scattering
operator for completed collisions defined by

A(al)...(a")E/ dTg/ dwldwg[Cr’ST—Ch’Sh] (BS)
0 ‘v h

and M (ay)...(an) (£) 1s an operator which corresponds to
those initial phase points which lead to incompleted
collisions (¢,*>1?). This operator is given by

dw 1dw2

t T’
M(al)...(a") (f)E —/ dtl()/ d’rg/
0 0 J D’r3, 13

X[C/S:—CySi]. (B9)

The asymptotic time dependence of M (ay)...(an)(f)
can be shown to satisfy

M (apyereay(@)=0(ns) (large £). (B10)
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Coupling-Constant Sum Rules*

M. MURASKIN
University of Minnesota, Minneapolis, Minnesota

AND

S. L. Grasaowt
University of California, Berkeley, California
(Received 27 May 1963)

Coupling-constant sum rules are derived assuming that the violation of unitary symmetry transforms
like the eighth component of “unitary spin.”’ This parallels the derivation of the mass sum rule.

I. INTRODUCTION

MODEL of strong interaction symmetry in which

both mesons and baryons transform like the
eight-dimensional irreducible representation of SU(3)
was proposed by Gell-Mann and Nee’man.! The imme-
diate prediction of such a model—that the mesons are
degenerate and the baryons are degenerate—is clearly
false. Nevertheless, the symmetry scheme appears use-
ful.?2 The success of the Gell-Mann mass formula? indi-

* Supported in part by the U. S. Atomic Energy Commission.
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(1962) ; S. Glashow, Phys. Rev. 130, 2132 (1963), and Ref. 1.

cates that the breakdown of symmetry occurs in a
particularly simple way. In this paper, we apply similar
considerations to coupling constants, and we derive
coupling-constant sum rules analogous to the Gell-Mann
mass formula.

II. COUPLING CONSTANT SUM RULES

The only effective-mass Lagrangian invariant under
SU(3) is

Ly=M TrBB, (1)
where
‘50 4 N
—t— z* n
VZ 4/6
30 A
B= z- ——t— . (2)
V2 /6 ?
2
=9 on ——A
V6




