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The dispersion curve recently found by Milford and Glasser for the acoustical branch of the spin-wave 
spectrum of magnetite is used in a numerical calculation of the heat capacity. The results obtained are com
pared to the fit found by Kouvel for his low-temperature experimental data. It is found that the use of a 
more precise dispersion curve does not remove the disagreement between low-temperature heat-capacity 
determinations of the exchange constant and determinations based on measurement of the Curie temperature, 
but that it does destroy the apparent agreement between the low- and high-temperature measurements of the 
Debye temperature. 

INTRODUCTION 

RECENTLY, Milford and Glasser1 derived, under 
the approximation of the linear spin-wave theory 

with nearest-neighbor interactions, otherwise exact 
dispersion relations for spin waves in ordered magnetite 
(Fe304). In the case where the A (tetrahedral) and the 
B (octahedral) sites do not interact among themselves 
(JAA = JBB = 0,JAB T^O), good agreement was found 
between the theory and the experimental dispersion 
curves of Watanabe and Brockhouse2 for a value of 
JAB of about 2.4X 10~3 eV. Insertion of a small negative 
exchange interaction between B sites gave even better 
agreement3 with the same value of JAB but with 
JBB= — JAB/10. Furthermore, it was found that the 
usual quadratic approximation to the acoustic branch 
was valid only for a very small range of k. 

I t is well known4 that the values of the exchange 
constant derived from low-temperature specific-heat 
measurements do not agree with high-temperature 
measurements of Curie temperature for a number of 
ferrites. In order to test the possibility that this dis
crepancy is caused by the rapid deviation of the correct 
dispersion relations from quadratic k dependence, and 
in order to see in detail what effect this deviation has 
on the dependence of the heat capacity on temperature, 
we have undertaken a numerical calculation of the heat 
capacity of magnetite. The results of this computation 
are presented in a dimensionless form and are compared 
to the least-squares fit to a function of the form 
A Tzl2-\-BTz found by Kouvel5 for his experimental data. 

HEAT-CAPACITY CALCULATION 

The heat capacity of a system of independent 
harmonic oscillators is easily obtained from the appro
priate partition function. In the particular case of spin 
waves the details have been given in several places.6,7 
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For the purpose of calculating the spin-wave heat 
capacity using the dispersion curves derived earlier1 

the following expression is convenient: 
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where T—J/KT, J=JAB is the exchange integral, K is 
Boltzmann's constant, T is trie absolute temperature 
in °K, £=ka/27r, k is a vector in the reciprocal lattice, 
a is the lattice spacing parameter, V is the volume of 
the crystal, Cv is the total heat capacity at constant 
volume, and U(Q is defined by 

J7(© = ««(©//. (2) 

In all calculations the contribution due to optical modes 
has been neglected. This is justified if r is larger than 
unity as is the case for the experimental situation 
considered here. The integral extends over the first 
Brillouin zone. The symmetry of the dispersion curves3 

allows us to integrate over one-fourth of the zone 
(shown in Fig. 1) and take four times the result. The 
integral (1) was evaluated using a three-fold application 
of the Legendre-Gauss quadratures formula with the 
tabulated roots and weights given by Lowan, Davids, 
and Levenson8 for a Legendre polynomial of order 10. 
In order to take account of the strong damping, which 
causes the integrand to be very small over most of the 
zone, a subprogram was included which, for a given 

FIG. 1. One quar
ter on the Brillouin 
zone for magnetite. 
The intercepts on 
the kx, ky, kz axes are 
at doir/a, ir/a, it/a, 
where a is the dimen
sion of the unit cell 
in the direct lattice. 

8 A. N. Lowan, N. Davids, and A. Levenson, Bull. Am. Math. 
Soc.48, 739 (1942). 
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TABLE I. The computed values of the heat capacity per unit 
cell for several values of the dimensionless coordinate r. Also 
tabulated are the corresponding values of (r)~8/2 and (r)3/2 times 
the heat capacity per cell. / is the exchange integral ( />0 ) and 
K is Boltzmann's constant. 

T-8/2 

(KT/JY'2 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 

T 

V/KT) 

7.38 
4.63 
3.54 
2.92 
2.53 
2.23 
2.02 
1.84 
1.71 
1.59 
1.51 
1.41 

100 CV/K 
(per cell) 

0.0778 
0.1611 
0.2466 
0.3362 
0.4280 
0.5226 
0.6190 
0.7194 
0.8210 
0.9237 
1.061 
1.144 

100 CVT^/K 
(per cell) 

1.560 
1.605 
1.643 
1.677 
1.709 
1.741 
1.769 
1.799 
1.831 
1.854 
1.881 
1.907 

value of r, calculated the value of f for which the 
integrand, with £= (0,0,f), became less than 10~4. This 
value of f was then used to define a "Brillouin zone" 
concentric with the actual zone but much smaller in 
volume, over which the integral was actually performed. 
The error committed here is small because, while it is 
not quadratic in £, the dispersion relation is nearly 
spherical. Several heat capacities were calculated with 
the cutoff at a value of the integrand equal to 10~5. In 
all cases, the change in Cv was less than 0.06%. (The 
integrand was also set equal to zero whenever U/2 
became larger than 12, corresponding to a contribution 
to the integral of the order of 10~~6.) The computation 
was carried out on the Bendix G-20 computer at 
Battelle Memorial Institute. 

RESULTS OF THE COMPUTATION 

The computed values of the heat capacity per unit 
cell are tabulated in Table I. Also tabulated there are 

"TTTyTTTrpTTTJTTTmTTT^ 

I 11 lit in 11 n i i 11 n I m i li f.i-i*1-i j 111 ii ii 11 m l i.i n. 
0.5 0.6 0.7 0.8 0.9 LO 

-j--3/2 

FIG. 2. Comparison of Kouvel's data (broken line) with the 
computed heat capacity (solid line). Dimensionless coordinates 
are used, with T—J/KT, where / is the exchange integral, K is 
Boltzmann's constant, and T is the absolute temperature. The 
straight lines are derived from Kouvel's least-squares fit of his 
experimental data; Kouvel's data line in the heavier portion of 
the dashed curves. 

the corresponding values of r~3/2 and r3/2 times the heat 
capacity/cell, which are useful for comparison with 
experiment. 

In Fig. 2 is displayed (solid curve) a graph of r8/2 

times the heat capacity/cell versus r"~3/2. The rounding 
of the curve for low temperatures is probably due to a 
small T5/2 term which dominates the T3 term at very 
low temperatures. The dashed lines in Fig. 2 are 
Kouvel's straight line fit to his experimental data, 

C^P /2=0.255+0.009ir3/2, (3) 

reduced to dimensionless form for each of three different 
values of the exchange interaction. While the computed 
curve is not a straight line, the deviation from a straight 
line in the range of KouvePs data (2.5<T3/2<9.5) is 
small. The extrapolation to zero temperature along a 
straight line is also seen to be invalid, but again the 
error committed will be only a few percent. The best 
fit occurs for /=0.45X10~3 eV, in agreement with the 

FIG. 3. Comparison of Kouvel's straight-line fit (broken line) 
to his experimental data with the computed heat capacity (solid 
line). The range of Kouvel's data is emphasized. The computed 
curve corresponds to J=0.45X10~3 eV. The vertical bars indicate 
the ±0.01 eV limits on the computed curve. The absolute tem
perature is indicated on the upper margin. 

fit found by Kouvel using the quadratic approximation. 
Hence, the deviation from a quadratic dispersion law 
does not explain the disagreement between low- and 
high-temperature data. In Fig. 3 the same data are 
displayed in a slightly different form, namely using the 
scales established by Kouvel for his particular sample 
of magnetite. The fit to his data appears better here 
because the horizontal scale is expanded by a factor 
of about 12, while the vertical scale is compressed by 
about the same factor. 

Figure 3 illustrates a second facet of the heat-capacity 
problem in ferrites. Almost all of the slope of KouvePs 
data can be accounted for using the magnetic inter
action alone. Over the range of his data, the slope from 
the spin-wave theory averages about 0.008 mJ/(°K)4. 
This leaves only about 0.001 mJ/(°K)4 for the Debye 
lattice heat, which increases the predicted Debye 
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temperature by about a factor of 2. This destroys the 
apparent agreement between the low- and high-tem
perature values of the Debye temperature. 

DISCUSSION 

The results of this and previous calculations may now 
be succinctly summarized by saying that the linearized 
spin-wave theory with only nearest-neighbor inter
actions is capable of accounting for the spin-wave 
dispersion curves observed above the ordering tem
perature and also of accounting for the spin-wave 
contribution to the heat capacity at low temperatures. 
These remarks must, however, be supplemented with 
the observation that in order to do this one requires 
values of the exchange integral which differ by a factor 
of about five. The possibility that this discrepancy can 
be attributed to the use of a quadratic approximation 
to the spin-wave spectrum has been excluded by this 
calculation. It seems, then, that barring experimental 
errors the exchange integral changes at the ordering 
temperature (or at least in the vicinity of the ordering 
temperature) in a dramatic way. On the basis of the 
crystallography this seems not unreasonable; however, 
a number of experiments may be suggested which would 
contribute a great deal towards understanding the 
phenomena. 

Perhaps the most interesting experiments would be 
neutron inelastic scattering at low temperatures. Such 
experiments have the advantage of yielding quite direct 
information about the spin-wave spectrum which, as 
we have shown, may be interpreted readily in terms of 
linearized spin-wave theory. By doing such experiments 
as a function of temperature, especially in the region 
of the ordering temperature, one should be able to 

obtain the exchange integral as a function of tempera
ture and this might supply some worthwhile clues about 
how ordering affects / . 

Further measurements of the heat capacity also seem 
to be in order. At temperatures below 1.5°K, for 
example, one might see the T5/2 contribution to the 
heat capacity. Such a term is to be expected on the 
basis of Dyson's analysis and of course would dominate 
a Ts term due to a basic antiferromagnetic behavior at 
very low temperatures. At higher temperatures (but 
still below the ordering temperature) one might hope 
to identify better the lattice contribution to the specific 
heat. Here, however, a word of caution needs to be 
repeated; namely the calculation presented here takes 
account of only the lowest spin-wave mode. For 
magnetite at temperatures above about 5°K there is 
appreciable excitation of the lowest optical mode and 
this would need to be taken into account. Such calcu
lations are not intrinsically more difficult than those 
which have already been done; however, the absence 
of experimental data with which to compare such 
calculations has led to the decision not to carry them 
out at this time. 
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