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Transport effects were studied in a bismuth single crystal at liquid-helium temperatures in a magnetic 
field. Except for a field-orientation study of the galvanomagnetic effects for mapping the light-holes ellipsoid, 
all the measurements were taken in the basal plane of the crystal with the field parallel to the trigonal axis. 
The thermal conductivity was found to be almost entirely due to lattice conductivity; therefore, the experi­
mental coefficients determined were limited to the following: the isothermal transverse magnetoresistivity 
pn, the isothermal Hall resistivity P21, the (adiabatic) thermoelectric coefficient en, the (adiabatic) Nernst-
Ettinghausen coefficient €2i'> and the transverse magnetothermal resistivity 711. The Peltier tensor coef­
ficients were expected (from the Onsager relations) to be too small to be measurable and thus, were not 
studied here. All these effects, except the thermal resistivity coefficient exhibit the Schubnikov-de Haas type 
oscillations. The kinetic coefficients of the transport effects <m, an, en", and en" were computed from 
the experimental coefficients and compared with available theories. A rough analysis of the gross effects was 
made by a decomposition of each coefficient into a sum of different band contributions, each band being 
approximated by a Lorentz term. General, but not complete, agreement between experiment and theory 
is achieved for both two-band and multiband models. No special mechanism (i.e., like that proposed for 
zinc) is needed to explain the oscillations in the different effects, since the Lifshitz and Kosevich theory 
(012), the Zil'berman theory (crimen"), and the influence of oscillation in the density of states (ew") lead to 
satisfactory agreement with the experiments. 

I. INTRODUCTION 

TO obtain information on the band structure of 
bismuth, galvanomagnetic and thermomagnetic 

potentials were measured in a single crystal at liquid-
helium temperatures. The de Haas-van Alphen (dHvA) 
type oscillations observed were readily analyzed, 
yielding information on the various bands of carriers. 
The gross effects upon which the oscillations are 
superimposed were analyzed for information on the 
different carriers, particularly for the possible existence 
of heavy carriers which show no oscillations in the 
temperature range studied. 

In recent years, extensive investigations have been 
made to determine the electronic nature of bismuth. 
These studies include galvanomagnetic effects,1-"7 

anomalous skin effect,8 ultrasonic attenuation,9 cyclo­
tron resonance,10-13 de Haas-van Alphen14-17 and 
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Shubnikov-de Haas effects,18-23 specific heat,24,25 and 
others.26"28 

The available data lead to a model of the Fermi 
surface (FS), but there remain several discrepancies. 
Many of the parameters associated with the different 
bands of carriers are known only in order of magnitude, 
or within a multiplicative factor. The present work 
examines the galvano- and thermomagnetic effects 
both individually and collectively in order to add to 
the present model of the FS. 

A model for the electronic part of the FS was first 
established from de Haas-van Alphen oscillations.14 

This portion of the FS consists of three ellipsoids 
(in momentum space) lying almost in the basal plane 
[the (l)-(2) plane of Fig. 1] and interrelated by 120° 
rotations about the principal axis. Inversion symmetry 
in the first-Brillouin zone allows for doubling these 
electron ellipsoids; this doubling is probable, although 
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FIG. 1. The sym­
metry axes in the 
bismuth crystal. \f/ is 
the angle between 
the magnetic field E 
and the trigonal axis 
(3) in the (3)-(2) 
plane. 
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not firmly established experimentally. These electrons 
are apparently the most mobile carriers in bismuth. 

A FS of relatively high-mobility holes has the form 
of an ellipsoid of revolution centered on the principal 
(trigonal) axis with its major axis in the trigonal 
direction.1,15 A multiplicity of two for this pocket 
of carriers is also possible, but rather improbable as there 
is recent evidence for a single pocket.17,4,28,29 

In addition to the relatively high-mobility holes and 
electrons, there is evidence of other carriers—probably 
holes—of quite low mobility.23,27 These heavy carriers 
have an approximately spheroidal FS,23 and a density-
of-states effective mass, m,*, of the order of the free-
electron mass mo. A fourth band of carriers with even 
lower mobility may also exist.23,27 

II. NOTATION AND CONVENTIONS 

The transport effects are described in kinetic theory 
by the relations 

J = * E * - « " G , 

w*=-7r"E*+X"G, 

where J is the electric-current density and G is the 
negative-temperature gradient. The quantities E* and 
w* are the electric-field and heat-current density, 
respectively, each modified for convenience by a term 
involving the chemical potential juc. The expressions 
are30,31 

E*==E+«r*gradMc, 

w*=w+rVJ, 
where E is the electrostatic field, w is the heat-current 
density, and e is the magnitude of the electronic 
charge (a positive number). The quantities &, e", ft", 
and X" are tensors relating the "fluxes" J and w* with 
the "affinities" E* and G. 

Other relations between J, w*, E*, and G 

E*=pJ+eG, 

w * = - 7 r J + X G , 
(2) 

29 G. E. Smith, J. Phys. Chem. Solids 20, 168 (1961). 
80 H. B. Callen, Thermodynamics (John Wiley & Sons, Inc., 

New York, 1960). 
31 J. P. Jan, in Solid State Physics, edited by F. Sitz and D. 

Turnbull (Academic Press Inc., New York, 1957), Vol. 5, p. 1. 

G = T T / J + 7 W * , 
(3) 

are often used. This threefold representation allows 
computation of the tensor elements in the more con­
venient form of Eq. (1) from the experimentally 
determined quantities p, e', ft', and f. The expressions 
for the tensors in Eq. (1) in terms of the experimental 
quantities are 

€" = (&€', (4 ) 

X" = X+e7r", 

ft" = &%ft'. 

The elements of &, e", and % reported in this investi­
gation were calculated by means of Eq. (4). The 
nomenclature for the transport coefficients is as follows: 
The condition G2=0 is called "isothermal"; that of 
W2*=0 is called "adiabatic." Thus we refer to en, en, 
and en" as the isothermal thermoelectric coefficient, 
the adiabatic-thermoelectric coefficient and the kinetic-
thermoelectric coefficient, respectively. Similarly, en is 
the isothermal Ettinghausen-Nernst (E-N) coeffi­
cient ; €i2r, the adiabatic E-N coefficient; and en", the 
kinetic E-N coefficient. 

The experimental transport coefficients p, e, and i> 
were obtained with the magnetic field applied parallel 
to the principal axis of the crystal. With this geometry 
and the symmetry of the bismuth crystal, these tensors 
have the form 

an #12 0 

"#12 #11 0 

0 0 033, 

and have the following symmetries with respect to the 
magnetic field H: 

ai2(H)=—an(~H), 

au(H) = an(-H). 

The two elements an and an are the ones of interest 
in the present investigation since measurements were 
made in the basal plane. Since these coefficients generally 
exhibit Schubnikov-de Haas type oscillations, the 
notation aap, a^ is used to distinguish between the gross 
effect and the oscillatory part of the effects. The ampli­
tude of the oscillations is denoted by |a«^|'. 

in. EXPERIMENT 

A. The Crystal 

The crystal was prepared from spectroscopically 
pure bismuth obtained from Johnson, Mathey, and 
Company. I t was first grown as an ingot without 
preorientation and then cut to shape. The finished 
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specimen had the form of a right parallelepiped with 
dimensions 24.3 mmX6.9 mmX2.5 mm. The crystal 
had a resistance ratio i?(300°K)/^(4.2°K)^40.Jhis 
low purity was found to be advantageous as will be 
seen in the analysis of the results. The orientation of the 
symmetry axes in the specimen is shown in Fig. 1. 
With the exception of the galvanomagnetic orientation 
studies performed with the magnetic field in the (2)-(3) 
plane, all measurements of galvano- and thermo-
magnetic potentials were made in the (l)-(2) plane 
with the magnetic field directed along the 3 axis. 

B. Measuring Techniques 

A chamber was constructed to provide a crystal 
suspension system by which both galvano- and thermo-
magnetic potentials could be measured without disturb­
ing the contact with the crystal. Carbon-resistance 
thermometers encased in thin copper sleeves were 
attached by stiff copper leads directly to the crystal. 
A solder composed of bismuth, tin, and lead was used 
to make connections to the crystal. Electric potential 
leads of No. 40 gauge wire were then soldered to the 
stiff thermal leads to give common contact points for 
both types of measurements. The leads were brought 
out of the vacuum chamber into the liquid helium 
through a seal of epoxy resin.32 Thermomagnetic 
measurements were made in a vacuum better than 
5X10-6 mm Hg. The isothermal condition for the 
galvanomagnetic measurements was achieved by allow­
ing the surrounding liquid helium to fill the vacuum 
chamber. Potentials were measured by a dc method 
described by Bergeron, Grenier, and Reynolds.33 

C. Experimental Data 

The Hall resistivity />2i and magnetoresistivity pn 
are shown in Fig. 2 for magnetic fields up to 17 kG and 
temperatures 2.1 and 4.2°K. The curves exhibit the 
characteristic Schubnikov-de Haas oscillations in 1/H. 
With the field in the (3) direction, the only detectable 
oscillations are those due to the light hole pocket. The 
thermoelectric coefficients €«/ are shown in Fig. 3; 
the temperature dependence is to be noted. Both P21 and 
en show a change in sign near 1500 G. In the case of p2i, 
the change of sign means that (±)%>0, i.e., the 
number of holes slightly exceeds the number of elec­
trons. In the case of en, it indicates a low-mobility hole 
carrier with a large density of states. Neither pa$ nor 
€«/ are analyzed directly, but rather are used together 
with data on the thermal conductivity from Fig. 8 to 
construct ea/s" and <rap. 

It is important to note that the experimental data 
obtained for ea/ are related to the bismuth-copper 
thermocouple formed by the bismuth crystal and the 

32 K. S. Balain, C. J. Bergeron, Rev. Sci. Instr. 30, 1058 (1959). 
33 C. J. Bergeron, C. G. Grenier, and J. M. Reynolds, Phys. Rev. 

119, 925 (I960). 
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FIG. 2. Hall resistivity and magnetoresistivity of the sample at 
4.2 and 2.1°K for ^ = 0 . The upper two curves are for P21, the 
lower two for pn. The insert shows the sign inversion occurring in 
p2i at low field. 

copper leads. The effect of the absolute "isothermal" 
thermoelectric power of the copper leads ecu is to 
modify the expression for e.34 The experimentally 
determined e' is given by 

a'^X-Ke-lecu). 

The value €Cu^0.8X10-6 V/deg reported by Blatt and 
Kropschot35 when compared to our value Xnen' 
= 34.6X10-6 V/deg (both with # = 0 at 4.2°K) 
indicates that the effect of the copper would be less than 
2% of the total; the value €Cu=-3.2X10~8 V/deg at 
# = 0 and r=4.2°K for similar copper leads as reported 
by Grenier, Reynolds, and Zebouni,34 yields an effect 
still smaller. In the later analysis, the effect of the 
thermoelectric power of the copper leads is neglected. 

IV. THEORY 

A. Modified Sondheimer-Wilson Theory 

The monotonic parts of both aap and e V are analyzed 
in terms of a modified Sondheimer-Wilson theory.36 The 
expressions obtained assume a quasicontinuum of states 
in "parabolic" bands with sharp Fermi distribution 
functions and isotropic relaxation time independent 
of energy. Under these conditions, the conductivities 
are given by 

a12/H= (ec) £ ( ± K £ ; , . 

<7n= (ec) Yl GjftjHjLj, 

where the summation extends over all bands and the 
(+) sign is taken for holes and (—) for electrons. Here, 
Hj—cmf/eri is a quantity inversely proportional to 

84 C. G. Grenier, J. M. Reynolds, and N. H. Zebouni, Phys. Rev. 
129, 1088 (1963). 
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H(kG) 

FIG. 3. The adiabatic-thermoelectric coefficients en' and €12'. 
Experimental values were obtained with H parallel to trigonal 
axis 6A=0) at 4.3 and 2.1°K. 

the mobility at zero field and is hereafter called the 
saturation field; L3- is the Lorentz term L3— (H2+Hj

2)~1; 
fij is the number of carriers; 77 is the relaxation time; 
and the subscript j indicates that these definitions 
apply to the jth band. The factor a$ is an adjustable 
parameter introduced to correct for noncircular orbits37; 
for circular orbits, dj is equal to one. 

Under the above conditions and with the additional 
assumption that the relaxation times for electrical 
and thermal processes are equal, a second-order 
approximation for the Fermi function at finite tempera­
ture gives for ea^

;, 

€11" = ~ (W&cT) £ (zk^sZfHjLj, 
(6) 

where Z / is the density of states in band j at zero 
field. Here bj and Cj are adjustable parameters intro­
duced to facilitate curve fitting. Ideally, bj should equal 
one and Cj should equal a,j. 

Since real metals do not necessarily satisfy the condi­
tions under which Eqs. (5) and (6) are derived, those 
equations may need to be modified empirically to fit 
the data. Possible modifications are: (1) The de­
composition of a band into several subbands; (2) the 
spreading of a band into a continuum, and (3) the 
shifting of a band by considering the saturation field 
Hj to be field-dependent. In the analysis of these data, 

37 In case of a set of tilted ellipsoids defined by the mass tensor 

(mi 0 0"! 
m = 0 W2 W4 , 

L 0 nii m%\ 

a is equal to i(wi+w2—W42«3"1)(w2«3~«42)"1/2Xwr1%3
+1/2. If 

the set is denned through the inverse mass tensor 

Cai 0 0 ] 
0 a% 0J4 , 

L 0 QJ4 a%) 

then a is simply i(ai/a2)
1,2+ («2/o!i)1/2; and if the ratio 22e between 

the principal axes of the basal cross section of the ellipsoid is 
known, then a is simply HRe+Re"1). 

no such modification was considered; a match of each 
band by a single Lorentz term of the type of Eqs. (5) 
and (6) was attempted. 

B. Lifshitz-Kosevich Theory of Oscillations 
in the Galvanomagnetic Effects 

A large amount of information comes from a detailed 
study of the dHvA type oscillations which occur at 
high-magnetic fields. For an understanding of the 
transport processes, one must explain the scattering 
mechanism and their magnetic-field dependence. As 
yet, a theory has not been devised which approaches 
the excellence of the theory of the de Haas-van Alphen 
effect. Attempts have been made, however, to obtain a 
theory of the Shubnikov-de Haas oscillation, first by 
Levinger and Grimsal38 and more recently by Lifshitz 
and Kosevich,39 who related the field-dependent 
oscillations in the conductivity tensor aa0 to the suscepti­
bility oscillations through the classical mobility tensor. 
ZiFberman40 and others41"42 have also studied the 
influence of Landau quantization on various galvano­
magnetic and thermomagnetic effects. The ZiFberman 
theory is discussed in Sec. IVD. 

In the Lifshitz-Kosevich theory, the oscillatory part 
of the conductivity tensor is written as 

(0^/3) L - K = Ao-a i3+ Ai(ra/3, (7 ) 

where the first term arises from magnetic field-
dependent oscillations in the number of carriers in the 
various bands under the assumption of a constant Fermi 
energy f. The second term comes from oscillations in 
the number of carriers in the different bands with 
varying f but with ]Ty (=b)% assumed constant. With 
qmf# denoting the classical mobility tensor for the 
carriers at the extremal cross-sectional area of the jth 
pocket (band) perpendicular to the applied field, the 
first term in Eq. (17) is written as 

toad^T, qtnfffyy (8) 
where fij is the oscillation in the number of carriers in 
the jth band. The explicit expression for n for a pocket 
of carriers with an ellipsoidal FS with major axis parallel 
tO H i s 38,39,43,44 

X>- 2 / 3 (——) 
K Vsmh/cX/ 

/ehH\z> 
H=4pRJr*l-—J 

Xexp K efiH/ 
-«(2lTK7+f' *)], (9) 
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3 9 1 . Lifshitz and L. M. Kosevich, Zh. Eksperim. i Teor. Fiz. 33, 

88 (1957) [translation: Soviet Phys.—JETP 6, 67 (1958)]. 
40 G. E. Zil'berman, Zh. Eksperim. i Teor. Fiz. 29, 762 (1955) 

[translation: Soviet Phys.—JETP 2, 650 (1959)]. 
41 List of references can be found in the review article by A. H. 

Kahn and H. P. R. Frederikse, in Solid State Physics, edited by 
F. Seitz and P. Turnbull (Academic Press Inc., New York, 1960), 
Vol. 9. 

42 P. Horton (private communication). 
4 3 1 . M. Lifshitz and L. M. Kosevich, Zh. Eksperim. i Teor. Fiz. 

29, 730 (1955) [translation: Soviet Phys.—JETP 2, 636 (1956)]. 
44 R. B. Dingle, Proc. Roy. Soc. (London) A211, 500 (1952). 
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where p is the multiplicity of the ellipsoids, R is the 
ratio of major to minor axis of the ellipsoid(s), Sm is 
the extremal cross-sectional area (of the ellipsoid) 
perpendicular to the magnetic field, X is 2-K2km*cT/etiH, 
7 is a parameter defined such that yc/ehH is the area 
of the lowest Landau level and is equal to one-half for 
free electrons, and k is Boltzmann's constant. Note 
that the period in 1/H is 

P==A(l/H) = eh/cSu (10) S 

The second term in Eq. (7) is 

T MQi^\A "1 

i j 

where i and j are summed over all bands, (qfP)^ is the 
average classical-mobility-tensor coefficient of the ith. 
band carriers. Here, Ni° denotes the number of states 
in band i, where the zero refers to zero magnetic field. 

C. Oscillation in the Density of States and in 
the Thermoelectric Effects 

In the absence of a theory for Landau quantization 
in the Nernst-Ettingshausen effect, the classical 
expression Eq. (6) is applied directly. Thus, the oscil­
lations in the density of states Z is expected to give a 
contribution to the oscillatory part of the thermoelectric 
tensor £«/' of the form 

(€«/')d. s.=]C €«JS/'Zj/Zf, (12) 

where e^/ ' is the jih term in Eq. (6) and Z=dn/d£. 

D. Zil'berman Theory for Oscillations in the 
Conductivity Coefficient ofn and the 

Thermoelectric Coefficient In" 

The influence of Landau quantization on electron 
scattering on lattice imperfections has been studied by 
ZiPberman in the effective mass approximation with 
complete isotropy. The amplitude of oscillations in the 
conductivity coefficient | an | and in the thermoelectric 
coefficient | In' | can be written for band j in a first-
harmonic approximation 

Kn zi n=viJ-^Y—^-) (PjHy*, (13) 
\4 AsinhX/ 

/l—XycothXA 
" I zii= W (5*V2)( : ) CP;H)-1/2, (14) 

\ \j sinhXy / 
where anj and en/ ' are given as the jth, terms of Eqs. 
(5) and (6), respectively. The above equations are the 
results of a modification of the Zil'berman theory by 
Horton.42 

5 6 7 8 9 
INTEGERS 

13 14 

FIG. 4. Typical plots of 1/H at successive maxima (or minima) 
of the Shubnikov-de Haas oscillations versus integers (or half-
integers) for different orientations of the magnetic field in the 
(3)-(2) plane. 

It may be noted that when the oscillations are small, 
the expressions Eqs. (13) and (14) simply add to the 
contributions from Eqs. (7) and (12) since the sources 
of the oscillations are different in the two cases. 

V. RESULTS 

A. The Light-Hole Ellipsoid 

The high-mobility hole pocket was mapped in detail 
first by Brandt from dHvA oscillations16 and then by 
the present authors from galvanomagnetic oscillations 
in the early stages45 of this study. Other experimental 
techniques previously had established some of the 
parameters of this pocket.1,8,12'18 In this investigation, 
oscillations in the resistivity tensor elements paP for 
various magnetic-field orientations in the (2)-(3) plane 
were observed at 1.8°K in fields ranging up to 16 kG. 
The dimensions of the ellipsoid are established by 
computing Sm for various orientations ty from Eq. 
(10). Here if is the angle [in the (2)-(3) plane] between 
the (3) axis and the applied magnetic field as shown in 
Fig. 1. The periods were determined by examination 
of the recorder traces for maxima and minima. The 
values of 1/H corresponding to successive maxima 
were plotted against successive integers; the slope of 
the resulting curve determined the value of the period. 
Typical plots are shown in Fig. 4. The oscillations 
observed are due not only to the hole ellipsoid under 
investigation, but also to other pockets of carriers. The 
presence of one of the high-mobility electron ellipsoids 
mapped by Shoenberg can be seen in the ^=63.6° plot 
where it shows up as a periodic error in the determination 
of the shorter period due to the holes (see next section). 
Since an extensive mapping of the electrons pockets has 

45 J. R. Sybert, C. G. Grenier, and J. M. Reynolds, Bull. Am. 
Phys. 6, 461 (1961). 



E L E C T R O N T R A N S P O R T P H E N O M E N A IN Bi 63 

already been made, no attempt is made here to analyze 
the oscillations due to the electrons. Only a few periods 
were checked and found in perfect agreement with the 
Shoenberg14 or Lerner23 data. For a prolate ellipsoid of 
revolution, Eq. (10) can be written in the form 

P 2 - (eh/irac)2l(a~2-c-2) cosY+<r*], (15) 

where a and c are the semiminor and semimajor axes, 
respectively. A plot of P2 as a function of cosV is shown 
in Fig. 5. The linearity of the curve indicates that the 
FS of the light holes is indeed ellipsoidal. There is 
evidence from the work of Brandt et al.lb of a departure 
of the FS from an ellipsoid for values of t^>75° (just 
beyond the range of our measurements). However, this 
departure was not mentioned in a later publication 
concerning, presumably, the same experimental data.16 

The period for ^ = 0 is 1.52X10"5 G"1 and the period 
extrapolates to 0.43 XlO"6 G"1 for ^ = 9 0 ° . The volume 
of the ellipsoid in momentum space is found to be 
F=4.97X10~6 2 (g cm/sec)3; the number of holes per 
atom per ellipsoid is 1.21 X10 - 5 per atom or 3.43X1017 

per cm3 in good agreement with data of Brandt et al. 
The temperature dependence of the oscillations in the 

c0^ (with ^ = 0 ) is the same as that in n as given by Eq. 
(9). For constant H, the values of the effective mass 
w* and, consequently, of the chemical potential f Q can 
be determined from Eq. (10) with Sm=2irm^o. The 
experimentally determined values of w* are given in 
Table I ; the value ra*/mo=0.065 is adopted as a good 
average of those. This value, together with the other 
parameters obtained from the present work for the 
group of light holes, is shown in Table I I , along with 
corresponding results from other techniques. 

B. Fluctuation in the Period of the 
Light-Hole Ellipsoid 

Despite the very good agreement between the present 
mapping of the light-hole ellipsoid and the one of 
Brandt, as well as the good match between the effective 
mass found here and the one found by cyclotron 
resonance and anomalous skin effect determinations, 
some doubt still exists about some of the characteristics 
of this pocket: 

(a) Most of the analyses of galvanomagnetic effects 
with a two-band model seem to indicate a smaller 

TABLE I. The cyclotron mass m*/m0 of the hole ellipsoid, with 
the magnetic field parallel to the trigonal axis, obtained from the 
temperature dependence of the oscillation amplitude in the Hall 
conductivity an and magnetoconductivity an, respectively, at 
different magnetic-field values. 

Magnetic-field 
values (H) From temperature From temperature 

(kG) dependence of &n dependence of of n 

2.0 

T O 

QL 

1.0 

.5 

0 

jS 

/ 

i i i i 1 
1.0 

10 
12 
14 

0.0647 
0.0636 
0.0658 

0.065 
0.0694 
0.0639 

FIG. 5. P2 versus cosV for the light-hole ellipsoid. Data were 
taken at 1.8°K. The straight line corresponds to an ellipsoid with 
ratio of major to minor axis 3.59. 

number of holes, W A ~ 2 . 5 X 1 0 1 7 cm"3, (see the two-band 
model in Sec. VE) than found in the light-hole mapping; 
(b) a possible departure from ellipsoidal shape is 
indicated in the first report of Brandt et aln; (c) lately, 
an indication has been given by Lerner23 of the existence 
of isotropic periods 7.2 X10 - 6 G - 1 appearing mostly for 
large values of \j/. These periods are interpreted by 
Lerner as those of the heavy-carrier ellipsoid. Should 
they be interpreted as belonging to the light-hole pocket 
with the period 7.0X 10~6 G - 1 replacing the extrapolated 
4.3 X10 - 6 G_1 value, the result would be a number of 
carriers close to the value expected from the two-band 
model. 

A careful investigation of the period of the light 
holes was performed again with the field in the (2)-(3) 
plane, mostly for large values of \(/. With ^ in the range 
0 to 30°, perfect monoperiodic oscillations were seen 
in most of the field range with an appearance at high 
field of a slight distortion of the oscillations interpretable 
either in terms of the appearance of a second harmonic 
or in terms of Lerner's isotropic period. For higher \p 
values, 30° to 60°, a slight modulation appears in the 
periods as a function of the field; the period of the 
modulation seems to correspond to the longest period 
of the electron pockets. Since the modulation amplitude 
is small, the average period obtained by fitting a 
straight line to the ^ = 6 3 ° data in Fig. 4 still can be 
considered as a suitable determination for the mapping 
parameters. 

For \j/ greater than 60°, the galvanomagnetic oscil­
lations decrease in amplitude; the range of field for 
which they are detectable rarely exceeds the range in 
which the modulation occurs. A field-dependent period 
is then obtained in the analysis. In the case of the 
largest \p angle, instead of a smooth variation in period, 
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TABLE II . Direct data from various measurements on high-mobility holes ellipsoid. The characteristic parameters of 
the hole ellipsoid. Some of the earliest data on the ellipsoid are indicated. 

Su (10~42 g2 cm2 sec-
Si (10-42 g2 cm2 sec" 
Sx/Sn ( = R) 
n (1017 holes cm 8) 
To (10~14 erg) 
m 3 /m 0 

mi/mo 
mi/7nz (R2) 

-2) 
2) 

Present 
work 

6.97 
25.02 

3.59 
3.43 
1.9 
0.065 
0.84 

12.9 

dHvA effect 
Brandta et al. 

6.75 
25.75 
3.81 
3.4 
2.5 
0.05 
0.7 

14 

Cyclotron 
resonance 
Galtb et al. 

0.068 
0.92 

13.5 

Anomalous 
skin effect 

Smith0 

12.8 

Hall effect 
Reynoldsd 

et al. 

2.0 
0.062 

a See Ref. 16. 
b See Ref. 12. 
« See Ref. 8. 
dSee Ref. 18. 

the variation appears almost discontinuous as if the 
electron oscillation were approaching the extreme 
quantum limit. The determination of an average period 
is then questionable. The experimental values for the 
periods are plotted versus xj/ in Fig. 6. For ^ < 5 0 ° , the 
data are in excellent agreement with the form of Eq. 
(15). For ^ > 5 0 ° , a considerable scatter in the data is 
apparent. Many of the data points fall into the range 
by Lerner.23 (Lerner has recently indicated that the 
period and size of this pocket would be very sensitive 
to impurity and thus they would vary greatly from one 
sample to the next.) The existence of the heavy-carrier 
pocket discussed by Lerner is neither confirmed nor 
rejected; the scatter of the data calls for caution. For a 
two-band model with one hole ellipsoid and three elec­
tron ellipsoids as shown in Fig. 7, some explanation is 
found for this behavior of the period. When the mag­
netic field is in the direction of the binary axis (^= 90°), 
two of the electron ellipsoids present very small cross 
sections to the field. For field strengths somewhat above 
25 kG, the last Landau level is above the Fermi energy 
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so that no states are available for electrons in the two 
ellipsoids. In a first approximation, if ne is the initial 
number of electrons per ellipsoid, the third electron 
ellipsoid must increase its population to nj and the 
hole-ellipsoid population must decrease from nh=3ne to 
fth—nj. The new extremal cross-sectional area Sm of 
the hole ellipsoid is then smaller than the original 
value Sm\ the associated relative increase in period is 
given by 

F'/P=tte+!;k)/(3mte+h), (16) 

where the f?s are the respective chemical potentials. 
This corresponds to an increase of the period by about 

The fields used here were lower than those 
necessary for the extreme quantum limit; but the 
emptying of the two electron ellipsoids progresses in a 
manner periodic with increasing field. 

With the phase from Eq. (9) written in the form 

<t>f cSm'/l\ <t>of 

2TT eh \H/ 2TT 

where SJ is the field-dependent cross section of the hole 

E F 

/ ^ ~ " V ^ 
! / HOLES / \ 

I QUANTUM LIMIT FOR 
ELECTRONS 1 AND 2 

VAST LANDAU 

,___ 

, ! 

l 

p~ 
-L6VSL 

~~Y ^ 
\ ! r j 

W - 1 
ELECTR0NS 

^\ 

^ (DEGREE) 

FIG. 6. The period P of the hole ellipsoid versus the orientation FIG. 7 Schematic representation of the holes and electrons in 
with emphasis for the large value of \j/ on the indetermination of an E versus k diagram. When the electrons pockets (1) or (2) 
the period. (+ ) period average over the entire field range, (o) 
averaged period for lowest field, («) averaged period for highest 
field. The solid line corresponds to the ellipsoid specified in Sec. VA. 

(or both) are emptied, the Fermi energy rises with an increase in 
number of electrons in pocket (3) and a decrease in the number 
of holes. 
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ellipsoid, comparison can be made with the phase <t> 
expected from a fixed Sm value 

<j> cSm/ 1 \ < 

2TT eh\H/ : 2TT ' 

In Fig. 4 for ^=63.6° , the values of <£/2TT and 4>'/2ic 
plotted versus 1/H are represented by the straight 
line for <j>/2ir and by the experimental points for <j>'/2ir, 
respectively. The relative deviation is 

<£'-<£ ASm 2Anh 

$ — 00 Sm 3 flh 

with Ann/fih the relative variation of the number of 
holes in the hole pocket. The above is also in first 
approximation 

A<j> 4f I f* 
_ = J 1 + 

0-0o 91 3 f, 

1 Ane Ane 
X - 0 . 3 6 , (17) 

ne ne 

where Ane/ne is the relative variation of the number of 
electrons in one of the electron pockets as the extreme 
quantum limit is approached. According to this equa­
tion, the fluctuation in the curve ^=63.6° of Fig. 4 
seems to indicate an order of magnitude for — (Ane/ne) 
of 3 and 15% for H=S kG and H= 15 kG, respectively, 
values which can reasonably be expected from an 
expression for Ane similar to Eq. (9). Equation (17) 
must be modified to account for larger fluctuations. 
Departure from the quasicontinuous distribution of 
states in the hole pocket, directions of field different 
than that of the binary direction, and possible existence 
of other bands may need to be considered. Nevertheless, 
since fluctuations in <j>r are important, the value of the 
apparent period Pf as determined from measurements 
in a short range of field is affected appreciably since 
l / p ' = ( l / 2 7 r ) d 0 ' / d ( l / # ) . The wide scatter of the 
points in Fig. 6 may be a consequence of this mecha­
nism; in which case, caution should be used in inter­
preting periods measured at high fields, over a short 
range of fields, for directions \p greater than 60°. 

C. Thermal Conductivity 

Knowledge of the thermal-conductivity tensor is 
necessary for the computation of the kinetic thermo­
electric coefficients. I t is ordinarily computed from the 
experimental thermal resistivity coefficients.34 Bismuth 
shows a particularly simple thermal-resistivity behavior 
with a practically field-independent yu term and a 
negligible 721 Righi-Leduc resistivity (£2=0,721=0). 
This can be summarized by 7 = 7 n l and the conduc­
tivity give simply X=Xnl with \ n = 7 i i " 1 . 

Data for the thermal conductivity at zero-magnetic 
field, along with earlier work on bismuth by Shalyt46 

£ 

• o 1.0 

*< 5 

SHALYT 

WHITE 8 WOODS (Bi-5) 

PRESENT WORK 

> G1LLINGHAM 8 MACKEY 

FIG. 8. The thermal conductivity in function of temperature for 
a zero-magnetic field. This conductivity is practically due to the 
lattice only. The dashed line is the expected low temperature Tz 

variation adjusted to fit the data. Data of Schalyt (Ref. 46), White 
and Woods (Ref. 47), and Gillingham and Mackey (Ref. 48) are 
also given. 

and White and Woods47 are presented in Fig. 8. The 
low-temperature points may be made to fit the Tz 

behavior of lattice conductivity as expected when the 
size effect is preponderant. The conductivity seems to 
reach a maximum around 3.6°K, but more recent 
measurements on the same crystal48 indicate a maximum 
around 4°K with a value of X at 4.2°K about 12% 
higher than reported here. 

An indication of the contribution of the electrons to 
the heat flow is obtained from the Wiedemann-Franz 
law: At 4.0°K and zero field, the electronic part of the 
thermal conductivity is Xe=3.18X10~2 W/deg-cm. By 
comparison with the data of Fig. 8 it is seen that the 
expected electronic contribution to the total thermal 
conductivity is only a fraction of 1%. 

Measurements of X with and without an external 
magnetic field served to substantiate the neglect of the 
electronic contributions. In the calculation of the 
tensor elements the heat conductivity is assumed to be 
due to the lattice only; thus, the thermal effects are 
described simply by 

G 2 = 0 ; wi*=XnG1=XzX?i; w2*=0, X2 i=0. (18) 

If the mean free path A is established by scattering 
from the boundaries of the crystal, the expected value 
of the thermal conductivity, X L = 4 C L ^ A , is 5.4 
W/deg-cm at 2.07°K. Here the average sound velocity 
v and the lattice heat CL are computed classically with 
a Debye characteristic temperature of 117°K.24 This 
value compares favorably with the experimental value 
X L = 4 . 3 W/deg-cm. 

46 S. Shalyt, J. Phys. USSR 8, 315 (1944). 

47 G. K. White and J. B. Woods, Phil. Mag. 3, 342 (1958). 
48 R. Gillingham, S.J. and H. J. Mackey (private communi­

cation); R. Gillingham, Ph.D. thesis, Louisiana State Uni­
versity, 1962 (unpublished); H. J. Mackey, Ph.D. thesis, Louisiana 
State University, 1963 (unpublished). 
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H(kG) 

FIG. 9. The Hall conductivity and the transverse magneto-
conductivity. The <rap over the complete range of H are shown by 
using three different scales. These curves were calculated from 
experimental data using Eq. (4). 

I t is of interest to note that dHvA type oscillations 
have been reported in the thermal resistivity of bismuth 
at 1.604°K,26 but were not observed in the present 
study (minimum temperature 2.1°K) perhaps because 
of the impurity content of the sample. 

D. Four-Band Model 

The mobilities, populations, and densities of states 
of the various bands are obtained by the fitting to Eqs. 
(5) and (6) of the coefficients cra/g, Fig. 9, and €*/', 
Fig. 10, determined from the experimental data. This 
process does not, in practice, completely solve the 
problem, but does give a useful indication of the various 
bands. A reasonably good fit can be obtained if only 
one of the quantities, say cm, is considered. If a simul­
taneous fit for all the tensor elements and a correlation 

H{kG) 

FIG. 10. The kinetic thermoelectric coefficient and the kinetic 
Ettingshausen-Nernst coefficient calculated from Eq. (4) in 
function of magnetic field. The e^" over the complete range of H 
are shown by using there different scales. 

with the band parameters as determined from oscil­
lation analysis, i.e., number of holes be equal to 3.4 
X1017 cm"3, are required, serious discrepancies result. 
Table I I I gives the results of a deliberately short 
analysis of the curve fitting. Work is now underway in 
analyzing more complete field and temperature data 
to unravel many of the problems encountered in the 
present analysis.48 The curve-fitting technique, in 
addition to requiring that the final results match the 
experimental <rap and eap", involves curve extrapolation 
at high- and low-field limits. The utility of these plots 
is evident from an expansion of Eqs. (5) and (6) in the 
high- and low-field limits.48 Low-field extrapolations are 
made by the plotting of each of the quantities crn/H, 
eu'/H, en", and an, versus H2. For the high-field limit, 
the useful plots are Han, Hen', ZPen", and H2an versus 
1/H2. Further, the results should satisfy the funda-

H (G) 

FIG. 11. Hem versus InH for r=4.2°K. The broken lines are 
representative of bands I, II, I II , and IV, respectively, of the 
multiband model. The full line is the sum of the different bands 
constributions. The crosses represent experimental points. The 
right scale shows directly the apparent population of the bands 
am. Bands (e) and (h) of the two-band model, which give a 
relative good fit of the experimental point, are also indicated. 

mental requirements.49 

r 
I a 11dH = \irec YJ aJnJ > 

Jo 
(19) 

j <n2/HdH=iirec'E (±)ns/Hj. 
Jo 

The experimental evaluation of f^andH yields a value 
£ aywy=10X10ir cm~3 at 4.2°K which, for example, 
eliminates the possibility of a multiplicity of 2 for the 
light-hole ellipsoid. I t was found also that one of the 
most illustrative ways to plot the data was that of 
0*12, Han, ei2", Hen" versus IriH, for which plots, the 

49 J. W. McClure, Phys. Rev. 112, 715 (1958), 

file:///irec
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TABLE III . Parameters of the different bands in bismuth, when the different transport effects are decomposed into Lorentz terms 
using Eqs. (5) and (6). The italicised quantities have been forced into the analysis, for example the parameter of band II in the multi-
band model are those of the hole ellipsoid in Table II . Between parentheses are the values of the saturation field giving the best indi­
vidual fit, for example Hi = 30 H2 = 65 best fit for the an analysis in the determination of aitii and ain%. Band (4) arises from the iden­
tification of the high-field behavior of some of the effects with a Lorentz term; it is common to the multiband and "two" band model. 

Hi 
m (1017 cm~3) 
aim (10~17 cm"3) 
biZi (1031 cm"3 erg"1) 
dZi (1031 cm~3 erg"1) 
U (10-" erg) 

Zi (1031 cm"3 erg"1) 
at 
bi 
Ci 

Electron (1) 

30 to 35 G 
4.3 (32) 
4.3 (30) 
30 (30) 
17 (35) 
2.8 

~2 .4 
1 
~ 1 2 
—7 

Multiband model 
Holes (2) 

60 to 65 G 
3.4 (65) 
3.4 (65) 
2.7 
2.7 (60) 
1.9 

2.7 
1 
1 
1 

Holes (3) 

~500 G 
1.1 
2.5 
10 
7 
0.42 

7 
~2 .4 
—1.5 
1 

Holes (4) 

13 to 14 kG 
—0.01 
0.25 
21 
11 

Two-band model 
Electrons 

28 to 35 G 
2.62 (29) 
6.4 (35) 
30 (30) 
15 (32) 
2.8 

1.4 
—2.5 
—20 
—11 

Holes 

300 to 450 G 
2.8 (300) 
3 (450) 
12 
7.5 (400) 
1.9 

2.2 
1.1 
5.4 
3.4 

contribution of the various bands can be best visualized 
as in Figs. 11-13 for Han, Hen, and a12 at 4.2°. 

(1) The high-mobility electron pocket (Hi~32G) 
is identified with that discovered by Shoenberg from 
dHvA studies.14 I t should also be compared to the 
electrons of the two-band model interpretation of the 
galvanomagnetic effects, cyclotron resonance, and 
anomalous skin effect. Some of the experimental values 
of ni obtained by various means are shown in Ref. 50. 
There is a general agreement between the value of 

4.3 X1017 electrons cm - 3 reported in Table I I I [Elec­
trons (1)] and those listed in Ref. 50. There is still 
ambiguity as to the multiplicity of the electron ellipsoids 
since very different values for the number of electrons 
per ellipsoid have been given, even recently. A value 
^ e =0.91X 1017 cm - 3 per ellipsoid may favor a 6 ellipsoid 
set; a value ne= 1.4X1017 cm"-3, a 3 ellipsoid set. 

One difficulty in the identification of band (1) with 
the electrons of Shoenberg's ellipsoids comes from the 
experimental result aifii^fii, which would indicate an 
isotropic band. The value of a\ as obtained from various 

a J 
-2001 I t t 111,111 1 1 1 11111115 

5 ^ 
t_ru 

rsT 

H(6) 

FIG. 12. Hen" versus l n # for T = 4.3°K. The broken line curves 
are representative of bands I, II , III , and IV, respectively, of the 
multiband model, the full line is the algebraical sum of those bands' 
curves. The right scale measures directly the apparent density of 
state of each c%Zi. Bands (e) and (h) of the two-band model which 
give a relatively good fit of the experimental point are also indi­
cated. Oscillations in the high-field range are indicated by some 
of their maxima (o) and minima ( + ) . 

60 The number of electrons per ellipsoid measured directly may 
vary if correction for nonparabolicity and nonellipticity [Morrel 
H. Cohen, Phys. Rev. 121, 387 (1961)] are made. Some of the 
values are (0.91, 0.95, 1.01, 1.09, 1.25, 1.4)X1017 cm~3 per ellipsoid 
from Refs. 11, 17, 23, 23, 14, and 4, respectively. From the two-
band model interpretation of cyclotron resonance, or effect of 
alloying, the total number of electrons will be [4.6 (80°K), 4.9,5.5, 
5.8, 2.5, 3.9, 4.2]X1017 cm*"3, as given in Refs. 1, 2, 8, 17, 7, 4, and 
12, respectively. 

H(6) 

FIG. 13. 0-12 versus \nH at r=4 .2°K. The broken-line curves are 
representative of the electron band (e) and hole band (h) of the 
two-band model. The full line is the combined effect of the two. 
The points represent some of the experimental values. The right 
scale shows directly the size of the band as measured by fii/Hi in 
G_1 cm-3. Also bands I, II , and III of the multiband model are 
indicated. 
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experimental data51 ranges from 3.22 to 11 with an 
average value about 5. However, because of the high 
mobility and the restriction of Eq. (19) which excludes 
another densely populated band of electrons, band (1) 
must be designated as Shoenberg's ellipsoids and a i ~ l 
result must be considered as an anomaly, yet un­
explained. Probably removal of the restriction that r be 
isotropic and independent of energy would bring the 
theory more in line with experiment. Another surprising 
result in this band is the extremely large value of b\Z\, 
which is 12 times the expected value f^i/fi , (&i=l), 
where n\ and52 fi are taken from Table I I I . This 
anomalously large value for the density of states may 
account for the anomalously large specific heat (see 
Sec. VE), a fact which, if true, is unexpected and which 
at present is not understood. Work on an unexpected 
temperature dependence of the parameters of this band 
may help clear this point.48 Only the C\Z\ value ap­
proaches theoretical expectation51 with Ci=7.0. The 
condition c\—a\ is far from being established experi­
mentally since a\ is apparently anomalous. 

(2) Band (2) is logically identified as the single 
ellipsoid of light (high-mobility) holes, described in 
Sec. VA. The sign ( + ) and population of the band, as 
well as the comparison of its effective mass to that of 
the light-electron band53 (# i /# 2 ~Wi*/w2*, the same r 
assumed for each) contribute to this identification. Thus 
the value ^2=3.4X1017/cm3 has been adopted even 
though a more recent investigation48 shows a slightly 
better fit with m somewhat smaller. The adopted value 
of # 2 = 6 5 G is a compromise—a smaller value is called 
for in the en" curve fitting, but there is a degree of 
uncertainty here due to the nearness of band (3). In the 
en" and €12" fitting, the effect of these light holes can 
hardly be seen, which indicates there is no anomaly in 
the density of states as with the light-electron band. 
In fact, the apparent density of states here is only 10% 
of that of the light electrons. Since the FS for this band 
is circular in the basal plane, we have set #2, £2, and c% 
equal to unity. Recent experiments48 indicate that a 
value of &2—1.5 may be more appropriate. 

(3) The third band consists of rather low-mobility 
holes (#3^500 G). The population of this band n% has 
been determined only within limits: Contradictory 
evidence sets n% between 0.7X1017 and 2.5 X1017 cm~3. 

51 The weighting factor #i37 (or Ci), the ratio between linear 
average and rms average of the mobility in the (l)-(2) plane for 
electrons, can be computed from data of different authors: 11.3, 
4.5,4.6, 5.35, 6.35, 3.22, 5.55, 4.75, etc. See Refs. 14,12,10,11, 23, 
1, 14, and 4, respectively. 

62 Shoenberg's value (Ref. 14) 2.8X10"14 ergs is used here as 
the value of the chemical potential fe. This value is in agreement 
with Lerner's (Ref. 23). The nonparabolic model correction 
[see Cohen, Ref. 50)] leads to the somewhat different values 
(3.5, 4.2)X10~4 ergs per electron. See Refs. 17 and 23, respectively. 

53 The cyclotron mass for the electrons in the (l)-(2) plane has 
been directly measured by cyclotron resonance (0.08,0.051) Xwo 
(see Refs. 12 and 13, respectively) or can be computed from 
different effects. we* = 0.055wo has generally been the value 
adopted for best fit (Refs. 14, 10, 11, 17, 23). Then Wi*/m2*=0.85 
as compared to Hi/H2~0.5. 

A careful weighing of the evidence gives %«1.1X10 1 7 

cm"-3 and a3^3~2.5X1017 cm - 3 for the most suitable 
concentration. In any case, these values are smaller than 
the value of 2.88X1017 cm~3 obtained by Lerner.23 

I t is worthy of note that the presence of band (2) and 
the parameters adopted for it influence the parameters 
of band (3) to such an extent that many investigators 
have considered only a single band of holes. A band of 
low-mobility carriers such as band (3) is needed to 
explain the high density of states in bismuth as seen 
from specific heat data. Nevertheless, as indicated in 
Table I I I , the contribution to the density of states by 
this band (as determined by both Ettingshausen-
Nernst and thermoelectric data) is, although large, only 
about I the apparent contribution of the light electrons. 
If this band is composed of a single isotropic pocket 
as suggested by Lerner,23 one should set a 3 =£ 3 =C3=l . 
For ^ 3 - l . l X l O 1 7 and Z3«7X103 1 , the chemical 
potential is f3=0.235 X10~14 ergs (Fermi temperature 
of 13°K) and the effective mass is ra3*^0.57mo. The 
existence of more than one pocket in the third band 
would force a larger value for m-t and a smaller value 
for the Fermi temperature Tz. An indication of the 
effective cyclotron mass for the carriers in this band is 
obtained if equal relaxation times for all carriers are 
assumed. With Hh H%, and Hz given by 32, 65, and 
500 G, respectively, and Mi* and W2* given by 0.055mo 
and 0.065mo, respectively, the effective cyclotron mass 
values of nii*Hz/Hi=0.8niQ and ni2*Hz/H2=0.5mo fall 
quite close to the above value for the isotropic effective 
mass w3*. 

(4) Band (4) does not have the same significance 
as the other three: The maximum contribution of this 
band to the transport processes appears at high field 
(#4—13 kG) in the range where the oscillations are 
important. In this magnetic field range, the semiclassical 
theory is no longer applicable, except for the asymptotic 
behavior of an. Indeed, very little evidence for this 
band can be shown from 0-12, the only clue being the 
existence of an extremely small concentration of holes 
(^4~0.015X1017 cm - 3). In fact, more recent data on48 

CTI2 gives a value for m even smaller with limits of 
precision which make it impossible to distinguish 
between a hole or electron character for this carrier. 
Nevertheless, band (4) is analyzed in the usual manner, 
since considerations of an, en", and ei2/; indicate the 
existence of a band of the standard form. The low 
apparent number of carriers a±n±~0.25X1017/cm3 in 
0-11, with practically no contribution in 0-12, along with 
the extremely large apparent density of states seems 
to indicate the band may be due to impurities or to a 
departure from the simple theory used here. The hole 
character is mainly indicated by the sign of the en" 
thermoelectric data 

In summary, the band structure of bismuth can be 
explained by four distinct bands, three of them with 
the usual character due to groups of carriers. An 



ELECTRON TRANSPORT PHENOMENA IN Bi 69 

illustration of the contributions of the various bands 
to the observed effects can be seen in Figs. 11-13. In 
Fig. 12 the quantity Heii' is plotted as a function of 
a = \nH. The contribution of each band is a uniform 
curve of the form Aj sech(a—aj) where Aj— (ir2k2cT/6) 
X(CJZJ). The sum of the four curves coincides very 
nearly with the experimentally observed values as 
shown in Fig. 12. Similarly, the quantity Han is 
displayed in Fig. 11 as the sum of the contributions 
from each of the four bands. I t should be noted that in 
similar plots of the transverse effects <xn and €12", more 
importance is attached to the higher mobility bands. 
This is the case since a 12 and en' directly exhibit the 
quantities fij/Hj and bjZj/Hj, respectively, as seen 
in Fig. 13. 

E. Density of States and Specific Heat 

The electron specific heat is known to be a direct 
measure of the total density of states, C=%ir2k2TZ. In 
the case of bismuth, a strangely large value of the 
specific heat (Z=50X103 1 erg - 1 cm"3) has been found 
by Kalinkina and Strelkov.24 More recent measurements 
by Phillips25 indicate a smaller value, with Z=15.5 
X1031. The apparent density of states as determined 
from Table I I I is (in units of cm""3 erg-1) 2 bjZj 
«64X103 1 , £ CjZj^3SX 1031, in reasonably good 
agreement with Kalinkina and Strelkov. However, 
assuming the possibility of the fourth band being due 
to impurities, one would obtain X^i3 &yZy«43X1031, 
X)i3 CjZjtt 27X10n for very pure bismuth. Furthermore, 
if the abnormally large value of 5iZi«30X103 1 is 
rejected and the expected value of Zi=2.4X103 1 

substituted, a result Z = Z t + Z 2 + h Z z = 15.1X1031, is 
obtained as a reasonable value for very pure bismuth; 
in excellent agreement with the results of Phillips.25 

No attempt is made here to take account of the nuclear 
quadrupole contribution to the specific heat.23-25 

F. Two-Band Model 

A relatively good fit of the experimental data is 
attained with only a two-carrier model. Evidently, the 
pseudoband which appeared in the preceding analysis 
as band (4) will appear here too; but as already pointed 
out, no carriers seem to correspond to it. Thus attention 
is given only to the contributions of the other bands. 
The fact that bands (1) and (2) of the preceding analysis 
are so close together make possible the consideration of 
the two as a single one in first approximation. The 
hole band (3) of the former analysis is slightly more 
populated and slightly more mobile. The results of the 
two-band model analysis are shown in Table I I I . The 
number of electrons is close to the value found from 
low-field galvanomagnetic effects.50-7 The excess of 
holes over the electrons is most probably due to some 
acceptor impurities. The weighting factor37 ae for 
electrons is in better agreement with the expected 

value51 than in the former case of the multiband model; 
but the ratio between the hole and electron mobility 
He/Hh~0A is much too small compared to the expected 
value53 of 0.85. The holes play a role more in agreement 
with the heavy holes suggested from different 
studies2,23,25 and are by comparison to the electrons, 
much too heavy to be identified with the light-hole 
ellipsoid (Sec. VA). 

The identification of the light-hole ellipsoid (with 
its chemical potential of 1.9X10-14 ergs) leads to a 
density of state 3.4 to 5.4 times smaller than the 
apparent values obtained from the Nernst-Ettinghausen 
thermoelectric effects. As in the multiband case, an 
extremely large apparent density of state also appears 
in the Nernst-Ettinghausen effect for the electrons 
(6a«20). 

There is no doubt that the analysis of the thermo­
electric effects by terms of the type of Eq. (6) should 
give only a rough determination of the density of 
states. Any dependence of the relaxation time on field, 
energy and momentum will influence these effects even 
more than in the case of the galvanomagnetic effects. 
A more comprehensive analysis of these effects is now 
underway.48 

G. Oscillations in the Galvanomagnetic Effects 

Examination of the Lifshitz-Kosevich theory, Eqs. 
(7), (8), and (11), for &u shows that no oscillations 
should appear at high magnetic field values where all 
bands are asymptotic. This is evident since the classical 
mobility {±)ecH{H2+H?)-1 reduces to qmP{q}*)** 
(dz)ec/H for ET$>Hj. Experimentally, the oscillations 
are quite pronounced in the high field range, as shown 
in Figs. 9 and 14. The implication is that some band 
(or bands) in bismuth has not reached its asymptotic 
value in the range of fields used in the experiments. 
Suppose there is one low-mobility band (j=u) which 
enhances these high-field oscillations. If the relaxation 
time is assumed independent of the energy, Eq. (7) can 
be written from Eqs. (8), (11), and (5) as 

I #121 L-K 

[ E H )Zi 

^ Z I — \-{±)fa, (20) 
[H2+Hj2 EP+H%*\ Z 

where Z=y%2 Z{. In the trigonal direction only oscil­
lations due to the light holes (j=2) are observed. Since 
for high fields, Hj of the light holes and electrons can 
be neglected so 

ec Hu
2 

where Zu/Z is taken as unity. With n2 taken from Eq. 
(9) and the experimentally determined values of X and 
Ry Eq. (21a) is solved for HM. In taking only the first 
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TABLE IV. Comparison of the amplitude of the oscillations in the conductivity coefficients |<7-ii|eXp, |<ri2 |exP with the Lifshitz and 
Kosevich theory. Equations (22), (24), (21b), (25) are used to determine some characteristic parameters of the unasymptotic band, for 
different values of the magnetic field. 

H 
(kG) 

10 
12 
14 

l^lllexp 
(Q cm)"1 

2.17 
2.25 
2.6 

10121exp 
(0 cm)"1 

0.79 
0.82 
0.9 

Hu/au 
(kG) 

3.63 
3.67 
3.46 

duHu 
(kG) 

4.15 
4.60 
5.95 

(kG) 

3.88 
4.11 
4.54 

0>u 

1.07 
1.12 
1.31 

ZA/Z a* 
(#4=13 kG) 

0.205 3.58 
0.195 3.54 
0.205 3.76 

term in the summation of Eq. (9), one obtains 

I frul i^K=0.110#1/2A(sinhX)~ 
77 2 

B*+Hu* 
- in (0 cm)"1. (22) 

The values of Hu obtained when this term is identified 
with the experimental amplitude, for various values of 
H, are given in Table IV. 

The coefficient an can be examined in a similar 
manner. With all bands asymptotic except one, we 
obtain 

ec auHuH 
k n | L - K = (=F)-02 •, (23) 

H H2+Hu
2 

(—) if the unasymptotic band is holes, ( + ) if electrons. 
In this approximation, the ratio of oscillation ampli­
tudes is 

| ffii | L - K / I cfi21 L - K = auH/Hu. (24) 

However, as seen in Fig. 14, there is an apparent 
difference in phase between the oscillation in an and 
<7n; at high field, the phase difference approaches 7r/2, 
where a relative phase of w would be expected if the 
unasymptotic band were a hole band. Values for Huau, 

l^[lO"2A/(degK-cm>] ^ 

?,*[ [l02A/WegK-cm)] ^ 
4.3* K J t 

lg [lO*2A/(dcgK-cm)] 

4.3#K 

5j, [(ft-cm)"!] 
2.1 °K 

8f, [(ft-cmf1] 

2 . f K 

4.2#K 

df2 [(a-cm)'*] 
4.2" K 

FIG. 14. The oscillatory components of the ^ ' and <raf} 
at high fields at 2.1 and 4.2°K„ 

au are summarized in Table IV as determined, 
respectively, from Eqs. (22), (23), and (24) for data 
taken at 2.1°K. Note from the table that the experi­
mental value of Hu increases with H. This is expected 
from this analysis if there are actually two bands (H3 
and Hi) which are not asymptotic. The lower satura­
tion field 173 — 500 G is indicated in the curve-fitting 
techniques and is substantiated in the next section by a 
comparison of the oscillation amplitudes in 0*12 and 
€ 1 2 " . 

If, in the high-field range 10 kG<H<U kG, the 
effects of the first three bands are neglected, Eq. (20) 
becomes 

ecn2 H±2 Z 4 

I 0̂ 12 I L-K = • (21b) 
H H2+Hf Z 

Table IV gives the values of Z±/Z calculated for # 4 = 13 
kG as obtained from the curve fitting (Table I I I ) . The 
results compare favorably with the apparent value 
bAZt/hZ = 0.32 or dZA/cZ =0.29 computed from Table 
I I I . A smaller value of H± would bring Z 4 /Z closer to 
these values. 

With all bands asymptotic except i = 4 , the ratio of 
#11 to #12 is 

I #111 L_K/ I #12 I L—K = aJI/Hi. (25) 

The values of a A obtained from #4—13 kG are given in 
Table IV. The difference between the values obtained 
here and those given in Table I I I are quite large but 
are of little significance since the parameters of the 
fourth band are quite indefinite. Although the nature of 
band (4) is not clear, the band enters in the Lifshitz-
Kosevich theory in a straightforward manner. 

H. Oscillations in the Thermoelectric Coefficients 
and in the Density of States 

As has been indicated, eap" are calculated from the 
experimental e , / as shown in Fig. 3 by means of Eq. (4). 
With H parallel to the trigonal axis and the simplifi­
cation due to Eq. (18), the tensor elements become 

en 
: e22 / / =Az / L

c r i i e i i / — ( 7 i 2 e i 2 j , 

6 l 2 / / = — €21 / / = XLL°'lle12 / + 0 ' l 2 e i l J . 
(26) 

Calculated values of €«/' display strong oscillations, as 
seen in Figs. 10 and 14. 

For the high field oscillations in €12", Eq. (6) is used 
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in the asymptotic form 

€12 = ' 

w2k2cT 

3H 
• £ £ y . (27) 

If Eq (27) is valid in the quantum case, oscillations arise 
from the variations of the carrier's density of states. The 
oscillatory part of ei2" for band j = 2 only is obtained 
by inserting Eq. (12) into Eq. (27) as 

•2k2cT 
€12 

3H -z» (28) 

where Zj= (dfij/d£j). The most important term in Eq. 
(28) comes from the differentiation of the phase in w2, 
see Eq. (9). 

If only the K = 1 term in Eq. (9) is retained, the 
oscillation amplitude is 

I ei2
, , |d . s . = 0.095ri?-1/2X/smhX in A/deg-cm. (29) 

The data of Table V show that at 2.1°K the expected 

TABLE V. Comparison between the amplitude of the oscillation 
in the experimental Nernst-Ettinghausen kinetic coefficient 
[£i2"|exP and the amplitude of the oscillation |€i2"|d.s. due to the 
incidence in Eq. (28) of oscillation in the density of states, at 
different temperatures and for different magnetic field values. 
[Units of 10~6 A (°K cm)"1.] 

H 
(kG) 

r 6 
F* 8 
I 10 
r 12 
% 14 
B 16 

T = 

1 i n " |d... 

600 
900 

1100 
1180 
1200 
1220 

= 2.1°K 
1€12 |exp 

3500 
5000 
5250 
5250 
6000 
6750 

r= 
| €!2 / r [ d-s. 

90 
300 
600 
880 

1120 
1320 

=4.2°K 
| € i 2 | e x p 

1650 
1750 
1750 
2500 

magnetic field dependence is followed quite well by the 
experimental data. However, the experimental values 
differ by a factor of 5 from those expected from this 
simplified theory. At 4.3°K, the values of eu" predicted 
by the theory differ from experimental values by a 
lesser margin; however, the agreement in the field 
dependence is not as good as that at 2.1°K. The 
predicted temperature variation is not observed. 

The oscillations in en" are related to those in 0-12 
by Eqs. (9), (21a) and (28) as 

WWcm* T 

3e2h H 
0"12 L - K 

irk\/ H2 \ 

=i—(l+—)l* 
3e \ E2) 

0"12 L _ K , (30) 

where K> 1 terms of Eq. (9) have been neglected and 
all bands are assumed asymptotic except one charac­
terized with Hua,nd ZU~Z. 

As shown in Fig. 14, the oscillation of ei2" are shifted 
in phase by TT/2 relative to those of <ri2, in excellent 
agreement with Eq. (30). 

The experimental values for ei2" and <TI2 substituted 
into Eq. (30) yield values for the low mobility satura­
tion field Hu=1.6 kG at # = 1 0 kG and Hu=2 kG at 
E— 14 kG, both at 2.1°K. These values seem to indicate 
that the unsaturated third band plays a larger role 
than shown in Table IV. 

Equation (12) is used to determine the effect of 
oscillations in the density of states on the thermoelectric 
coefficient for band j=2 only 

*11 d.s. <l){Z2/Z<L. (31) 

This expression does not yield an amplitude as large 
as that expected from the contribution of scattering 
in the ZiPberman theory, see Eq. (11). 

./. Oscillations in an and en' and the ZiVberman Theory 

In the Zil'berman theory, the oscillations due to a 
particular carrier depend on the characteristic param­
eters of that carrier alone; here, the light-hole band 
(7 = 2) parameters. Oscillation amplitudes for |<rn)zii 
and I en" | zn shown in Table VI are computed from 
Eqs. (13) and (14) at r = 2 . 1 ° K for the following cases: 

Case (a) The multiband model with the light-hole 
band as mapped in Sec. VA {a2—c2—\, n2=3.4X101 7 

cm~3, Z2=2.7X103 1 cm"3 erg"1, # 2 = 6 0 G). 
Case (b) The two-band model with the experimental 

parameters found in Sec. VF (a2?z2=3X1017 cm -3, 
^ 2 = 7 . 5 X 1 0 3 1 cm"3 erg"1, # 2 = 4 0 0 G). 

Case (c) The two-band model with isotropy imposed 
on band j=2 (a2=c2=l, n2=2.SX1017 cm"3, Z2 

= 2.2X1031 cm"1 erg-1, # 2 = 4 0 0 G). In every case, X2 

is computed with m2*=0.065mo. 
In Table VI, as shown for cases (a) and (b), the 

ZiPberman theory predicts the right order of magnitude 
for the an amplitude; the experimental values lie 
between those of case (b) and those of case (a). The 
experimental and predicted field dependences differ 
appreciably. I t should be remembered that in the 
Lifshitz-Kosevich expression |<TH|L-K, matching can 
be obtained by adapting the parameter au or a± to the 
quite reasonable value 1.2 or 3.5, respectively. Probably 
both terms &n\ L_K and an\ zn contribute to the experi­
mental oscillation. 

Table VI also shows the expected values of In' from 
the ZiPberman theory in the three cases. Agreement 
in the order of magnitude is achieved mostly in case (b) 
where the large apparent density of states for the holes 
is used; and thus favors the idea outlined in Sec. VF. In 
Table VI are also shown for comparison the amplitudes 
of oscillations expected in en" due to oscillations in the 
density of states. The amplitudes ei/'/d.a. for the 
optimum case (b) are shown to be negligible compared 
either to the experimental values or to the values 
calculated from the ZiPberman theory. 



72 G R E N I E R , R E Y N O L D S , A N D S Y B E R T 

TABLE VI. Comparison of the amplitude of the oscillation in the experimental magnetoconductivity 1an | exP and kinetic-thermoelectric 
coefficient |en"|exp with the oscillation expected from Zil'berman's theory |<rn|zn, | eii" | zii9 for the different cases, (a) #2 = C2=1, 
w2 = 3.4X10+17 cm"3, Z2=2.7X1031 cm"3 erg"1, H2 = 60 G; (b) a2w2 = 3X1017 cm"3, c2Z2 = 7.5X1031 cm"3 erg"1, # 2 =400 G; (c) a2=c2 = l, 
rc2 = 2.8X1017 cm"3, Z2 = 2.2X1031 cm"3 erg'1, # 2 =400 G. The a are given in (Q cm)"1, the e" in 10~6 A (°K cm)"1. Also given, the 
I €11" |d.s. shows the incidence in Eq. (31) of the oscillation in the density of states. 

H 
(kG) 

6 
8 

10 
12 
14 

Uii)exp 
(0 cm)"1 

1.7 
2 
2.18 
2.25 
2.6 

kul 
a 

0.55 
0.62 
0.61 
0.56 
0.5 

Izn 
b 

3.7 
4.2 
4.1 
3.7 
3.2 

[10~ 
| e i i " | e x p 

6 A (°K cm)"1] 

4320 
7300 
8370 
7830 
8100 

a 

216 
214 
180 
144 
111 

hV'Uil 
b 

4000 
4000 
3300 
2450 
2030 

c 

1180 
1170 
1000 
720 
600 

| € l l " U.S. 

b 

55 
62 
60 
53 
48 

With the different oscillatory effects written in the 
form 

A CO$(2T/PH+fo), 

with A a positive amplitude; some comparisons can be 
made between the phase of each effect and the theo­
retical prediction. The value of </>o determined from 
experiment and theory are displayed in Table VII. The 
value of the period P used for the experimental determi­
nation of <£o was taken as 15.1 X 10~6 G -1. There is some 
uncertainty in the phase determinations for #12 and 
€12" because these effects show some deformation in the 
high-field region. Thus for 0-12, two values of $0 are 
given, one for low and one for high field, — 1.377T and 
— 1.677T, respectively, with a somewhat good high-field 
fit of the value —1.7Sir expected from | # I 2 | L - K . The 
phase for | <xn | L_K is for the case of an unsaturated 
hole band. The experimental | <xn | exP matches well the 
ZiPberman value but some contribution of | an | L-K is 
still possible. For | £12" | exp, two values of <£o are given, 
for low and high field: — 1.827T and — 2.0T, respectively, 
which are in fair agreement with the expected value 
— 2.257T for |ei2"|d.s.. A good agreement for the phase 
exists between | en" | exp and | i n " | zn; it was expected 
from Table VI that |eii"|d.s. would not be influential. 

In the above computations of the phase from theo­
retical expressions, the value of 7 in Eq. (9) was taken 
equal to its free-electron value of \. An almost perfect 
fit would be obtained between theoretical and experi­
mental effect with 7=0.42. 

CONCLUSION 

The properties of the crystal of bismuth used in this 
work, because of the relatively poor resistance ratio 
^3OO°K/-#4.2°K=40, have the following simple features: 

I ts thermal conductivity is practically all lattice 
conductivity; no size-effect correction has to be made 
for the galvanomagnetic effects; the residual resistance 
is attained at liquid-helium temperatures so that 
lattice-defect scattering can be assumed; the saturation 
fields of the different bands are in the magnetic field 
range most favorable for observation. However, the 
impurities in the crystal may be responsible for the 
appearance of a pseudoband, band (4), and the slight 
excess of holes over electrons. 

The mapping of the light-hole Fermi surface agrees 
with that of Brandt and his co-workers as modified by 
the results of Gait et at. and those of Smith. 

The band analysis of the different transport effects 
using a Lorentz term for each band can be made in 
either the case of two or three bands, plus the addition 
of a "pseudoband" in each case, to account for the 
high-field behavior. In both cases, a somewhat unusually 
high value of the apparent density of states is obtained 
for the light electrons. In the three-band model—one 
light-electron band (1), one light-hole band (2) and one 
heavy-hole band (3)—general agreement is obtained 
with the various data existent on bismuth, except for a 
very large uncertainty in the parameter of band (3) 
and the strange tendency for the light electrons to show 
an isotropic behavior. In the two-band model, difficulty 
exists for the identification of the hole band with the 
holes of the mapped ellipsoid. An unusual temperature 
dependence of the thermoelectric effects is found but 
not explained. 

The oscillations in the different effects can be made to 
match or, at least, be of the order of magnitude of those 
expected from different theories. Thus the result of the 
Lifshitz-Kosevich theory for the oscillations in the Hall 
conductivity matches the experimental values when 
the empirically determined characteristics of band (4) 

TABLE VII. Comparison between the phase of the oscillation in the experimental kinetic coefficient | £12 |exP | £11 | e x p | hz" |exP | en" |eXp 
and the phase expected from the different theories (with the 7 = J free-electron assumption). 

I £121 L-K | < T H | L _ K | < 7 n | z i l I €12" |d .s . I €11" | d . s . ' | € l l " | z i l 

Theoretical 

Experimental average 

-1.75* 

-1.37ir 
to 

-1.67*= 

-0.75*- -1.25* 

-1.15*-

-0.25*-
or 

-2.25*= 
-1.82*-

to 
- 2 . 0 7 T 

- 0 . 2 5 T T 

or 
- 2 . 2 5 T T 

-1.75* 

-1.60ir 
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are used. The ZiPberman result for oscillation in the 
conductivity <xn matches the experimental values for 
conditions somewhat intermediate between the two 
and three band models, but the ZiPberman result for 
oscillation in the thermoelectric coefficient en" favors 
the two-band model. The right order of magnitude for 
oscillation in the Nernst-Ettinghausen effect €12" is 
obtained from the oscillations in the density of states. 

I. INTRODUCTION 

TH E equation of state of a real crystal such as 
NaCl has been considered by several investi­

gators. Barron1,2 and Blackman3 using a Kellermann 
model4 of NaCl and assuming equal masses for sim­
plicity have recently obtained values for the low-
temperature (r—> 0) Griineisen5 parameter 70. Barron 
was able to find a high-temperature ( T > 9 , where 6 
is the Debye temperature) Griineisen parameter 7^ by 
defining a weighted 7 in terms of the moments of the 
frequency spectrum with (vf) the 5 th moment 

Y(S) = £ ™ V £ i ^=~(-Vln( , / ) /^ lnF, (1) 

where 

yi=-d\nvi/dlnV (2) 

* Work performed at New York University and partially 
supported by the U. S. Air Force. 

f Much of the material included in this paper was used in a 
Ph.D. dissertation at New York University (1963). 

1 T. H. K. Barron, Phil. Mag. 46, 720 (1955). 
2 T . H. K. Barron, Ann. Phys. (N. Y.) 1, 77 (1957). 
3 M . Blackman, Proc. Phys. Soc. (London) B70, 827 (1957). 
4 E. W. Kellermann, Trans. Roy. Soc. (London) 238, 513 (1940). 
5 E. Griineisen, in Handbuck der Physik, edited by A. Geiger and 

Karl Scheel (Julius Springer-Verlag, Berlin, 1926), Vol. 10, p. 22. 
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and vi is a normal vibration frequency, V is the volume, 
and the sum over i here and in all such expressions is 
to be taken over all normal modes of vibration. He 
found expressions for 7(2) which he maintained should 
be approximately equal to 7(0)=y0 0 and by making 
use of the elastic constants found aYo=7(—3). I t was 
found that deviations from Griineisen's relation should 
occur at 0.39. Barron then compared his work to 
Born's6 and Slater's.7 Slater's formula, which is derived 
from a consideration of the elastic constants, is 

7 s = ^ l n ( x F - 1 / 3 ) / ^ l n F , (3) 

where x is the compressibility and V is the volume. 
This formula was derived under two assumptions, one 
being that Poisson's ratio is constant and the other 
that there is a characteristic temperature given by 
Debye's expression for an isotropic continuum, 

e — — ) ( — + — > (4) 

6 M. Born, Atomtheorie des Festen Zustandes (B.G. Teubner, 
Leipzig, 1923). 

7 J. C. Slater, Introduction to Chemical Physics (McGraw-Hill 
Book Company, Inc., New York, 1939), Chap. XIV. 
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The equation of state of NaCl is given using the Kellermann model of NaCl as well as a modified model 
making use of a repulsive potential energy of the Born-Mayer form Ae~Br. The Griineisen parameter 
ji = —dlnvi/d InF, where vi is the normal mode frequency and V is the volume, is derived by the development 
of a perturbation method in the volume. This is then used where needed to calculate all thermodynamic 
quantities of interest using an IBM 7090. A spectrum of 11 454 frequencies and 7,-'s are used in finding these 
quantities rather than the approximations made previously of utilizing the elastic constants and the moment 
expansion y(S) = ̂ iyms/^i vis= —(l/S)dln{vis)/dlnV, where (vis) is the 5th moment of the frequency 
distribution. To check previous work by Barron and Blackman 7(0), 7(2), 7(1), and 7(—3) were calculated 
where 7(0) =70D, the high-temperature 7, and 7(—3) =70, the low temperature 7. Fair agreement is found 
for 7(—3), whereas the deviation in 7(2) is high. 


