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Low-Temperature Thermal Conductivity of Boron* 
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The thermal conductivity of a single crystal of boron has been measured between 4 and 300°K. The 
crystal structure is beta-rhombohedral, and the Debye temperature 1200°K. An exponential temperature 
dependence, e%laT, was observed in the neighborhood of 150°K; the value of a was 2.4. This temperature 
dependence is characteristic of umklapp processes. The maximum conductivity is approximately 3 W/cm deg 
near 50°K. At low temperatures the conductivity obeys a T18 law and has a magnitude one tenth that 
expected for boundary scattering. The latter effect may be associated with the presence of dislocations. The 
data are analyzed by the phenomenological model of Callaway. 

INTRODUCTION 

HEAT conduction by dielectric crystals is reduced 
by a number of scattering mechanisms.1,2 Even 

in the purest of crystals the presence of several different 
isotopes will lead to a thermal resistance. However, in 
a material with a high Debye temperature the effect of 
the isotopic variety is diminished as the phonons 
effective in energy transport are shifted to longer 
wavelengths and, thus, are relatively unaffected by 
point defects, i.e., the isotopes. Other scattering agents 
include boundaries, dislocations, strains due to deionized 
impurities, etc. Each will contribute a characteristic 
temperature dependence to the conductivity in a 
given temperature range. 

Interactions also occur between phonons due to 
anharmonic terms in the interionic potential. The 
phonon-phonon scattering may be divided into two 
classes: normal processes wherein crystal momentum is 
conserved; and umklapp processes wherein the crystal 
momentum is not conserved. Normal processes do not 
produce a thermal resistance, rather redistribute energy 
among the modes. 

Quite recently, single crystals of boron have become 
available,3 which provides an opportunity for the 
investigation of the various scattering mechanisms in 
an elemental semiconductor with properties interme
diate between silicon and diamond. Boron has a Debye 
temperature over 1200°K and an energy gap of 1.35 eV. 
Unfortunately, the presence of dislocations obscures the 
low-temperature properties of the sample investigated. 

EXPERIMENTAL 

Boron has several allotropic forms. The sample 
used here was a single crystal of the beta-rhombohedral 
phase grown by Texaco Experiment, Inc.4 Boron in 
this form is a semiconductor. The sample was a cylinder 
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1 P. G. Klemens, in Solid State Physics edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1958), Vol. VII, 
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2 P. Carruthers, Rev. Mod. Phys. 33, 92 (1961). 
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3.8 cm in length and averaged 0.26 cm in diameter; as 
it was grown by the float-zone method it lacked a 
uniform cross section. From studies of electrical trans
port3 made on similar specimens we may infer the band 
gap to be 1.35 eV; carbon was the major impurity 
(0.1%); the carbon acts as a donor with a level about 
0.32 eV below the conduction band. The room temper
ature resistivity exceeds 5X106 Q cm. The density is 
2.342±0.005 g cm-3 and the Debye temperature 
1219°K.5 

Measurements were made in the standard way6,7 

using gold-cobalt versus manganin thermocouples for 
temperature and temperature difference. The tempera
ture difference across the sample was held to a few 
percent of the average temperature. 

The results are shown in Fig. 1, where is also plotted a 
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FIG. 1. Thermal conductivity as a function of temperature. 
The symbols refer to various runs. The solid line is based on 
isotope, boundary, and phonon-phonon scattering processes. 

5 H. L. Johnston, H. N. Hersh, and E. C. Kerr, J. Am. Chem. 
Soc. 73, 1112 (1951). 
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20, 146 (1961). 

7 M. G. Holland and L. G. Rubin, Rev. Sci. Instr. 33,923 (1962). 
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TABLE I. Isotope scattering effects in several materials.* 
The symbols are defined in the text. 

T(DE6 K) 

a Taken in part from Ref. 9. 
* See Ref. 10. 

theoretical curve based on isotope, dislocation, and 
boundary scattering, as well as the usual anharmonic 
effects. 

DISCUSSION 

The presence of two abundant isotopes with a 10% 
mass difference would be expected to preclude the 
observation of umklapp scattering effects. However, 
Klemens1 has shown that the relaxation time n for 
isotopic scattering can be written 

T l - i = (F/iV)(47rc3)-1rco4=^co4 , (1) 

where we follow the notation of Callaway8 with c the 
speed of sound, V/N the atomic volume, and 

r=E L / / l ) 
i \ M) 

(2) 

In Eq. (2) /»• is the fraction of isotopes of mass Mi 
present in a crystal of average atomic mass M. The 
presence of c~z in the coefficient of co4 implies that a wide 
variety of isotopic masses can be offset by a large sound 
speed. As c is proportional to the Debye temperature, 
we expect a large c in boron. Slack9 has surveyed the 
variation of isotopic effects and Table I shows a 
comparison between several elements. One sees that 
boron is no more affected by isotope scattering than the 
enriched germanium sample used by Geballe and Hull.10 

I t is nevertheless surprising that umklapp scattering 
should be observed here since the value of A is no 
smaller than in Si. However, one cannot make a 
prediction without detailed knowledge of the vibration 
spectrum.10 Of the materials listed in the table only 
diamond and sapphire have heretofore been shown to 
exhibit an exponential thermal conductivity. 

Figure 2 shows the mean free path A of boron as a 
function of &/T at temperatures above the maximum 
in the conductivity. An exponential dependence is 
indicated. The mean free path is calculated from the 
thermal conductivity by K=\CCK, where C is the 

8 J. Callaway, Phys. Rev. 113, 1046 (1959). 
9 G. A. Slack, Phys. Rev. 105, 829 (1957). 
10 T. H. Geballe and G. W. Hull, Phys. Rev. 110, 773 (1958). 
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Material 

diamond 
boron 
sapphire 
silicon 
germanium 
germaniumb 

(enriched) 

© 
(degK) 

1960 
1219 
1010 
668 
390 

390 

V/N 
(cm3) 

(XlO-24) 

5.68 
7.7 

42.6 
19.9 
22.6 

22.6 

c 
(cm/sec) 
(X10«) 

11.8 
8.1 
8.0 
6.2 
3.8 

3.8 

r (Xio-4) 
0.76 

12.9 
0.025 
2.64 
5.72 

0.38 

A 
(sec3) 

(XIO"44) 

0.00216 
0.150 
0.0016 
0.133 
1.87 

0.124 

S10"' 
<* 
X 

FIG. 2. The phonon mean free path as a function of tempera
ture in the umklapp region. The mean free path is defined by 
/c = |CcA, where K is the thermal conductivity, C the heat 
capacity, and c the speed of sound. A similar curve for diamond is 
shown for comparison. 

specific heat expected from the Debye theory. Though 
simple arguments lead one to expect a value of 2 for a, 
the value of 2.4 reported here is not out of line with the 
value of 2.6, for example, reported for diamond.2 

I t should be noted that the 0 . 1 % carbon present may 
be included as an "isotope" but alters the value of Y by 
less than 1% since the carbon mass is so close to that 
of boron. 

We have analyzed our data by using the phenomenol-
ogical model of Callaway.8 We assume that the thermal 
resistance is due to the following effects: (a) boundaries, 
(b) dislocations, (c) phonon-phonon scattering, (d) 
isotope scattering. Each process is described by a 
relaxation time according to the following scheme: 

(a) boundaries: 

TB r^C/L, 

where L is the sample diameter; 
(b) dislocations: 

T D - 1 = ny2b2o)=Ho), 

(3) 

(4) 

where n is the density of dislocations, 7 the Grueneisen 
constant, and b the "diameter" of the dislocation; 

(c) phonon-phonon: 

TN-1=B2TW (5) 
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for normal processes, with B2 a constant; and 

Tu~i=£/r3[exP(- e/ar)>2=£irv (6) 
for umklapp processes, with B\ taken to be a constant; 
and (d) isotopes have already been discussed. One now 
combines the relaxation times and obtains the following 
expression for the thermal conductivity. The details of 
the calculation are given in the article by Callaway, who 
does not discuss dislocations, though their effect may 
be included by a straightforward process. 

\2T2C/\ ft / 

X / (ex- l)"2f Dx*+Ex2+Fx-{— J tfexdx. (7) 

In Eq. (7) the parameters are k = Boltzmann's constant, 
x=hu/kT, D=A{kT/fi)\ E=(B1+B2)T* X{kT/h)\ 
and F=H(kT/h). The equation was numerically evalu
ated using Simpson's rule and a CDC 1604 computer. 

A is evaluated from Klemens' expression, Eq. (1). 
A value is obtained for B = B1+B2=5AX10-24 by 
setting F = 0 and matching the integral to the measured 
thermal conductivity at 300 °K. H is finally evaluated 
by matching the data at 5 °K. The thermal conductivity 
may then be calculated at intermediate temperatures. 
The results are shown in Fig. 1. One cannot hope to 
obtain the exponential umklapp behavior, as that is 
removed when B± is taken to be temperature-independ
ent. The value of A is undoubtedly low, as has often 
been noted.2*11 One might then seek a "best" value for 
A by fitting the data curve. This we have not chosen to 
do. The discrepancy between theory and data above the 
maximum is due in part to this decision. The presence 
of umklapp effects, as noted above, does not improve 
the agreement. 

11 B. K. Agrawal and G. S. Verma, Phys. Rev. 126, 24 (1962). 

Below the maximum the data obey a Tls law. 
Neither magnitude nor temperature dependence agree 
with boundary scattering. However, the specific heat 
shows a hump,5 in the neighborhood of 25°K, probably 
indicative of a phase change in view of the many 
alloptropic forms of boron. One is thus led to expect a 
considerable number of dislocations to be present. 
Dislocations should produce a T2 temperature depend
ence.2 If we determine the dislocation density at 5°C 
by fitting the data and Eqs. (4) and (7), we obtain a 
dislocation density of 109 cm -2 . This result depends 
upon assumed values of 2 and 3X10 - 8 cm for the 
Grueneisen y and for the dislocation core size b, respec
tively. The result is reasonable if a phase change occurs. 

We do not expect to explain our result in terms of 
strains induced by the deionization of the carbon donor 
atoms as has been done by Keyes12 for Ge. This effect 
leads to a temperature dependence stronger than T3, 
as does the presence of mobile defects.13 

CONCLUSIONS 

We have reported here the third observation of 
umklapp scattering processes among the elements, 
helium and diamond being the other two. The coefficient 
in the exponential term a has a value of 2.4 which 
compares well with the values of 2.3 and 2.6 for He 
and C, respectively. The presence of two abundant 
isotopes of boron, with masses differing by 10%, does 
not lead to the large isotope scattering observed in Ge, 
as the Debye temperature is high in boron. 

The thermal conductivity below the maximum is 
limited by the presence of dislocations. Heat capacity 
measurements lead one to believe that a phase change 
occurs in this temperature range. Thus, the presence of 
109 dislocations per cm2 is not unreasonable. 

The authors would like to acknowledge a stimulating 
conversation with P. G. Klemens. 

12 R. W. Keyes, Phys. Rev. 122, 1171 (1961). 
13 A. Granato, Phys. Rev. I l l , 740 (1958). 


