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Finally, we close with a remark on terminology. 
Although we have not had occasion to do so in this 
communication, the need will likely arise to refer to 
a channeled atom (or trajectory) as a particle with a 
characteristic name. We suggest for this purpose the 
term stenon, from the Greek noun ra <TT€V6S, denoting 
a strait or a mountain pass.35 

35 H. G. Liddell and R. Scott, Greek-English Lexicon (Oxford 
University Press, London, 1940), p. 1638. 

I. INTRODUCTION 

RECENTLY many investigations of the behavior of 
the series of iron garnet compounds have been 

made. Pauthenet1 first interpreted their magnetic 
properties below the Neel point at 550 °K using the 
Weiss molecular field (WMF) approximation. More 
recently it has been demonstrated2-5 that at the lowest 
temperatures one must use the spin-wave approximation 
in many cases to interpret the thermal and magnetic 
properties of the iron garnets. The earliest calculations3,4 

* Work carried out with support of the U. S. Office of Naval 
Research under Contract Nonr 1811(12). 

1 R. Pauthenet, Ann. Phys. 3, 424 (1958); J. Phys. Radium 20, 
388 (1959). 

2 H . Meyer and A. B. Harris, J. Appl. Phys. 31, 49S (1960). 
3 R. L. Douglass, Phys. Rev. 120, 1612 (1960). 
4 B . Dreyfus, J. Phys. Chem. Solids 23, 287 (1962). 
5 M. Tinkham? Phys. Rev. 124, 311 (1961). 
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gave a value of the excitation energy of the various 
normal modes (spin waves) for k=0, where k is a 
vector of the first Brillouin zone. While this is often 
sufficient to describe the resonance behavior of the 
iron garnets, it would seem desirable to make more 
accurate calculations of the macroscopic properties 
which take into account the k dependence of the 
excitation energies. Tinkham5 has made such a calcu
lation for a simplified model of the interactions in 
ytterbium iron garnet (YbIG). He has shown that there 
are spin-wave modes whose energy is not very dependent 
on k and is roughly equal to the energy of the single ion 
splitting of the rare-earth ion in the WMF approxi
mation, which can be determined calorimetrically.6 Thus 
the physical picture of the magnetic behavior of the 

6 A, B. Harris and H. Meyer, Phys. Rev. 127, 101 (1962). 
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The problem of deducing the values of the exchange integrals in yttrium and gadolinium iron garnet from 
measurements of the magnetization and the magnetic contribution to the specific heat at low temperatures 
is considered. For these garnets the spin-wave normal modes can be found by solving the semiclas sical 
equations of motion which give rise to a set of n simultaneous linear equations, where n is the number of 
magnetically inequivalent ions in the unit cell. Expressions for the thermodynamic functions at low tem
peratures in terms of the frequencies of the normal modes are given assuming the validity of the spin-wave 
approximation. It is argued that the temperature variation of the frequency of these normal modes on the 
macroscopic properties can be completely accounted for without considering the zero point energy explicitly. 
Due to the size of the unit cell, the equations for the frequencies of the normal modes can only be solved 
numerically for general values of k. Such solutions are obtained for k lying along a [111] direction for various 
values of the exchange integrals, and the thermodynamic functions corresponding to these choices of param
eters are calculated. In the case of yttrium iron garnet, the value of D, the coefficient of a2k2 in the acoustic 
dispersion law, is reliably known and fixes one linear combination of Jaa, J ad, and Jaa- By comparing our 
calculations with the magnetization data of Solt, it was established that Jaa/Jad = 0.2, but since the magneti
zation was not very sensitive to variations of the ratio Jdd/Jad its value could not be estimated precisely. 
Taking Jdd/Jad = 0.2 gives / a a=Jdd = 6.35 cm -1 and / a d = 31.8 cm-1. For GdIG the specific heat data below 
20 °K is not very much influenced by the exact values of the iron-iron exchange integrals which were taken 
to be those quoted above for yttrium iron garnet. Again one combination of Jae and Jdc is known from 
the calorimetric determination of the single ion splitting. By comparing the specific heat data below 5°K 
with calculations for various values of Jac/Jdc it was possible to determine Jae and Jae separately: Jdc = 7.00 
cm"1 and Jac= 1.75 cm-1. These values are about 25% larger than what one would expect using the Weiss 
molecular field approximation. 
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iron garnets can be considered to be well understood. 
The aim of the present more detailed calculation is 
twofold. First, it was felt that by making accurate 
calculations of the spin-wave spectrum for k^O a more 
detailed comparison between theory and experiment 
could be made. Second, it was of interest to see the 
correspondence in detail between such a complete 
calculation and other calculations, such as that using 
the WMF approximation, which do not take full 
cognizance of the structure of the unit cell. 

For yttrium iron garnet (YIG) and gadolinium iron 
garnet (GdIG) the difficulty in such a calculation arises 
from the complexity of the unit cell. As is well known, 
the frequencies of the normal modes of an isotropic 
spin system can be found by solving the classical 
equations of motion, which give rise to a secular 
equation whose degree is in general equal to the number 
of magnetic ions in the unit cell. A considerable simplifi
cation in the numerical calculations is obtained if one 
assumes that the energy surfaces in k space are spherical. 
Under this assumption it is only necessary to solve the 
secular equation for k lying along a [111] direction, in 
which case the secular equation can be factored. It 
seems unlikely that this simplification could introduce 
significant errors into the calculation of the macroscopic 
properties, because the thermodynamic functions do 
not depend sensitively on the exact details of the 
frequency spectrum. 

II. CALCULATION OF THE SPIN-WAVE SPECTRUM 

A. Lattice Structure 

Before calculating the excitation spectrum of spin 
waves, it is necessary to discuss briefly the lattice 
structure of the iron garnets. The crystal structure of 
the iron garnets is cubic, the space group being 

TABLE I. The location of the magnetic ions in the 
unit cell of the garnet lattice.* 

a sites d sites c sites 

(1) 0, 0, 0 
(2) i i 0 
(3) 0, J, J 
(4) i, 0, i 
(5) }, i , i 
(6) f, i, i 
(7) f, i, i 
(8) i, !, i 
(9) 

(10) 
(ID 
(12) 

0. 
i ,o , j 
A A 0 

O S. 3. 
U > 4? 8 
3 O S. 

4> 8> U 

0 A & U> 4> 8 

5 O A 8; U> 4 
A S. O 
4? 8> U 

o,ii 
i0,| 
if,o 

a The coordinates of the magnetic ions are given as fractions of the lattice 
parameter which is 12.378 A for YIG and 12.465 A for GdIG (Ref. 1). 
The additional sites in the unit cell are obtained by adding (i,$A) to the 
above sites. This table is compiled from Ref. 7. 

7 R. Wyckoff, Crystal Structures (Interscience Publishers, Inc., 
New York, 1953), Vol. I l l , Chap. 12. 

Oh
10~Ia3d.7 The most important symmetry property 

of the crystal is that the [111] direction is a threefold 
axis. In Table I we give the positions of the magnetic 
ions in the unit cell. Each unit cell contains four formula 
units of iron garnet, 5Fe203-31f203, where M is 
yttrium or any of the rare earths from samarium to 
lutetium. Studies of the magnetic behavior of the 
garnets1 show that the iron ions on the a and d sub-
lattices are strongly coupled together antiferromag-
netically with a resulting Neel temperature of about 
550°K. When rare-earth ions occupy the c sites, their 
spin moments are coupled antiferromagnetically to the 
resultant moment of the a and d sublattices. This 
coupling, which is much weaker and hence does not 
affect the Neel temperature, produces anomalies in the 
specific heat and magnetization below 30°K. The 
magnetic ions are also subjected to a crystalline electric 
field, which often produces an easy axis of magnetization 
along a [111] direction.8,9 For ions which are in an S 
state, e.g., for Fe3+ or Gd3+, the strength of this field 
corresponds to splittings of the order of 0.01 cm-1 or 
less8 and hence can be neglected for the present 
calculations. 

B. The Equations of Motion of an Isotropic 
Spin System 

We now treat the case of an isotropic system of 
interacting spins in an external magnetic field H for 
which the Hamiltonian is, 

3C= - £ / r r ' S r . S r , - i ; grpJl'Sr , (1) 
rr' r 

where ST and gt are the spin and g value of the ion at r, p 
is the Bohr magneton, and Jxx> is an interaction coeffi
cient. The ions of the three magnetic sublattices are 
assumed to interact with one another only if they are 
the closest pair in the sublattices in question. The 
dipolar interactions correspond to energies which are 
very much smaller than iron rare-earth exchange energy 
and hence are taken into account only insofar as their 
effect is equivalent to that of a demagnetizing field 
which can be included in H. Semiclassically one uses 
the torque equation to determine the frequencies of the 
normal modes 

rfS,/*=7r(S,XHr) (2a) 

dS r /J/=S rX[(l/ft)(E 2/ r r,S r0+YrH], (2b) 

where yr is the gyromagnetic ratio of the ion at r. 
Quantum mechanically, the equations of motion are 

(n | [JC,5r
+] | m) = fto)(n | Sr

+ \ m) (3a) 

(n | [0C,5r-] | m) = - fua{n \ Sr \ m), (3b) 
and 

8 G. P. Rodrigue, H. Meyer, and R. V. Tones, J. Appl. Phys. 
31, 376S (1960). 

9 R. F. Pearson and R. W. Cooper, J. Phys. Soc. Japan 17, 
Suppl. Bl , 369 (1962). 
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FIG. 1. The form of the spin-wave matrix, 
T Aij, for YIG. The submatrices are given in 

-Aad <k> -Add("k) Figs. 3-7. 

where SI
±=Sr

xdziSI
y. One finds, using Eq. (1) and the 

commutation relations, S x S = i S , that 

[5ei5r+]-gxj8H5r+-2 E J«'(ST+St>'-St'St>+) (4a) 
r ' 

and 

[3e,sr-]= -grpnsr+2EJ*(SrSs-ssSr-), (4b) 
r ' 

if the magnetic field is oriented in the minus z direction. 
In the random phase approximation (RPA)10 one 
replaces the operator Sr* by its thermal value, (5V*).11 

This corresponds exactly to linearizing the semiclassical 
equations of motion. 

In either case if one writes 

SkT
+= (2Nuc)-v* E W * * •<*+*>, 

R 

where * denotes the position of an ion in the unit cell, 
R is a translation vector of the lattice (which we take to 
be body-centered cubic), k is a vector in the first 

FIG. 2. The form of the spin-
wave matrix, Aij, for GdlG. 1 is 
the unit matrix and A = —10Jdc 
-j-20Jac. The subma trices are 
given in Figs. 3-7. 

Brillouin zone, and Nuc is the number of unit cells, then 
one finds6 that for each value of k the allowed values 
of fiu are the eigenvalues of the matrix A, whose 
components are 

Aij= lgiW-2 E JiySr^wWlfii, 
i' 

+2Jij{Sj/S%)^Sfyij{k), (5) 

where the indices i and j label the ions in the unit cell, 
and Yti—Ey eik,(n~r>',), the sum being taken over 
nearest neighboring ions in the 7th sublattice. The 
dimensionality of this matrix is equal to the number of 
magnetic sublattices, i.e., 20 for YIG and 32 for GdlG. 

A ] 0 0 0 A 3 A 2 A2 A 2 

\ > 
• \ d T w 

\ e T « 

A > ) 

-Add<-k> 

A c / ( -k ) 

A„> 
Vw 
A I 

0 A, 0 0 A 2 A 2 A 3 A 2 

0 0 Aj 0 A2 A 2 A 2 A3 FIG. 3. The submatrix 
Aaa(k). Here Ai=— 30Jad 

0 0 0 A, A2 A3 A2 A2 -j-40Jaa+12JacSc, A 2= ~ 
10Jaa cos(foz/4), and A* = 

A3 A2 A2 A2 A j 0 0 0 - l O / a a c o s ( 3 W 4 ) . Here 
A 2 A ? A5 A, 0 A, 0 0 and in Figs. 4-9 we use the 

* z J ' notation kx = ky = kz — k. 

A7 A. A. A, 0 0 0 A0 ^2 ^2 M3 M2 

10 F. Englert, Phys. Rev. Letters 5, 102 (I960). 
11 The excitation energies calculated using the thermal value 

of Sr* are not exactly those one should use in the calculations of 
the thermodynamic functions (see the Appendix), 

These matrices are shown in Figs. 1 and 2, where the 
sublattices are given in Figs. 3-7. The numbering of the 
rows and columns of Aij correspond to the numbering 
of the magnetic ions as given in Table I. 

0 0 0 M, Mj M| M j Mj Mj 0 0 0 

M* 0 M 2 0 M* 0 0 M 2 0 M, 0 M* 

M2 M* 0 0 0 M j 0 0 M 2 M j M J 0 

0 M 2 M* M 2 0 0 M 2 0 0 0 M* M, 

M, M] M] 0 0 0 0 0 0 M* M^ M j 

6 M j 0 M 2 0 M| M j 0 Mj 0 M 2 0 

0 0 M 2 M* M 2 0 Mj M j 0 0 0 M 2 

Mj 0 0 0 M] M 2 0 M, M 2 M 2 0 0 

FIG. 4. The submatrix Aad(k). Here Mi= — SJaa exp(ika/S) 
and If 2 = — 5Jad exp(3ika/S). 

Let us consider some general properties of this matrix 
A^. It can be transformed into the form, 

, B CN 

\-CT D / ' 
(6) 

where D and B are Hermitian submatrices, and the 

0 D 0 0 0 0 D, 0 D 3 D 2 0 DJ 

0 0 D 0 0 0 D0 D, 0 D; D* 0-'3 ul u2 u2 
0 0 0 D O 0. 0 D2 Dj 0 D, D3 

0 0 0 0 0 D D* D* 0 Dj D, 0 

0 Dj Dj 0 D2 D2 D 0 0 0 6 0 

Dj 0 Dj D2 0 D2 0 D 0 0 0 0 

Dj Dj 0 D2 D2 0 0 0 D 0 0 0 

0 D2 D2 0 D3 D, 0 0 0 DO 0 

D2 0' D2 D, 0 Dj 0 0 0 0 D 0 

D2 D2 0 Dj DJ 0 0 0 0 0 0 D 

FIG. 5. The submatrix Add(k). Here 
D= -20Jad+20Jdd~4JcdSc, 

Dl=—5Jddy 
D2 = — SJdd exp (ika/4), 
Dz=— SJdd exp(ika/2). 

superscript T represents the transpose. To diagonalize 
A, we look for a matrix O such that 

OtAO=A,, (7) 

where A^ is diagonal, and where, due to the form of A, 
O, and O1" satisfy the conditions 

/ O n Oi2\ 
O tO=l , 0 = ( ) , 

\ 0 2 1 0 2 2 / 

oW0""' -°"'\ 
\-Oa*

r OnT ) 
(8) 
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L, L, L, 0. 0 0 0 0 0 L2 L2 L L 2 L 2 L 2 2 L2 L2 

0 L, 0 L2 0 L* L2 0 L] 0 L* 0 

F I G . 6. The sub- ° P M L* L2 o L, LJ O O O I] 

matrix Aac(k). Here , . . A . * , _ . ,* •* n « 
X1 = - 2 ( 5 5 C / 2 ) 1 / 2 A C L, 0 0 0 L, L2 0 L, L2 L, 0 0 

Xexp(^a/8), . . « 0 o o o o o L; it L*2 

Xexp(3ika/8). o i] o 1 , 0 LJ LJ O L2 O L, O 

0 0 L* L* L ] 0 L2 L* 0 0 0 L ] 

L* 0 0 0 L* L ] 0 L2 L* L1 0 0 

where the 0,-y are suitable submatrices. Since A is not 
Hermitian, the roots need not be real, but, as indicated 
by Douglass,3 this would imply an unstable ground 
configuration. In terms of the occupation numbers 
ftpii, the energy levels of the spin system are 
approximately 

E=E0 0+E^k|^p k | , (9) 

where p labels the branch of the spectrum and E00 is 
the ground-state energy.12 

Let us now calculate jupk, the change in the magnetic 
moment when npk is increased by one, remembering 
that the magnetic moment of a state is given by the 
derivative with respect to the magnetic field of the 
energy of that state.13 Then 

Mpk= (d/dH)J[m(npk+1) | fia)pk \—npk\ hcopk | ] (10a) 

= (d/dH) | feopk | = <rp (d/dH)fto)pk, (10b) 

where <rPi the polarization of the pth mode, is just the 
sign of ftoopk. Using perturbation theory one finds 

/*pk=^{OtpA(k)/i«r]0}pp=cr^(OtGO)pp, (11) 

where G is diagonal and Gmm is the g value of the mth. 

G * 0 0 0 0 0 G 0 0 0 0 0 

0 G* 0 0 0 0 0 G 0 0 0 0 

0 0 G*" 0 0 0 0 0 G 0 0 0 

0 0 0 G 0 0 0 0 0 G * 0 0 

0 0 0 0 G 0 0 0 0 0 G* 0 

0 0 0 0 0 G O 0 0 0 0 G* 

G 0 0 0 0 0 G * 0 0 0 0 0 

0 G 0 0 0 0 0 G * 0 0 0 0 

0 0 G 0 0 0 0 0 G* 0 0 -0 

0 0 0 G* 0 0 0 0 0 G 0 0 

0 0 0 0 G* 0 0 0 0 0 G O 

0 0 0 0 0 G* 0 0 0 0 0 G 

FIG. 7. The submatrix ACd(k). Here 
G= ~2(5Sc/2y'Ucd exp(*W4). 

12 In the Appendix we show that the temperature dependence 
of the frequencies of the normal modes does not affect the zero 
point energy. 

13 J . H . Van Vleck, Theory of Electric and Magnetic Suscepti
bilities (Oxford University Press, New York, 1932). 

ion in the unit cell. When all the g values are the same, 
as for YIG and GdIG, one has the simple result that 

Vpk=(rPPg. (12) 

We now consider some properties of the solution to 
this eigenvalue problem taking account of the symmetry 
of the garnet lattice. For k=0, the symmetry is sufficient 
to permit a factorization of the secular determinant 
and thence a complete analytic determination when k 
lies along a [111] direction, which we assume to be 
the case in the following discussion. We denote by R 
the operator which rotates the crystal about the [111] 
direction by f 7r. We note that since R commutes with A, 

A| 

0 

A3 

A4 

0 

-M5 

~M3 

0 

h 
0 

0 

•5 

0 

A l 

A4 

A5 

-M} 

-M 2 

-MJ 

-M 4 

Ll 
ll 
L4 
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A3 

A4 

A l 

0 

-MJ 
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0 

-M 3 

L; 
0 
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L3 

A 4 

A5 

0 

A l 

- M 2 

-M; 

-M4 

-Mj 
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L4 

L4 

h* 
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M3 

M2 

-D 
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D5 
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M 2 
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M4 
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D5 
DJ 
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M 2 
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M 4 

D4 
Dl 
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G* 
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«; 
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L3 

L! 
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0 
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0 

0 

0 
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L4 
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l*4 

0 
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0 
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0 

0 
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4 
0 

L4 
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A 
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- G * 
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A 

FIG. 8. The transformed spin-wave matrix of Eq. (13), A(k,l). 
For GdIG the entire matrix is solved. For YIG one solves the 
8X8 matrix obtained by deleting the right-hand four columns 
and the bottom four rows. The symbols not defined in the captions 
of previous figures are Ai=-\Z3A2, A5 — 2A2-\-A3, Mz=^J5Mi, 
M^Mf+Mz, £ 3 =\3£ 2 , L4=Li*+L2, D*=-Di-Dh and 
D6=~2D2. 

the eigenvectors of A are also eigenvectors of R. Since 
R3=l, the eigenvalues of R are just the cube roots of 
unity, 1, X, and X2, where X=exp(27ri/3). The secular 
equation may then be written in the form, 

Det|A(k,l)-fek,i||A(k,X) 
-^k,x | |A(k,X2)-fek>x2 | = 0 , (13) 

where the eigenvectors of A(k,r) are associated with the 
eigenvalue r of R. These matrices are given in Figs. 8 and 
9, and in Table II we give the linear combinations of 
rows and columns of A which correspond to the rows and 
columns of A(k,r). Using Fig. 9, one verifies that 

P~1A(k,X)P=A(-k,X) = A*(k,X2), (14) 

where P is a unitary transformation which interchanges 
rows and columns as follows: 3 +=*> 6, 4 <=± 5, 7 ̂  10, 
8?r»9. Since the frequencies are assumed to be real, 
A(k,X) and A(k,X2) have the same eigenvalues. 

Although the secular equation factors, analytic 
solutions are obtainable only at the center or extreme 
corner of the Brillouin zone.3,4 However, since the 
magnetic properties at the lowest temperatures depend 
only on the behavior of the low-energy part of the 
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5 

- M 6 - M 8 0 -D D2 

-M ; -M; D; D2 -D 

D* -G 0 -G* 0 

D7 0 -G* 0 -G 

-G* 0 -G 0 

- M j - M 6 D2 D7 

1-6 L8 ° 

L* L; G 

0 

-D 

0 

G* 0 A 

0 0 0 

G O O 

0' -G 0 -G 

A 0 .0 0 

0 0 

A 0 

0 A 

FIG. 9. The transformed spin-wave matrix of Eq. (13), A(k,\)-
For GdIG the entire matrix is solved. For YIG one solves the 6X6 
matrix obtained by deleting the right-hand four columns and the 
bottom four rows. The symbols not defined in the captions of 
previous figures are AQ=\(AZ~A2), MZ = MI*-\-\2M2, M& = \M2, 
M6=XM2*, M^Mi+KMf, Ms=M2+\2Mi*, Mg = M2*+\2Mlf 
U = \Lh U = \L!*, U = L2+\2L1*, L7 = Z2*+X2X1, L^U+W, 
U = L1*+\2L2, and £>7=-XZ>3-X2A. 

spectrum it may be useful to expand the energy of the 
acoustic branch in powers of k. Due to the cubic 
symmetry this expansion takes the form 

tua=gPH+Da*W+Ea?>V 

By perturbation methods one finds4 

2 0 0 / a a - 1 2 5 / ^ + 7 5 / ^ - 2 0 / ^ + 5 0 / a c S c 

(15) 

D=-
16(-5+6Sc) 

For YIG (5C=0) one also finds 

5 

(16) 

£ = -
12 288L 

(32Jaa-19Jad+12Jdd) 

(maa-25Jad+12Jddy-

J ad, -

(17) 

TABLE II . The transformation which reduces 
the spin-wave matrix.* 

For A(k,l) 

(1) ai 

(2) (l/yfyfa+az+aj 
(3) <z5 

(4) ( l / \ 3 ) (^6+07 + 08) 
(5) (l/V3)(di+dS + d8) 
(6) ( 1 M ) (dt+d6+dt) 

(7) (l/>R)(fr+d>+d9) 
(8) (l/v3)(dio+<*ii+<*i2) 
(9) ( l /v5)fe+c2+c8) 

(10) (1/V5)(l?4+C6+C6) 
(11) (1/^)(C7+C8+C») 

(12) (l/v3)(ci0+cn+ci2) 

ForA(k,X)b 

(1) (1/V5)(d2+Xa3+X2a4) 

(2) (l/v3)(a6+X47+X2a8) 
(3) (lM)(tfi+Xrf2+X%) 
(4) (l/v3)(<*4+X</5+X2<Z6) 
(5) (l/V3)(d7+M8+XV9) 
(6) ( l /^ )0 io+X^n+Xyi 2 ) 
(7) (l/\3)(ci+Xc2+X»cs) 
(8) (lM)(c4+Xc5+X»ce) 
(9) (1M)(C7+XC8+X2C9) 

(10) (l/v3)(cio+Xcu+X»ci2) 

a The rows and columns of the matrices A (k,l) and A(k,X) are labeled by 
numbers. The rows and columns of the original matrix are labeled by a 
letter and a number. The letter tells the sublattice and the numbering 
within the sublattice is according to Table I. 

b The linear combinations for A (k,\2) are found by substituting X2 for X 
everywhere. 

12 288L 
(128/0a+16/od)-

96/ad2 

OJaa—vJ c -} (18) 

For GdIG the expressions for E and F are somewhat 
unwieldy and hence it may be more revealing to give 
approximate expressions: 

-6SCD2 

E=-
A(-5+6S c) 12 288(-5+6Sc)L 

-l60Jaa+95Jad 

-60Jd 

5(maa-25jad+i2jddy-

J ad ]• (19) 

30 

25 

20 

10 

r r ^ r ^ - ^ r ^ 6 0 0 

x"= 

500 

400 

300 4 

200 

100 

0.5 1.0 1.5 2.0 2.5 

FIG. 10. The spin-wave spectrum for YIG for k lying along a 
[111] direction, and for Jaa/Jad^O and Jdd/Jad = 0.2 which 
corresponds to Jad — 20.2 cm"1. Here and in the following figures 
the polarization of the mode is indicated by a plus or minus sign. 
The eigenvalue of the rotation operator is also given. The modes 
corresponding to the eigenvalues X and X2 are degenerate. 

F = -
12 288(-5+6Sc)L 

-64:0Jaa-S0Ja 

3/ad—4/< -J- (20) 

where A= — 10Jdc+20Jac which is the energy-level 
splitting of the rare-earth ion in the WMF approxi
mation. For GdIG the term in Eq. (15) involving F is 
much less important than that involving E, which can 
usually be adequately approximated by the first term 
of Eq. (19). 

Several observations about these expansions should 
be made. One sees that the first anisotropic term is that 
involving F, which vanishes for Jaa=Jdd=0. In any 
event, one sees that ratio F/E is small for reasonable 
values of the other exchange integrals, in agreement 
with our assumption that the energy surfaces in k space 
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are nearly spherical. One also notes that E has the 
opposite sign from D since all the exchange integrals 
are taken to be negative, with J ad by far the largest. 
It is interesting to note the role by the spin of the rare-
earth ions, Sc. It enters all the expressions in the 
denominator via a factor (—5+6Sc), thus profoundly 
affecting D and hence the low-temperature proper
ties. The condition for antiferromagnetism is just 
—5+65c=0, in which case our expressions are no 
longer valid. 

In order to discuss the magnetic properties at higher 
temperature, it is necessary to solve for the normal 
modes numerically, which necessitated the use of an 
electronic computer, considering the size of the matrices 
involved. We used a method of successive approxi
mations : we eliminated the largest off-diagonal element 
Amn by performing successive two-dimensional rotations, 
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FIG. 11. The spin-wave spectrum for YIG for k lying along a 
[111] direction, and for Jaa/Jad=0.2 and Jdd/Jad = 0, or Jad 
= 26.2 cm-1, Jaa — 5.24 cm-1, and Jdd=0. 

i.e., by performing transformations with a matrix 0 
obeying Eq. (10) and of the form, 

Oij~bij iy^n^m j^n^ni (21a) 

Oni=0 J7^n,m Omj=0 J9*n,tn. (21b) 

The numerical errors incurred in these calculations 
were negligible, as was verified by comparing the trace 
of the original matrix with the sum of the eigenvalues. 
In addition, for k=0, we found agreement between our 
numerical results and the analytic expressions of 
Dreyfus.4 

The results of calculations for various values of the 
ratios Jaa/Jad and Jdd/Jad for the case of YIG are 
given in Figs. 10, 11, and 12. In Sec. IV we discuss the 
determination of Jad for given values of these ratios. 
The most striking feature of the spectrum is that the 
frequency of most of the modes does not depend strongly 
on k. We can compare the frequencies with those one 

FIG. 12. The spin-wave spectrum for YIG for k lying along a 
[111] direction, and for Jaa/Jad—Jdd/Jad:=0.2, or Jad — 31.S 
cm"1 and Jaa=Tdd —6.35 cm-1. 

would expect using the WMF model. Here one would 
have eight iron ions on a sites in an effective field 
Ha, where 

g0Ha= - 30Jad+40Jaa (22a) 

and 12 iron ions on d sites in an effective field, Hd, where 

g0Hd= - 20 /« ,+20 / d d . (22b) 

From the graphs one sees that on the whole the fre-
quancies lie somewhat below those of the WMF model 
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FIG. 13. The low-frequency part of the spin-wave spectrum of 
GdIG for k lying along a [ l l l j direction, and for Tad = 31.8 cm*"1 

Jaa—Jdd — 6.S5 cm"1, and Jac/Jdc=0.25) or Jdc — 7.00 cm -1 and 
Jae—1.75 cm-1. See the text for a discussion of the WMF and 
average frequencies. 
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FIG. 14. The low-frequency part of the spin-wave spectrum of 
GdIG for k lying along [111] direction, and for / ad=31.8 cm-1, 
Jraa=/dd = 6.35 cm-1, and Jac/Jdc—0.0833, or /dC = 3.66 cm -1 and 
Jac—0.305 cm-1. For this choice of parameters it happened that 
one mode was highly degenerate corresponding to eigenvalues of 
the rotation operator indicated in the legend. 

and hence the values of the exchange integrals as 
deduced from comparison of experimental data with 
the WMF theory are expected to be less than those we 
find. This discrepancy is the most serious at the lowest 
temperatures, just where precise magnetization data 
is available. 

In Fig. 13 and 14 we show the low-frequency part 
of the spectrum for GdIG for k lying along a [111] 
direction. These low optical modes correspond in the 
WMF picture to the reversal of a Gd3+ spin in the 
effective magnetic field of the iron ions. The high-
frequency part of the spectrum is not very different 
from that of YIG.14 We have selected values of Jac 

and Jdc such that the average15 frequency of the low 
optical modes is that determined calorimetrically.6 

Figures 13 and 14 therefore show the effect on the 
spectrum of varying the ratio Jac/Jdc keeping the 
average of the low optical frequencies constant. For a 
given value of this average frequency varying the 
iron-iron exchange integrals has relatively little effect 
on the low-frequency part of the spectrum. In contrast, 
as the ratio Jac/Jdc is increased, the low optical modes 
are split apart and the average frequency becomes 

14 For small values of k the acoustic branch of the spectra of 
YIG and GdIG may be thought of as corresponding to one another. 
The additional 12 normal modes for GdIG are the other 11 low 
optical modes shown and also another low optical mode for which 
#o>»(—5-r-65c)A/5«16A/5. For large values of k the frequency 
of this latter mode approaches that of the acoustic mode of YIG, 
whereas the frequency of the acoustic mode of GdIG approaches 
that of the other 11 low optical modes. This is an example of the 
principle of noncrossing of eigenvalues. 

15 Calorimetrically one determines a weighted average of the 
low optical frequencies according to Eq. (27) which, however, is 
not very different above, say, 10°K from the arithmetic average 
of these frequencies. 

significantly less than the WMF splitting which is 
given by 

gm c= -10 J dc+20 J act (23) 

These results agree with the analytic expressions found 
by Dreyfus4 for k=0, which show that the spread in the 
low optical modes is roughly proportional to JRE2SC 

where / R E is an iron-rare-earth exchange integral. 

III. CALCULATION OF THE MACROSCOPIC 
PROPERTIES 

Once the spin-wave spectrum has been found, the 
magnetization and the specific heat are easily calcu
lated.16 For instance, for the magnetization one has 

M(T) = M(0) ~—Zf |in(k) 
87T3 n 7B .Z . 

x- •dk, (24) 
1—exp[—#«(k)] 

where the sum is taken over the normal modes n, the 
integration over the Brillouin zone, jun(k) is given by 
Eq. (11) and xn(k) = fio)n(k)/kBT, where kB is the 
Boltzmann constant. In order to calculate M{T) from 
the spectrum as determined for k lying along a [IHD 
direction, we assumed spherical energy surfaces and inte
grate over a sphere of radius kmax such that 47r&max

3/3 
= 2(27r/a)3 since there are two ions per unit cell. 
Therefore 

M(T) = M(0) 
1 rk 

8TT3 n Jo 
Vn(k) 

1 
X-

1—exp[_—xn(k)2 
4vk2dk. (25) 

For YIG and GdIG where all the ions have the same g 
value, one can calculate the magnetization at low 
temperature when the expansion of Eq. (15) is valid: 

M(0)/kBT\** 
AM=M(0)-M(T)=-—[ — ) 

. \ 2 / 4 \ 2 / D \ D / J 

*$tot 

r /3\ 3 
X 

/kBT 

\4TT£>/ 

5\kBT/5E+Fy} 
(26) 

where Stot is the total spin per unit cell, i.e., Stot=20 
for YIG, and 5tot=32 for GdIG. In an analogous way, 
one finds the specific heat to be 

C=*. 
V 

87T3 n 

[_xn(k)J 

exp[—xn(k)2 
X-

{l-expC-*n(ft)]}2 
47r&2<^, (27) 

16 J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys. 
30, 1 (1958). 
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where V is the volume. Again in zero applied field one 
can calculate the specific heat when the expansion of 
Eq. (15) is valid: 

VkB 15/kBT\*y / 5 \ 7 /7\kBT/5E+Fyi 

~ a* 32\DT) L \ 2 / 4 \ 2 / D \ D /J 

Expansions for the case when there is an applied field 
have been given by Robinson17 assuming a quadratic 
dispersion relation. From his graphs one can see the 
relatively large effect of a magnetic field on the 
magnetization. 

It is interesting to consider the range of validity of 
the expressions (26) and (28). Taking A/Jad=l, 
Jaa/Jad=0.2y and Jdd/Jad=0.3, in rough accord with 
experimental data, one finds using Eqs. (16), (17), and 
(19) that E/D=0M for GdIG and 0.12 for YIG. 
Using Eq. (27) we find a 10% deviation from pure Tm 

behavior for the specific heat when kBT~D/8 for YIG 
and kBT^0MD for GdIG. Since D/kB is 45°K for 
YIG and 15°K for GdIG, one sees that whereas YIG 
exhibits Tm behavior below say 6°K, GdIG may never 
really obey a Tm law since below 1°K anisotropy and 
dipolar perturbations will influence the thermal 
properties.18 

We now estimate the effect of the temperature 
dependence on our calculations. In the Appendix we 
show that at low temperatures one should use the 
average frequencies, fiu, to calculate the thermodynamic 
functions where 

M (T) = 0fc> (0)+fc (T)]/2. (29) 

To calculate fe(T) one simply replaces Siz by its 
thermal value; however, for the iron ions below, say, 
50°K the thermal value does not differ appreciably 
from the value at r=0°K. In Table III we compare 
the frequencies of the normal modes, ficb, calculated for 

TABLE III . Temperature dependence of the frequencies of 
the normal modes of GdlG.a 

r=o°K 
19.733 
9.012 

- 3.307 
-15.083 

0.000 
1.056 

13.561 
11.687 

-12.957 
-18.741 

0.759 
1.101 

T=20°K 

19.811 
9.054 

- 3.164 
-14.978 

0.000 
1.057 

13.634 
11.767 

-12.845 
-18.646 

0.769 
1.101 

r=o°K 
19.733 
13.561 

-18.741 
-21.083 
-12.957 
-16.202 

1.101 
0.759 
0.720 
1.056 

T=20°K 

19.811 
13.634 

-18.645 
-20.978 
-12.845 
-16.607 

1.101 
0.769 
0.731 
1.057 

a These frequencies for k = 0 , which are given in units of \Jad\, are 
calculated according to Eq. (29). r is the rotation eigenvalue. The modes 
with rotation eigenvalue X are degenerate with those with eigenvalue X2 

[see Eq. (13)]. 
17 J. E. Robinson, Phys. Rev. 83, 678 (1951). 
18 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951). 

r = 0 ° K with those calculated for r=20°K. The small 
temperature variation of those frequencies is not 
experimentally detectible at present. It is interesting 
to note the increase in the frequencies of the low optical 
modes as the temperature is raised and the RPA and 
the WMF become equivalent. This effect results from 
the change in the effective field acting on the iron ions 
due to the slight temperature dependence of the rare-
earth magnetization below 20°K, and is not to be 
confused with the effect of rare-earth-rare-earth inter
actions, or with the effect of the temperature dependence 
of the iron sublattice magnetization both of which we 
have neglected. 

IV. THE DETERMINATION OF THE EXCHANGE 
INTEGRALS FOR EXPERIMENTAL DATA 

1. YIG 

Yttrium iron garnet has been the object of several 
experimental studies from which information about the 
exchange integrals could be obtained. Using a molecular 
field analysis, Pauthenet1 was able to determine values 
of the exchange integrals which were later apparently 
confirmed by high-temperature susceptibility measure
ments.19 However, the values of the exchange integrals 
so determined give a value of 15 cm-1 for D £see Eq. 
(15)] which is in disagreement with several subsequent 
determinations of this quantity. For instance, by 
comparing the experimentally determined low-tempera
ture specific heat6'20-22 with the results of the spin-wave 
calculation, one was able to deduce that Z>«27 cm"1. 
This value of D has been corroborated by observations 
of the microwave instability in YIG.23,24 Since the 
determination of D using a spin-wave theory is the 
more unambiguous both from a theoretical and an 
experimental standpoint, we assume it to be the more 
reliable. However, fixing the value of D to be 27 cm-1 

does not serve to determine the exchange integrals 
uniquely since from Eq. (15) we have: 

D=M%Jaa-5Jad+3Jdd). (30) 

The problem we consider is to determine values for 
Jaa, Jdd, and J ad consistent with the known value of D 
and which best reproduce the detailed behavior of YIG. 

Recently, Wojtowicz25 has suggested that by taking 
J o a = J dd^1 vJ* one might be able to fit the susceptibility 
data above the Neel point using a linked cluster 
expansion rather than a molecular field approximation. 
He was able to interpret the experimental data in this 
way, but using a value of Jad which corresponds to 

19 R. Ateonard, J. Phys. Chem. Solids 15, 167 (1960). 
20 D. Edmonds and R. Petersen, Phys. Rev. Letters 2, 499 

(1959). 
21 J. E. Kunzler, L. R. Walker, and J. R. Gait, Phys. Rev. 119, 

1609 (1960). 
22 S. S. Shinozaki, Phys. Rev. 122, 388 (1961). 
23 E. H. Turner, Phys. Rev. Letters 5, 100 (1960). 
24 R. C. LeCraw and L. R. Walker, J. Appl. Phys. 32, 167S 

(1961). 
25 P. J. Wojtowicz, J. Appl. Phys. 33, 1257S (1962). 
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J D = 3 8 cm"1. I t is quite possible, however, that one could 
also fit the data using nonzero values of Jaa and Jdd, 
although the analysis would be formidable. In any 
event, exact agreement between determinations of D 
over widely separated temperature intervals is not to 
be expected, due to the sensitive dependence of the 
exchange integrals on the lattice constant. Also, the 
variation of D with temperature, as determined by 
microwave instability measurements, does not seem 
to be consistent with Jaa^Jdd—0, at least according 
to the RPA.24 

Recently, Solt26 has made accurate measurements of 
the magnetization of YIG in a magnetic field of 4000 G 
for temperatures between 5 and 50°K using the proper
ties of magnetostatic modes. Since in this temperature 
range the magnetization varies by only 0.4%, one should 
check that volume changes do not influence the magneti
zation^ appreciably. In fact, using the Griineisen 
relation27 and taking the compressibility to be roughly 
that at room temperature as measured by Kaminow,28 

one finds the change in the magnetization due to the 
explicit volume dependence to be 

AM AV yn 

M 

yn r 

~ VJo 
C Lattice1 dT 

(3)(7Xl0-1 3cm2 /dyn) 

300 cm3 
(360J)~2 .5X10- 5 , (31) 

where y is the Griineisen constant and K the compressi
bility, so that the volume change is responsible for only 
1% of the observed decrease in the magnetization at 
50°K. (The lattice specific heat was estimated from 
the data of Harris and Meyer6). I t is also known that 
the temperature dependence of the exchange integrals 
due to the change in the lattice constant in this tem
perature range is negligible.29 

However, the application of an external field of even 
4000 G affects the magnetization significantly at this 
temperatures, as we have mentioned previously. The 
magnetization was measured by measuring the fields 
for resonant excitation of the (210) and (220) magneto-
static modes at a frequency of 9092 Mc/sec. The 
resonance conditions are26 

# 2 i o = " / Y + (87r/15)M(#2io), (32a) 

# 2 2 o = < o / 7 - (4w/15)AT(#220), (32b) 

where M(H) is the magnetization M in a field H and 
Himn is the field for resonance of the (Imn) magneto-
static mode. The magnetization found by subtracting 

2 6 1 . H. Solt, Jr., J. Appl. Phys. 33, 1189S (1962); I. H. Solt, Jr. 
(private communication). 

27 C. Kittel, Introduction to Solid State Physics (John Wiley & 
Sons, Inc. New York, 1956), 2nd ed. 

2 8 1 . P. Kaminow and R. V. Jones, Scientific Report No. 5 
(Series 2) Gordon McKay Laboratory of Applied Science, 1960 
(unpublished). 

2 9 1 . P. Kaminow and R. V. Jones, Phys. Rev. 123, 1122 (1961). 

the second equation from the first corresponds to an 
average field H for which 

#2io-#22o= (frr/15)M(Hno)+ (4TT/15) M(H 220) 
= (12TT/1S)M(B). (33) 

Expanding M(H 2io) and M(H 220) about H, one finds 

_ ^220~r" 2H210 0) 47T 
H= =—I—M. 

3 7 15 
(34) 

Anderson and Suhl30 have found a dispersion relation 
for the acoustic mode taking account of dipolar inter
action, which for a sphere can be written, 

(fu»)2= {Da2k2+gp[H- ( 4 T T / 3 ) M ] } 

X{Da2k2+gl3£H-(4Tr/3)M+4TrM sin20k]}. (35) 

where 0k is the angle between k and the magnetic field, 
H. Since 4 T T M / 3 # ^ 0 . 2 one finds 

fio>~Da2k2+gp(H- (ATC/3)M+2<KM sin20k). (36) 

For a given value of | k | this dispersion relation intro
duces a breadth of 2irgf$M into the spectrum, but leaves 
the average frequency unchanged. Accordingly, the 
demagnetizing field can be neglected in the first 
approximation. In addition we have assumed that the 
effects of anisotropy can be taken account of by the 
usual anisotropy field,31 — 4K/3M, where K is the 
first-order anisotropy constant. Taking 4 x ^ / 5 = 487 G 
and K/M= -130 G8, we find the total field to be 

gPHu>t=gPH-
4K 

3M 

4*- 4iT 
=#oH g/3M =0.309 cm"1. 

15 3M 
(37) 

In order to determine AM(T) = M(0)-M(T) it is 
necessary to extrapolate M(T) to T=Q, which, how
ever, can not be done without introducing a significant 
error. In the low-temperature limit M(T) depends only 
on Htot and D, which are known so that M (0) could be 
determined by comparing the values of AM for tem
peratures below 10°K with the calculated values. 
The uncertainty in this procedure did not affect our 
determinations of the exchange integrals. We calculated 
the magnetization for various values of the ratios 
JaJ J ad and Jdd/J ad the value of Jad being determined 
to give the known value of D. By comparing the family 
of curves so obtained with the experimental data it 
was then hoped to determine Jaa and Jdd> I t happened, 
however, that the magnetization was not sensitive to 
variations of the ratio Jdd/J ad. On the other hand, the 
value of Jaa/Jad did influence the calculated magneti-

30 P. W. Anderson and H. Suhl, Phys. Rev. 100, 1788 (1955). 
31 J. Smit and H. P. J. Wijn, Ferrites (John Wiley & Sons, Inc., 

New York, 1959). 
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TABLE IV. Possible values of the exchange 
integrals in YIG and GdIG.* 

•Jaa/J ad J ddf J ad J ad 

0.2 0.2 31.8 
0.2 0.3 35.6 
0.2 0.4 40.5 

J aa 

6.35 
7.12 
8.09 

Jdd 

6.35 
10.68 
16.18 

J dc Jae 

7.00 1.75 
7.12 1.78 
not calculated 

a Values of the exchange integrals are given in cm-1. 

zation curves, as can be seen in Fig. 15. We were thus 
able to deduce Jaa/Jad= 0.2, in contrast to the approxi
mate analysis of Wojtowicz.25 Considering the geometry 
of the garnet lattice, it would be surprising if the 
exchange coupling between neighboring d ions were 
weaker than that between neighboring a ions, since the 
latter are further apart than the former, so that we 
assume Jdd>Jaa- Since there is an optical modes whose 
frequency for k = 0 is 2QJad—4:0Jdd we were able to 
establish the upper bound Jdd<0AJad- In Table IV we 
give the corresponding sets of exchange integrals 
together with those of GdIG whose determination is 
discussed below. It is hoped in the future to estimate 
the ratio Jdd/J ad from the known1 value of the N6el 
temperature. 

2. GdIG 

As we have mentioned previously, the details of the 
low-frequency part of the spectrum for GdIG are not 
very sensitive to the exact values of the iron-iron 

20 30 

TEMPERATURE (°K) 

FIG. 15. The magnetization of YIG below 50°K. The dots are 
the experimental values of Solt (Ref. 22). The curves were calcu
lated for the values of the ratios Jaa/J ad and Jdd/Jad indicated by 
the numbers in parentheses; the corresponding values of Jad are, 
(0,0): 7 ^ = 17.8 cm"1, (0.3,0.1): / a d =38 .0 cm"1, and (0.2,0.2): 
Jad = 31.8 cm-1. The effective magnetic field is given by Eq. (37). 
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FIG. 16. The magnetic contribution to the specific heat of 
GdIG. The dots are the experimental values6 and the curves are 
calculated taking 7 ^ = 31.8 cm -1 and Jaa=zJdd = 6.35 cm-1. The 
values of Jac and Jdc corresponding to the indicated values of 
Jad Jdc are, Jac/Jdc = 0.25: Jdc = 7.00 cm -1 and Jac=1.75 cm"1, 
and Jac/Jdc—0.1667: /dC = 4.74 cm -1 and Jac = 0.79 cm-1. 

exchange integrals (assuming D to be known). We 
therefore, somewhat arbitrarily, made calculations 
taking Jaa/Jad= 0.2 and Jdd/Jad=0.2 in the first case 
and Jdd/Jad=0.3 in the other. The object of such 
calculations was to determine Jac and Jdc separately by 
fitting the experimental results. Dreyfus4 has previously 
determined values of J ac and Jdc using the frequencies 
for k=0 for a particular value of the ratio Jac/JdC-
Although this procedure does not cause a great error 
in the determination of the exchange integrals, we 
thought it worthwhile to attempt such a determination 
taking account of the k dependence of the low optical 
modes and also seeing to what extent varying the ratio 
Jac/Jdc influenced the specific heat. Above 10°K the 
specific heat (per unit cell) is well approximated by 24 
Einstein functions appropriate to the average frequency 
for large values of k, since the factor k2dk in the density 
of states weights the large values of k the most. This 
average frequency is known accurately from calorimetric 
measurements6 and for a given value of Jad Jdc fixes the 
values of these exchange integrals. We then compared 
the experimental and theoretical values of the specific 
heat below 5°K for the various values of Jac/Jdc- The 
results of such a procedure are shown in Fig. 16. It was 
found that J ad Jdc— 0.25 gave the best fit to the data 
for both sets of values of the iron-iron exchange integrals 
considered. The corresponding values of Jac and Jdc 
which depend slightly on the choice of the values of the 
iron-iron exchange integrals are given in Table IV 



2408 A . B R O O K S H A R R I S 

12 16 

TEMPERATURE (°K) 

FIG. 17. The magnetization of GdIG below 20°K taking 
/ a d = 31.8 cm-1, Jaa=Jdd = 6.35 cm"1, 7dc = 7.00 cm -1 and Jac 
= 1.75 cm"1. 

and are about 25% larger than one would expect using 
the WMF approximation. The reason for this can be 
seen from Figs. 13 and 14 where we indicate both the 
frequency corresponding to the WMF acting on a 
rare-earth ion as given by Eq. (23) and the average 
frequency of all the low optical modes. Equating the 
frequency of the single ion splitting as determined 
calorimetrically with the WMF frequency clearly leads 
to smaller values of the exchange integrals than we 
find. One can also compare the values of Jac and Jdc we 
find with those found by Dreyfus: 7ac=0.49 cm-1 and 
7^=4.17 cm-1. The surprising discrepancy between 
his values and ours is mostly due to a numerical error 
in his calculation of the lowest optical mode which 
unfortunately affects the determination of the exchange 
integrals rather critically. 

It should be noted that we were unable to obtain a 
good fit to the specific heat data for temperatures 
below 3°K. The reason for this discrepancy is not clear 
at present and will be investigated experimentally in 
the near future. We did not attempt to obtain a better 
fit by altering the value of D as we did previously6 

which accounts for most of the difference between the 
calculations presented here and those given previously. 
Above 10°K the calculated and experimental values of 
the specific heat are in close agreement. As we show 
in the Appendix, one does not expect that the small 
temperature dependence of the frequencies of the 
normal modes will influence the specific heat 
significantly. 

In Fig. 17 we show the magnetization of GdIG below 
20°K as calculated for one of the sets of exchange 
integrals given in Table IV. The curve calculated for 
the other set of exchange integrals is indistinguishable 
from that shown. The magnetization of GdIG has been 

measured by Pauthenet1 and by Wolf and Bozorth,32 

but due to experimental difficulties these measurements 
are not sufficiently refined to be suitable for comparison 
with spin-wave theory in this temperature range. No 
information could be obtained from the absorption 
spectrum of GdIG as measured by Sievers and 
Tinkham,33 since the single ion transitions are forbidden 
in G d I G . 5 

APPENDIX 

Calculation of the Zero-Point Energy 

To calculate the zero-point energy we use the 
Holstein-Primakoff34 expansions 

o i — kJ% &% d% , 

Si+=(2Sd*or---, 

Sr=(2Sd*Oi+---', 

for spins oriented in the plus z direction, and 

O j tu% | (h% Q>i , 

Si+=(2Si)hi+---, 

Si~=(2Si)iai~- • •, 

(Ala) 

(Alb) 

(Ale) 

(A2a) 

(A2b) 

(A2c) 

for spins oriented in the minus z direction, where 
[ a» + , a r ]=~ l . The Hamiltonian can be expanded as 

3C=£°+E E Tijdi+ar+S E Uiiai+ai+ 
j i ij 

\~2 2L U ij &j &j 
ij 

(A3) 

where E° is the expectation value of the energy in the 
Neel state, and Tij=Tji* and Uij=Uji. A more 
symmetric form for 3C is 

3C=£o+i L TiAai+ar+oratf+h E U^af 
ij ij 

+i £ Uiforor-l Z r«. (A4) 
ij i 

Thus, in this approximation the ground-state energy 
is different from that in the Neel state by an amount 

A£°=-i£r«+i£| (A5) 

which for a ferromagnet is zero, of course. 
In the RPA one calculates the frequency spectrum 

at finite temperatures by substituting for S the thermal 
value of Sz. We now show that at low temperatures this 
excitation energy is not exactly what one should use 
in the calculation of the free energy, and that using the 
correct frequency one no longer need consider explicitly 
the zero-point energy. 

32 W. P. Wolf and R. M. Bozorth, Phys. Rev. 124, 449 (1961). 
33 A. J. Sievers, III , and M. Tinkham, Phys. Rev. 129, 1995 

(1963). 
34 T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940). 
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We start by assuming that the temperature is low 
enough so that we may write, 

pk 

+ i E ^pkfVk'Fpk,p'k'. (A6) 
pp'kk' 

This formula can be made to agree with the first 
RPA10 or with Dyson's35 results with the proper choices 
of the coefficient, Fpk,P'k'. From this equation one 
deduces an excitation energy 

^C0pk(^r)=^C0pk+]L Wp 'k'Fpk,p'k', (A7) 
p'k' 

where nr stands for the totality of occupation numbers 
other than npk- Using brackets, ( ), to represent thermal 
averages, one has 

^ p k ( r ) = ^ o ) p k + Z ^pk,p'k'(?Vk'), (A8) 
p'k' 

where we distinguish between foopk which is fio)pk(T=0) 
and fiwpk{T), By expanding the partition function, 

Z=exp[-/3(£°+A£0)] £ exp{-/3[£ »pk*«pk 
{npk) 

+ 1 E Fpk,p'k'̂ pk?Vk' •' • ]} (A9) 

one can write the free energy as 

F = £ ° + A E ° + F ( * « p k ) + i E Fpk|pV(»pk>(»pk'>, (A10) 

where F(fiaipk) is the free energy calculated using the 
zero-temperature frequencies. Since 

dF d 
=kBT 

dfmpk dflMpk 

Xln[l-exp(-^pk/^r)]=(^pk>, (All) 
« F. J. Dyson, Phys. Rev. 102, 1217 (1956). 

one has 

F=E°+AE°+F(tia)pk) 

+ 1 £ Vp*,Mnpk)(dF/d?ia>p>k,), (A12) 
pp'kk' 

or using Eq. (A8) 

P ' k ' 

-iioip>v (0)] (dF/dfia>p>k>), (A13) 
so that finally 

F=E°+A£°+ JF([^pk+fepk(r)]/2). (A14) 

Thus we see that, whereas ficopk(T) is the excitation 
energy one might observe in a resonance experiment, 
the macroscopic properties are to be calculated using the 
frequency [^wpk+^copk(r)]/2.36 These considerations 
are only valid as long as (A6) is a good approximation, 
in which case we do not expect to be able to detect 
the thermal variation of frequency'of modes which are 
not excited, since the zero-point energy need not be 
considered explicitly. In contrast, the zero-point energy 
would have to be considered in cases where the external 
parameters upon which it depends, e.g., the magnetic 
field, are variable. 
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