
2440 P . C S A V I N S Z K Y A N D N . G . E I N S P R U C H 

ACKNOWLEDGMENTS 

The authors acknowledge with thanks the contribu­
tions of R. J. Manning who assisted in making many of 

the measurements, D. P. Miller who oriented the 
crystals, J. L. Rooke for valuable technical assistance, 
and of R. Stratton for helpful discussions. 

P H Y S I C A L R E V I E W V O L U M E 1 3 2 , N U M B E R 6 15 D E C E M B E R 1 9 6 3 

Theory of the Superconducting Transition Temperature and Energy Gap 
Function of Superposed Metal Films 

N. R. WERTHAMER 

Bell Telephone Laboratories, Murray Hill, New Jersey 
(Received 5 August 1963) 

A calculation is made of the transition temperature of a film sandwich composed of two thin superposed 
films of different metals, only one of which is superconducting in bulk. Good quantitative agreement is ob­
tained with existing measurements of the dependence of the transition temperature on the thicknesses of 
the two component films. The problem is shown to be mathematically equivalent to the simple one of the 
energy levels of a particle in a one-dimensional square potential well. 

I. INTRODUCTION 

A NUMBER of experiments1-5 have been reported 
recently measuring the superconducting transition 

temperature of metal film sandwiches. In these experi­
ments, the sandwiches are composed of films of two 
different metals evaporated one on top of the other, 
only one of the metals being superconducting in bulk at 
laboratory temperatures. In summary, such experiments 

1.0 

0.9 

0;8 

0 .7 

0 .6 

*0.5 
II 

0 .3 

0 .2 

O.U 

70 

IOCT* 

150 

3 S IN A 

300 

! 
:iooo 

500 

4 0 0 600 
D N IN ANGSTROMS 

8 0 0 

FIG. 1. Representative experimental curves taken from Hilsch 
(Ref. 5) showing reduction in transition temperature from that 
of bulk lead for a lead-copper film sandwich, as a function of the 
component film thicknesses. 

show that the transition temperature of a given film of 
superconducting material (s) is decreased by the super­
position of a normal metal (n). The amount of the 
decrease depends on the thicknesses Ds and Dn of the 
two components. For Ds much greater than a certain 
characteristic length £«, the transition temperature Tc of 
the sandwich drops with increasing Dn, but approaches 
a finite limiting value as Dn becomes greater than 
another characteristic length £n; whereas for Ds much 
less than £8, Tc drops rapidly below experimental de­
tection as Dn approaches £«. A representative plot of 
such behavior is given in Fig. 1. Values of £5 and £n are 
typically 10"5-10-6 cm. The various experiments1"6 

differ in details, such as in geometry and choice of 
metals, temperature of the substrate during evapora­
tion, and range of thicknesses investigated, but all show 
the general effects indicated above. 

Interspersed with the experimental publications, 
several authors6""9 have attempted theoretical explana­
tions of the phenomenon. Common to their approaches 
is the notion that superconductivity in the bulk is 
characterized by an electron pair correlation, with an 
associated coherence distance typically of order 10 -4-
10~5 cm, and that therefore this correlation should also 

1 H. Meissner, Phys. Rev. 117, 672 (1960); IBM J. Res. Develop. 
6, 71 (1962); Eighth International Congress on Low Temperature 
Physics, London, 1962 (to be published). 

2 P. H. Smith, S. Shapiro, J. L. Miles, and J. Nicol, Phys. Rev. 
Letters 6, 686 (1961). 

3 A. C. Rose-Innes and B. Serin, Phys. Rev. Letters 7, 278 
(1961). 

4 W. A. Simmons and D. H. Douglass, Jr., Phys. Rev. Letters 
9, 153 (1962). 

e P. Hilsch, Z. Physik 167, 511 (1962); P. Hilsch, R. Hilsch, 
and G. v. Minnigerode, Eighth International Congress on Low 
Temperature Physics, London, 1962 (to be published). 

•R. H. Parmenter, Phys. Rev. 118, 1173 (1960). 
7 L. N. Cooper, Phys. Rev. Letters 6, 89 (1961). 
8 D. H. Douglass, Jr., Phys. Rev. Letters 9, 155 (1962). 
9 P. G. de Gennes and E. Guyon, Phys. Letters 3, 168 (1963). 
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extend a similar distance into a normal metal in contact 
with a superconductor. It then becomes plausible that 
superconducting films of thickness less than or com­
parable to a coherence distance will have their transition 
temperature lowered by superposition of the normal 
metal, and that this lowering should be independent of 
normal metal thickness for Dn larger than a coherence 
distance. 

The argument of Cooper7 then, is that the correlation 
introduces a nonlocality into the electron pair wave 
function, so that pairs sample an effective attractive 
potential which is simply the spatial average of the 
potentials on the two sides of the interface. Assuming 
for simplicity the normal metal to have BCS coupling 
constant [i\ r(0)F]n=0, Cooper is led to write 

[#(0) ^]eff = D.[N(0) V2s/(DS+Dn) 

as the effective coupling constant, and 

2V=1.14fo expf-CA^Fleff-1} 

as the transition temperature for the film complex. If it 
is kept firmly in mind that these formulas can be valid 
only for Ds and Dn both much less than the coherence 
distance, that is (as we shall see) only for the thinnest 
films, reasonable qualitative agreement with the existing 
data can be obtained. 

Douglass,8 on the other hand, chooses to regard the 
normal film rather as a superconductor with free energy 
higher than the normal state, and hence an "imaginary 
critical field." By making guesses as to the temperature 
dependence of such a quantity, and minimizing a phe-
nomenonological total free energy expression for the 
film complex, he arrives at a formula which can be 
fitted to the data of Simmons and Douglass.4 Several 
objections can be raised to this analysis, however. The 
most serious is that fundamentally no such free energy 
minimum exists corresponding to the continuation of 
the superconducting state above the normal state (in 
the absence of a magnetic field). If the minimum did 
exist, the transition itself could not be of second order 
as observed. Douglass also confuses a metal which is at 
a temperature above its transition temperature and 
hence in the normal state, with a metal having a repul­
sive electron-electron interaction and hence incapable 
of superconductivity at any temperature no matter 
how low. 

The calculation of de Gennes and Guyon9 proceeds 
in a more basic manner by generalizing Gor'kov's10 

Green's function treatment of superconductivity to the 
case of a position-dependent electron-electron inter­
action, with a consequent spatial variation to the energy 
gap function A(r). These authors construct the linear 
homogeneous integral equation satisfied by A(r) at the 
transition temperature Tc of the film complex. Although 

10 L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958) 
[translation: Soviet Phys.—JETP 7, 505 (1958)]. 

they do not pursue the task of including the boundary 
conditions on A(r) at the n-s interface so as to obtain 
explicitly the eigenvalue of the integral kernel (the 
eigenvalue in this case being Tc), they are able to draw 
some general qualitative conclusions which reproduce 
certain features of the experimental data, in particular 
those of Hilsch.5 

In the present paper, we adopt the point of view of 
de Gennes and Guyon,9 and extend their treatment so 
as to obtain a complete solution for A(r) and Tc. By 
transforming their integral equation into a differential 
equation and including the proper boundary conditions, 
we are able to make a simple one-to-one correspondence 
between the superposed film problem and the quantum 
mechanics textbook example of the energy levels and 
wave functions of a particle in a one-dimensional po­
tential well. All the observed features of the film sand­
wich sketched in the opening paragraph can then be 
intuitively understood from the well-known results for 
the analog. Detailed calculations can easily be carried 
out, however, for quantitative comparison, and for those 
experiments where sufficient data is supplied,5 good 
agreement is obtained without the use of adjustable 
parameters. 

To make the analysis tractable, we have resorted to 
an idealized model of the film sandwich. The chief 
assumption is that the two metals are identical in the 
normal state, that is, have the same Fermi velocity VF 
and density of states at the Fermi level N(0)} the same 
residual resistivity, and the same Debye temperatures 
0jr>. All differences between the metals we assume to be 
contained in the BCS electron-electron interaction 
parameter V, which we take to be a uniform constant 
throughout a given metal. As a corollary assumption, 
we take no explicit account of possible surface scatter­
ing, except in so far as it is included in the measured 
mean free path. 

In Sec. II, we treat the general problem of the transi­
tion temperature of a system with a spatially-varying 
electron-electron interaction, obtaining the equations in 
a particularly transparent form from which the simple 
physical analog presents itself. Section III then 
specializes to the case of two superposed thin films and 
presents detailed comparisons with the experimental 
data. An Appendix supplies an alternative and more 
detailed derivation of the integral kernel than that of 
de Gennes and Guyon.9 

II. GENERAL FORMULATION AND 
PHYSICAL ANALOGUE 

As our starting point we adopt the linear homogen­
eous integral equation of de Gennes and Guyon9 for 
the gap function at the transition temperature of the 
sandwich, 

A(r)= /<2Vir(r,r')A(r'), (1) 
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where the kernel is 

i^(r ;rO = i V ( 0 ) F ( r ) [ l n ( 1 . 1 4 f e / ^ c ) 5 3 ( r - r , ) - X ( r - r , ) ] , 

(2) 
and 

X ( r ) = C2*-)-3 J (Pfcs*"x(*f^**/6irftBr.), (3) 

x(*)^(l+i*)-*(i), (4) 
with ^ being the digamma function.11 An alternative 
derivation of Eqs. (l)-(4) is given in the Appendix. 
We proceed by rewriting Eq. (1) as 

A(r') l n [ r 0 ( r ' ) / r j = f dYfX(r'-r")A(r"), (5) 

where a local bulk transition temperature Tc(i) has 
been denned by 

lN(0)V(r)y-1=hill.l4eD/Te(i)']. (6) 

We next introduce the function J?(r), 

X 0 ) E E (2TT)-3 / d'ke^x-1^2), (7) 

with %2=tivFl/6irkBTc. Multiplying Eq. (5) on both 
sides by X(r—r') and integrating over r', we find 

A(r)= (dVX{x-xf) l n [ r c ( O / r c ] A ( r 0 . (8) 

But since x(0) = 0 from Eq. (4), the definition (7) is 
ambiguous in that no specification has been given for 
integrating around the pole of the integrand. However, 
when we recognize that J?(r) is just the Green's function 
for the differential operator x ( ~ £2V2), it is clear that 
specifying the contour of integration is equivalent to 
choosing the boundary conditions satisfied by A(r). 
More importantly, the identification of X as a Green's 
function enables us to cast Eq. (7) into the differential 
form 

x ( - ?V>)A(r) = ln [T c ( r ) / r c ]A( r ) , (9) 

again plus boundary conditions. 
Since Eq. (9) looks very much like a Schrodinger 

equation, we can now make a direct mathematical 
correspondence with the quantum motion of a particle 
of energy £ in a potential Z7(r). We immediately identify 
ln fe / r c ( r ) with U(x), \ndD/Tc with E, and x(?2£2) with 
the free particle kinetic energy k2/2m. Also A(r) corre­
sponds to the particle wave function, although we will 
see shortly that they obey different boundary conditions. 
The superconducting film problem, where we expect 
^ c ( r ) | m i n < r c < r c ( r ) | m a x , is thus analogous to that of 
the lowest bound level of a "Bloch electron" in a 

11 See, e.g., PL T. Davis, Tables of Higher Mathematical Functions 
(Principia Press, Inc., Bloomington, Indiana, 1935), Vol. I. 

specified potential well. The observed behavior of Tc 

with varying film thicknesses as sketched in the intro­
duction can readily be understood in terms of the well-
known dependence of a bound level on the width of 
the well. 

III. SPECIAL CASE OF AN n-s FILM SANDWICH 

A. Solution and Eigenvalue Equation 

We next specialize to the case of two superposed 
thin films, one of a known superconductor, 

Tc(x) = Tcs, 0<x<Ds; (10a) 

and one of a metal which is not superconducting a t 
presently available laboratory temperatures, but which 
we assume to have a nonvanishing attractive electron-
electron interaction and thus a small but nonvanishing 
transition temperature, 

Tc(t) = Tcn, ~Dn<x<0. (10b) 

Solutions of Eq. (9) can immediately be written down: 

A(r) = ***•*, 0<x<Ds, 

= e±*nx9 _ £ > w < x < o ? 

where ks>n satisfy 

x ( W ) = l n T c . / r c , -x(-ekn*) = lnTc/Tcn. (12) 

We must now pick the appropriate boundary condi­
tions. As discussed by de Gennes and co-workers9'12,13 

we require that dA{x)/dx vanish at metal-insulator or 
metal-vacuum surfaces, here at x—Ds and x=—Dn. 
This condition insures that a single superconducting 
film no matter how thin has virtually the same transi­
tion temperature as the bulk material. At the metal-
metal interface, however, we cannot choose A(r) to be 
continuous and have a continuous first derivative, as we 
would for a Schrodinger wave function. This is because 
A(r) is proportional to V(x) [Eqs. (1) and (2)] and is 
thus discontinuous. On the other hand, A(x)/V(r) is 
directly proportional to the Gor'kov Green's function 
(^(r)^(r)), which can be interpreted as the wave func­
tion of a correlated pair and which should obey the 
standard continuity conditions of Schrodinger wave 
functions. Thus dA/Adx is continuous, even though A 
and its first derivative themselves are not. Applying all 
boundary conditions leads to the final solution 

A(x) oc Vs cosks(x—D8)/cosksDs, 0<x<D8, 

oc Vn coshkn(x+Dn)/coshknDn, —Dn<x<0, 

(13) 
and 

ks ta,nksDs = kn tanh&nA*. (14) 

Equations (4), (12), and (14) are sufficient to deter­
mine Tc. 

12 C. Caroli, P. G. de Gennes, and J. Matricon, J. Phys. Radium 
23, 707 (1962). 

13 P. G. de Gennes, Phys. Letters 5, 22 (1963). 
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B. Comparison with Experiment 

Of the various experimental investigations, the only 
one to supply mean free path information is that of 
Hilsch,5 using lead and copper evaporated at liquid He 
temperatures. Thus, we can attempt a quantitative 
comparison of our predictions with these measurements 
only. Other investigators1-4 find qualitatively similar 
results. 

As a preliminary step, we replace the function x(s) 
of Eq. (4) by the simple expression 

*(*+§*)-*(*)• l n [ l+ (xV4) ] , 
• (x»/4) ln( l+s) , 

s>0, 
s<0, 

(15) 

the two being identical for s<<Cl. The functions are both 
plotted in Fig. 2, and in the region of interest \z\ < 1 , 
the approximation is seen to be adequate for present 
purposes. Since the final results are comparatively 
sensitive to this approximation, the correct expression 
(4) should be used when more precise data becomes 
available, especially for lower values of Tc. This replace­
ment, however, enables us to solve Eqs. (12) explicitly 
and find 

ks=(2M)t(TCs/Tc)-iyi>, 

kn=^[l-{Tcn/Tcy^JiK 

We will also assume throughout that the "normal" 
metal has a transition temperature sufficiently below 
the conventional laboratory range that (Tcn/Tcy

/r2<Kl. 
Although accurate measurements should be capable of 
determining Tcn, or at least setting an upper limit, 
satisfactory agreement with present experiments is 
found by neglecting Tcn altogether. 

The first situation we investigate is that of the normal 
metal film being very thick, knDn^>l, so that Tc no 
longer depends on Dn. We can then combine Eqs. (14) 
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FIG. 3. The solid curve represents reduced transition tempera­
ture t of a lead-copper sandwich versus reduced lead film thickness 
d8, as predicted theoretically from Eq. (17). Data points are taken 
from Hilsch (Ref. 5). 

and (15) to write 

rfs=(7r/2)(l-0-1/2 c o t - ^ A X r 1 - ! ) 1 / 2 ] , (17) 

where we define the reduced variables 

ds=Ds(%vFsls/6wkBTcs)-U
2, t^Tc/TC8. (18) 

Using the value flFs=0.50X108 cm/sec for Pb, and 
extracting values for ls from Fig. 8 of Ref. 5a, expression 
(17) is plotted in Fig. 3. Data points are taken from 
Fig. 5 of Ref. 5a on quartz-Cu-Pb sandwiches; the 
observed differences in Tc between these and Cu-Pb-
Quartz sandwiches remain unexplained. Error flags are 
assigned by the present author, solely on the basis of 
scatter and uncertainty in reading data from the pub­
lished graphs; no estimate of uncertainty in Ds or /s is 
made in Ref. 5. Under the circumstances, agreement 
between theory and experiment must be considered 
good. 

To make similar comparisons at finite Dn and fixed 
Ds, we need not go to the trouble of numerical computa­
tions. Hilsch states that his data are well-fitted by the 
formula 

/ = l - ( l - ^ ( l _ e - ^ « / « ) , (19) 

where 0=/(£>„—> oc), and a^lOO A. Rearranging Eqs. 
(14) and (15) into the form 

*=[l+ 7T
2 ks t a n h Z V f 

4 tSLTiksDs 
(20) 
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and introducing 0, which we have just found we can 
predict rather well, we arrive at 

/ ^ l - ( / / 0 ) ( l - 0 ) t a n h Z V £ , (21) 

where here £ is to be evaluated at t—6, and is roughly 
150 A. As also noted by de Gennes and Guyon, agree­
ment between formulas (18) and (21) is reasonable, 
with the identification a~» j£. 

We may also remark that all measurements1-4 besides 
those of Hilsch were performed on films evaporated 
onto room-temperature substrates, a procedure which 
has been criticized in the past as possibly allowing inter-
diffusion of the two metals, which, in turn, would 
further alter the transition temperature and make inter­
pretation ambiguous. In fact, Rose-Innes and Serin,3 

evaporating tin onto gold plates, noted that the Tc of 
certain of their samples was sharply reduced if they 
were later reexposed for a few minutes in the evaporator 
to the (empty) heated boat; this result they claimed 
to be the interdiffusion effect. Nevertheless, it is much 
more likely that the brief heating of the sample resulted 
in annealing of defects than in interdiffusion, and such 
an annealing would account, in our theory, for their 
observations. The particular samples they select for 
treatment are those with tin thickness Ds comparable 
to § according to our conclusions in Fig. 3, since slightly 
thinner samples have much lower Tc. Annealing so as 
to increase the mean free path would change the reduced 
thickness ds, and hence Tc, in the same way as an actual 
decrease in Ds; this is precisely Rose-Innes and Serin's3 

result. I t emphasizes the need for simultaneous Tc and 
resistivity measurements in future experiments; the 
temperature of the substrate during evaporation or 
subsequent storage is probably irrelevant except as a 
tool for varying l. Exposure to air, however, can be 
quite serious.4,14 

Finally, we should make a comparison between our 
predictions when Pn>s<<C£ and those of Cooper.7 In this 
limit, we find 

^ [ l + ( 7 r V 4 ) ( ^ / ^ ) ] - S (23) 

whereas Cooper's formulas can be rewritten as 

t=(l.UdD/Tcs)-
D«!D*. (24) 

Although in both cases t decreases monotonically from 
one with increasing Dn/Ds, the initial decrease being 
linear, the differing functional dependence between 
Eqs. (23) and (24) should be resolvable experimentally. 
However, in a more exact treatment which includes the 
differences in vp and I of the two metals, we feel that 
the coefficient of Dn/Ds in Eq. (23) would probably be 
modified to include these parameters. 
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14 J. L. Miles and P. Smith, J. Appl. Phys. (to be published). 

APPENDIX 

We here supply a derivation of Eqs. (l)-(4) as an 
alternative to that of de Gennes and Guyon,9 which 
makes clearer the nature and validity of the approxima­
tions used. The essential point is that we can borrow 
extensively from the analysis of Gor'kov15 concerning 
the equation determining the gap function at the transi­
tion temperature in the presence of a dilute concentra­
tion of randomly distributed impurity scattering centers. 
We first define Gu(t,r') as the one-electron Green's 
function in the presence of a particular configuration of 
impurities, so that it satisfies 

U c o + - V 2 + E y ^ ( r - r ; ) + i u l ^ ( r , r 0 = 5 3 ( r - r 0 , (Al) 
L 2m J 

where u(x— r3) is the scattering potential of an impurity 
at site j , n is the chemical potential, and co= (2v+l)irT 
with v an integer. Then Abrikosov and Gor'kov15*16 have 
shown that the Green's function averaged over all im­
purity configurations is 

G„(r,r ')= Qic^ffflpeW^Gvto), (A2) 

6Up) = [j**- €(p)+i sgnco^r]- 1 . (A3) 

Here e(p)=(p2/2tn)—jjt, and r is the scattering time to 
be defined shortly. 

Furthermore, at the second-order transition point, 
the impurity-averaged gap function is small and satisfies 
the equation15 

A W = / ^ T W e ( l - , ) A ( , , , (A4) 

where 

« , - , ' ) = ( 2 ^ / ^ . , < - . ( , ( „ , (A5) 

S^rflhylwin-j). (A6) 

The kernel function Qu obeys the integral equation15 

<2co(p, q - p ) = Gw(p)G_w(q-p) 

x[l+»(2ir)-*JV k(p-p')|2fto(p', q-p')] , (A7) 

where n is the impurity concentration. 
Since u{x—x3) is quite short-ranged, we make the 

simplifying approximation that u{t— Tj)-+ud3(r— iy); 
then in Fourier space u(p— p') is just the constant u, 
and the scattering time becomes 

l/2r=wnN(0)\u\2. (A8) 

" L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 37, 1407 (1959) 
[translation: Soviet Phys.—JETP 10, 998 (I960)]. 

16 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. 
Fiz. 35, 1558 (1958) [translation; Soviet Phys.—JETP 8, 1090 
(1959)]. 
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Equation (A7) can then be solved algebraically, and Q^ 
substituted into Eq. (A6) to obtain 

e(q) = rE^(q)/[ l -^kl 2^(q)] , (A9) 

where 

-E(q) -<*rf ffipQ.to)G-(q-v). (Aio) 

Substituting expression (A3) into (AIO), the integra­
tions may be carried out, provided q<KpF> with the 
result that 

* ( q ) = (2*N(P)/vFq) t a n ~ ^ g / [ 2 | c o | + ( l / r ) ] ) . (All ) 

If we only consider those values of q for which 
q<^(vF/2wT)~1-\-l~1, where l=vFr is the mean free path, 
then we can expand the tan - 1 and find 

Q(Q) = N(0)TTT,\\O>\+-( q~—)] . (A12) 
v L 6A1+2 « T/J 

The divergence in the sum over integers v can be cured 
by subtracting Q(0) from both sides; a cutoff is then 
introduced into Q(0) in the usual way.15 We thus obtain 

e(q)-e(o)=^(o)E4C|2^+i| + (^)2(67rrr)-1 

X(l+2xrr|2^+l|)-2]-1-|2^+l|~1}, (A13) 
and 

Q(0) = N(0) ]nl.U0D/T. (A14) 

When ITTTT^I, the "dirty" limit which is almost 
always the situation in thin film experiments, the term 
2TTT\ 2 J>+1 I may be neglected in (A13), and so finally 

0 ( q ) - Q ( 0 ) 

^-Nmtli+WW/Wl-Ki)), (Ais) 
where \f/ is the digamma function.11 Combining Eqs. 
(A4), (A5), (A14), and (A15) just reproduces Eqs. (1)-
(4) of Sec. I I . 
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High-Temperature Dielectric Constant of Potassium Chloride* 
P. V. SASTRY AND T. M. SRINIVASAN 

Department of Physics, University of Illinois, Urbana, Illinois 

(Received 5 August 1963) 

A dispersion of the dielectric constant of zone-purified potassium chloride has been observed at tempera­
tures above 650°C and in the frequency range between one and ten megacycles/sec. The data are inter­
preted in terms of the Debye equations and the assumption that the dipoles are vacancy pairs. The activa­
tion energy for reorientation of a vacancy pair is found to be 1.04±005 eV and the heat of formation of a 
vacancy pair is found to be 1.34±007 eV. These quantities have been calculated by Tharmalingam and 
Lidiard as 1.15 and 1.28 eV, respectively. The dielectric data yield, however, an absolute number of vacancy 
pairs that is at least a factor of ten larger than is acceptable. Interfacial or Maxwell-Wagner types of 
polarization are excluded as explanations of the data. 

INTRODUCTION 

TH E dielectric constant of pure potassium chloride 
a t high temperature and in the frequency range 

between one and ten megacycles/sec exhibits a rather 
simple behavior. The real and imaginary parts of the 
dielectric constant, €1 and e2, are described by the 
Debye equations1 and the expected contribution to e2 

of the frequency-independent volume conductivity a: 

e i = €oo+ (es— e J / C l + w V ) , 

4x0- ( e s — €00)0)7 

€2 = -
o) 1+coV 

(1) 

(2) 

where r is the relaxation time of the Debye dipoles and 

* Partially supported by the U. S. Office of Naval Research and 
the U. S. Air Force Office of Scientific Research. 

1 H. Frohlich, Theory of Dielectrics (Clarendon Press, Oxford, 
1949), p. 70. 

co is the angular frequency. According to the simple 
Debye theory, the difference between the low-frequency 
dielectric constant es and the high-frequency dielec­
tric constant €«, is given by 

0=47mM
2/3&:r, (3) 

where n is the number of dipoles per unit volume and 
(i is the dipole moment. 

EXPERIMENTAL PROCEDURE 

The potassium chloride crystals were prepared from 
reagent grade powder by zone refining in an atmosphere 
of chlorine.2 Twenty or more zones were passed through 
the salt which was contained in an open silica crucible. 
The zone speed was approximately 1 in./h. The dc 
conductivity of the zone-refined salt is illustrated in Fig. 

2 T. M. Srinivasan, Technical Note No. 3, AFOSR Contract 
49(638)-529, University of Illinois, 1962 (unpublished). 


