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Taylor and Burstein have found a temperature-dependent current in Pb-Pb superconductor-oxide-
superconductor tunnel junctions in excess of the usual thermally excited quasiparticle current. We here 
calculate the current arising from a process in which a phonon is absorbed by a ground-state pair on one side 
of the oxide barrier resulting in a pair of quasiparticles, one on each side of the barrier, and the transfer of 
one electron across the barrier. One-phonon normal and umklapp as well as two-phonon umklapp processes 
are examined. The one-phonon umklapp process dominates and yields a current in excellent agreement with 
the experimental excess current both as a function of temperature and of voltage. 

I. INTRODUCTION 

r I sAYLOR and Burstein1 have made a careful study 
A of current versus voltage in several superconduc

tor-metal oxide-superconductor tunnel junctions for 
voltages less than 2A, the energy to excite a pair of 
quasiparticles. After subtracting off the two-particle 
tunneling2 which sets in at V= A and the tunneling due 
to thermally excited quasiparticles,3 they found an 
excess current which was strongly temperature-depend
ent for Pb-Pb junctions and temperature-independent 
for all other junctions they examined. They suggested 
and we here show that this temperature-dependent 
current is due to a phonon-assisted tunneling process. 
The same process must also be present in the weaker 
coupling superconductors but is masked by the tem
perature-independent "leakage" current (which is as 
yet unexplained) as well as by the thermally excited 
quasiparticle current. 

Note added in proof. [We now believe the temperature-
independent " leakage" current to be due to the tunnel
ing of ground-state pairs which emit phonons thus 
conserving energy on tunneling (to be published).] 

Bardeen4 has shown that a many-particle tunneling 
matrix element may be defined in terms of basis func
tions which are eigenfunctions of the Hamiltonian on 
one side of and in the oxide barrier but drop rapidly to 
zero on the other side. Cohen, Falicov, and Phillips5 

have used this idea to write the total Hamiltonian 
H—Ha+Hb+HT, where Ha and Hi, are the exact 
Hamiltonians for the superconductors on either side of 
the barrier 

pq<r 

transfers electrons from superconductor a to supercon
ductor b and vice versa and Tvq are matrix elements 
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for tunneling of normal electrons across the oxide layer. 
Phonon-assisted tunneling may be obtained by including 
the screened electron-phonon terms, Ha

el ph and Hbel ph, 
in the Hamiltonian, 

#aeiPh= £ (V2McoksiVF)1/26ks-(k+G)/(k+G) 
Gp'pkso-

XC p ^c p V ^ k s «5(p -p ' -k+G)+H.c . , (2) 

where G is a reciprocal lattice vector, V the volume of 
the superconductor, N the number density of ions of 
mass M, coks the frequency of a phonon of wave number 
k in the sth. mode whose polarization vector is £ks, and 
bkS

a is the destruction operator for a phonon on side a 
of the barrier. I(p—p') is a matrix element which may 
be obtained either theoretically6 or from comparison 
with experimentally measured high-temperature resis
tivity.7 We neglect scattering by phonons in the thin 
oxide layer, which seems to be negligible compared to 
scattering by phonons in the superconductors. 

The electron creation and destruction operators are 
written in terms of the quasiparticle operators by the 
Bogoliubov8 transformation 

Cp t+ = *VYpt++flpY-pi 

C_pi t =w P 7_pi t —zyypt j 
(3) 

and second-order perturbation theory (i.e., one order in 
HT and one order either in Ha

elph or #&elph) leads to 
the contributions diagrammed in Fig. 1. In 1(a) a 
ground-state pair on one side of the oxide layer is 
scattered by ET into a pair of quasiparticles—one on 
each side of the layer—then a phonon is absorbed by the 
quasiparticle on side a. Figure 1 (b) represents the same 
process except that the phonon is absorbed by the 
quasiparticle on side b. In Fig. 1(c) and 1(d) a ground-
state pair on one side of the oxide layer is scattered by 
a phonon into a pair of quasiparticles on the same side, 
then one of the quasiparticles is scattered to the other 
side by HT- The quasiparticles may have either electron 

6 D . Pines, Phys. Rev. 109, 280 (1958). 
7 A. Rothwarf and M. Cohen, Phys. Rev. 130, 1401 (1963). 
8 See, e.g., S. T. Beliaev, The Many-Body Problem (John 

Wiley & Sons, Inc., New York, 1959), p. 360 ft. 
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FIG. 1. Diagrams of phonon-assisted tunneling processes, (a) A 
ground-state pair on one side of the oxide layer is scattered by HT 
into a pair of quasiparticles, one on each side of the oxide layer, 
then a phonon is absorbed by one of the quasiparticles; (b) same 
as (a) but the phonon is absorbed by the other quasiparticle; 
(c) a ground-state pair on one side of the oxide layer is scattered 
by a phonon into a pair of quasiparticles then one of the quasi
particles is scattered to the other side by HT', (d) same as (c) but 
the ground-state pair is on the other side of the barrier. 

or hole-like character, so that current is always flowing 
from a to b in the diagrams just discussed even though 
the quasiparticles are going from b to a in half the 
processes. 

II. TUNNELING HAMILTONIAN INCLUDING 
PHONON SCATTERING 

Although the procedure just discussed is straight
forward and the diagrams give a good picture of the 
physics, the integrals over intermediate states required 
for the second-order perturbation theory are difficult if 
not impossible to perform. Instead of using the Bardeen 
procedure with its wave functions which are not good 
eigenfunctions everywhere, we deal with a basis set 
consisting of exact one-electron eigenfunctions.9 Because 
of the inversion symmetry in our model (before the 
voltage drop is applied across the oxide barrier) the 
eigenfunctions may be written as \f/p

e and ^p°, even and 
odd under inversion. (Prange10 has discussed tunneling 
from this point of view also.) These are degenerate to 
within 1/V, where V is the volume of the superconduc
tor. Since the barrier is not infinitely high \f/p

0 and \[/v
e 

will differ by some small fraction of a wavelength giving 
a kinetic energy difference proportional to 1/V. The 
contribution of the oxide layer region to the kinetic and 
potential energy expectation values of \f// and \pv

6 will 
differ; but due to the normalization of the wave func
tions, this too is down by a factor 1/V, Thus, we treat 
\l/v° and \f/v

e as exactly degenerate. 
We may now construct "left"- and "right"-side wave 

functions which are orthogonal to one another, 

* . ,= ( * , ' + * , W **=(*p'-*,*)/VZ. (4) 
9 We will not need the wave function in the oxide layer since 

any effects due to the wave function in the oxide are down by a 
factor Fox/Fpb. 

10 R. E. Prange, Phys. Rev. 131, 1083 (1963). 

If the barrier height were infinite, \f/p° and \f/p
e would 

be exactly in phase and would result in \pai? and \f/bV 

being truly right- and left-side wave functions. In 
general, ̂ p° and \f/v

e will be slightly out of phase resulting 
in a long tail on the "wrong" side of ^op and ^&p. This 
tail is proportional to Tv where 

T p
2 - 16EFV<r2 cos26(Vo-EF cos20)<r2^ 

0= [_2mfr2{VQ-EF cos2*?)]1'2. 
(5) 

Because only electrons at the Fermi surface will tunnel, 
EF represents the energy of the electron, Vo the height 
of the barrier, d its thickness, and 0 the angle p, the wave 
vector of the electron, makes with the barrier normal. 
(See Fig. 2.) ^ 

We now write the annihilation operator 

*(*)=E <VVaP+Z cVVn, (6) 
par q<r 

and the second quantized Hamiltonian 

H= fdx^(x)Zp2/2m+V(x) 
+ E i k G / ( k + G ) ' X ( ^ a + % 8

6 ) > ( x ) 

where 

and 

\ih + - / l*WQWf, (7) 

AkGs= (fi/2MksNV)v*eks-(k+G)I(k+G) 

yksa=bks
a*+b-ks

a. 

The Bardeen-Pines11 canonical transformation is as-

Superconductor a> Superconductor h 

FIG. 2. Potentials in superconductor-metal oxide-superconductor 
junction. The voltage drop V applied across the oxide layer of 
thickness d is 4 to 5 orders of magnitude smaller than the potential 
barrier height Vo and is drawn to an exaggerated scale here. 

11 J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955). 
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sumed to have been made so that / ( k + G ) is the matrix 
element for the screened electron-phonon interaction and 
Q contains the phonon-mediated attractive interaction 
between electrons. The Bogoliubov transformation 
[Eq.(3)] can now be used to diagonalize the Hamil-
tonian approximately.8 Thus, the first term of H may 
be written 

H= Ha+Hb+Ha°
l p h + # 6

e l p h + # a &
e l p h + # 6ael p h , (8) 

where # a
e l p h is given by Eq. (2), 

Ha~ 2-*i ^p^po* ^ p a Ky) 
p<T 

and 

Gpqkscr 

X S ( q - p - k - G ) C V t C „ " + H . c . (10) 

Gpqksa 

X 5 ( p - q - k - G ) C p ^ C q / + H . c . (11) 

Writing the electron operators in terms of the quasi-
particle operators we may now obtain the phonon-
assisted tunneling current taking # a &

e l p h and i7& a
e l p h 

to only first order in perturbation theory. Two-phonon 
processes which previously were third order are now 
second order in perturbation theory (one order in 
Hab

elph or # & a
e l p h and one order in # a

e l p h or iJ&
e l p h) . 

Because \pap and \pb$ are good orthogonal eigenfunc
tions on both sides of the barrier, the usual Bardeen 
tunneling term HT does not appear in Eq. (8). This was 
to be expected; for the long tails on ^ a p and \f/bp have 
already accounted for this tunneling. 

The second (interaction) term of the Hamiltonian 
[Eq.(7)J essentially vanishes under the Bogoliubov 
transformation except for a negligible remainder ^Tint-
Included in this negligible term will be terms still smaller 
by a factor T which tunnel electrons across the barrier. 
Since the interaction term contains no phonon operators, 
it does not contribute to the phonon-assisted tunneling 
in any order. 

III. PHONON-ASSISTED TUNNELING CURRENT 

We consider a voltage drop V applied across the oxide 
barrier such that eV, the energy gained by an electron 
traversing the barrier from a to b is less than 2A, the 
energy needed to create a quasiparticle pair. Thus, the 
only energy conserving processes induced by Hab

elph are 
those in which a phonon is destroyed. We further limit 
ourselves to voltages large enough and temperatures 
low enough that the reverse current induced by Hba

elph 

is negligible. We also require the temperature to be low 
enough for the thermally excited quasiparticles to be 
negligible. Then from Eq. (3), 

Z C^C^= ( V V + ^ P V)7qt6 +Y-pi a t (12) 

plus terms which destroy one or two nonexistent quasi

particles. The coherence factor12 

£Pq2= ( « q % a + V V ) f = i D - ( * p € q - A 2 ) /E p E q ] , (13) 

where Eq^As+eq 2 ) 1 ' 2 and eq=(ft2 /2m)(q2-i£F
2) may 

be approximated by L P q 2 = 2 [ l + A 2 / E q E p ] with p and 
q restricted to magnitudes greater than KF. 

The phonon-assisted current is then given by applying 
the golden rule 

J = ( 4 ^ A ) | E £ AkGsTvLvq 
out Gpqks 

X <¥aut| Yqt&+YPr
+&k8

aI*in> 12$(Eq+Ep-fio>-eV) (14) 

with the condition that q — p = k + G . The wave func
tions in (14) are defined by 

^out=7-ia c +YK't6 t 10N- ia ,0N f + 1
b ,n k s

a-1), (15) 

where ON° represents the ground state of superconductor 
a with N electrons and | nks

a) is the phonon state vector 
with nks phonons in mode (k,s). The phonons on side b 
have contributed a factor of 2 to Eq. (14). Using 
(nks-l\bks\nks) = Nks==(e*l(alkT--l)-1 and changing the 
sum over p and q to an integral with K2dK= (Km/fi2) 
deK-(KFm/fi2)(EK2-A2)~1/2EKdEK, we obtain (drop
ping the explicit indication of the sum over phonon 
modes s) 

S<ireV2/KFm,\2 r 
/ = ) / dtip<Klq\AkGsTp\

2Nks 

&(27r)6\ ft2 / J 

f E p E q +A 2 EvdEq E^dE^ 
X . (16) 

J EvEq (E^ -A 2 ) 1 ' 2 (E^ -A 2 ) 1 ' 2 

We have made the usual assumption that 4̂kGs and 
rp>q vary only slightly over the range of values of E p 

and E q which contributes to 4, the second double 
integral in Eq. (16). Integrating over E q we obtain 

Ep(&co+efO-Ep) ( E p
2 - A2)"1/2 

XKh^+eV-E^-A^-^dE,. (17) 

Now make the substitution x=Ev—A and fiw+eV 
— 2A=5 and 

4 = / C(x+A)(A+5-x)+A 2 ] [x 2 +2Ax] - 1 / 2 

Xl(8-x)2+2A(8-x)J-ll2dx. (18) 

We have assumed that we are at a temperature well 
below r c . Since for lead 2A=4.2&rc, we have 5<<CA, i.e., 
larger 5's require phonons of higher frequencies which 
are not present at these low temperatures. Thus, 

12 Equation (13) follows directly from the definitions of u and v: 
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Eq. (18) simplifies to 

<! = A dxx-wib-xyw^vk. (19) 
Jo 

Before doing the integration over angles we simplify 
T2 [Eq. (5)] 

0 = [2fnti-*(V0-EF-EF s i n ^ ) ] 1 ' 2 

^l2mfr%Vo-EF)2112 

X [ l + E F s i n V 2 ( F 0 - £ F ) ] . (20) 

Since fi with its sin20q appears exponentially, we may 
set cos20q=l wherever it appears in T. Thus, 

7 7 ~ 16EFV<rKVo-EF) expl-2dfi-1(2m(Vo-EF)y^'] 

and 
XexpZ-Erdh-1 sm2d(L(2m/(VQ-EF)yi2'], (21) 

"cffsi sinOp sinfl, 

where 

Xexp[-EFdfi-1sm6q(2m/(Vo-EF)yi2'] 

X / * ( k + G ) [ ( k + G ) •&.]**-» 

(22) 

C 
3 2 e F / i r i r w \ 2 £ 7 , ( F o - E F ) / A 62eV /. 

¥ ) Vo2 (—) 
\2MsN/ 

XexpZ-2dh-1(2m(Vo~EF))'] (23) 

and s, the speed of sound, appears because we have re
placed cokS appearing in iVks and in AkGs by ks. 

IV. NORMAL PROCESSES 

We now look at normal processes (G=0) . The elec-
tron-phonon matrix element 7(k) is a slowly varying 
function of k and for low temperatures may be replaced 
by 7(0) = %EF according to the Bardeen self-consistent 
calculation.13 Now k depends on the angle between p 
and q so we change our variables of integration from 
Op and fiq to Op_q and 12q. The integrations over <£q and 
<£q_p yield a factor (27r)2. Substituting /z=sin0q and 
dn=ddq (remember cos0 q«l) the integral over 0q 

becomes 

/ ; 
expl-fMEFdfr^m/iVo-EF))1'2']^ 

-ih((Vo-EF)/2my^(EFd)-K 

To do the integral over 0q_p we assume pure longitudinal 
(k'$kS=k) and transverse (k-£kS = 0) modes and use 
\k = KF sin|0q_p (see Fig. 3) which yields 

sin0q_pd0q_p = --kdk/KF 

3 J. Bardeen, Phys. Rev. 523 688 (1937), 

(24) 

FIG. 3. Incoming (q) 
and outgoing (p) elec
tron wave vectors and "^^^^Z^J^q -p 4* 
phonon wave vector (k) 
for normal process. 

T h u s , 

J= (2/9)EFC(2w)2h((V0-EF)/2myf2d-1KF~-2 

xf {ehks'kT-\)-lkHk, (25) 
J (2A-eV)/hs 

where the lower limit of integration arises from energy 
conservation, fisk> 2A—eV. So that we finally obtain 

J=J<r 
LzEFm /kT\z / 2 A - e V 

where 
9irhMsN 

Dn(x)= J 
J x 

{ —W ), (26) 
\fis/ \ kT / 

(ex— \)~lxndx 

is the tabulated Debye integral, 

/ o = 2eAL1*EF(VQ-EF)V2(2my'KKdhWo2yi 

X e x p [ - 2 ^ - 1 ( 2 m ( F 0 - £ F ) ) 1 / 2 ] 

is the discontinuity in the current2 at eV = 2A, and the 
dimensions of the superconductors are L{XL{XLz. The 
current depends linearly on the thickness of the super
conductor. This is because we have assumed the electron 
wave functions are plane waves extending over the 
entire crystal. In actual fact the wave functions are 
plane wave like only over small distances X, where X 
may actually be L% or X may represent the mean free 
path for a normal electron—whichever is shortest. For 
X= 170 A, about | of the thickness of the superconduct
ing films,14 we find J=1.7X10~7JoT*D2((2A-eV)/kT), 
about a factor of 103 too small to account for the ob
served current. 

V. UMKLAPP PROCESSES 

The small value for J obtained from normal electron-
phonon scattering is due to the factor ( k + G ) 2 appearing 
inEq. (22). ForG+Othe scattering will be much stronger. 
We therefore examine the umklapp processes. Since the 
vectors G are fixed in the reciprocal lattice we must also 
measure 0P, 0q, <£p, and <£q with respect to the reciprocal 
lattice and not with respect to the barrier normal as 
before. Since k, the phonon wave vector, is very small, 
the electron wave vectors p and q are constrained to lie 
in directions such that q—p«G. (See Fig. 4.) The 
tunneling matrix element depends exponentially on the 
angle the barrier normal makes with q or equivalently 
with the reciprocal lattice vector G. I t is believed that the 
lead film consists of tiny crystallites randomly oriented.14 

Therefore, in addition to the integrations in Eq. (22) 

14 B. N. Taylor and E. Burstein (private communication). 
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we average over the angle N makes with q. The inte
gration over 0Nq proceeds exactly as the integration 
over 6a did for the normal case and we obtain15 

J=iCh((V0-EF)/2myi2d-lE. -If dQ^I2 (k+G) 

X[(k+G) • ^sJh~\e^kT-1)"1, (27) 

where a sum over the 14 reciprocal lattice vectors smaller 
than 2KF is to be understood. (Since k is very small, mo
mentum cannot be conserved for G>2KF). We change 
our variables of integration from £2q and 12p to 0(q+P)/2 

and 0?_p, take k + G ^ G , setk =[(G-K) 2 +GV 2 ] 1 / 2 

(see Fig. 4, Ref. 16) and integrate over $(q+P)/2 and 
0q_p obtaining (2w)2 to get 

J==Cw2hP(G)(G'eks)
2((Vo-EF)/2my^d-1EF-1 

X f / ,sin^ ( p + q ) / 2sin^_p[(K-G)2+GV2]-1 / 2 

X{exp[(^A^)((K-G)2+GV2)1/2]-l}-1 

X^0(p+q)/2^#q-p- (28) 

If we take G to be the polar axis of our spherical co
ordinate system, 0(q+p)/2=p. We may equally well 
integrate over ^, the compliment of p (see Fig. 4). 
Corresponding to Eq. (24), we have 

(G/KF
2)dK~ (K/KF

2)dK= •• s i n 0 q _ p d 0 q _ p , (29) 

also since we will get contributions to the integral only 
for small \f/, sm\[/^\[/ and therefore 

sin0(q+p)/2 sin0q_pd0(q+p)/2i0q_p —> (G/KF
2)\l/dKd\p. 

We now make the following substitutions: 
(hs/kT)(K— G) = r sinco, (hs/kT)G$=r cosco, and hence, 
(hs/kT)2GdKd\f/=rdrda> yielding 

/ = C ^ h l 2 (G) (G • 4*)2 (kT/hs)2 

X {{VQ-EF)/2myi2{GKF
2EFd)-1 

/ r cosco[V- l~]~ldrdo) (30) 
-TT/2 J (2A-eV)/kT 

or 

J = Ja 
Ltn2I2(G)(G-6ks)

2/kT\2 /2A-eV 

v&MsNGK 
[ — )Dd ) . (31) 

W \hs/ \ kT / 
We must now sum Eq. (31) over the fourteen G's 
smaller than 2KF. There are eight (1,1,1) G vectors of 
length 2.20X108 cm"1 and six (2,0,0) vectors of length 
2.54X108 cm-1; KP=1.S7X108 cm"1. We may either 
calculate 1(G) from the Pines6 formula or use the aver
age value estimated by Rothwarf and Cohen7 from high-
temperature resistivity measurements. They obtain 
72(?2/Ar2=6.1X10~52 erg2 cm4 while an average of the 

15 The extra factor of \ comes from ftf sin0Nq̂ 0Nq = 2. 
16 K = q - p so that K = k + G . Therefore, k2=K2+G2-2KG cos^, 

where yp is the angle between k and G. Since k is very small so is 
\p and expanding the cosine we obtain k2—{K—G)2-\-KG\p2 

«(#-G)2-f-GV2 . 

FIG. 4. Vectors and angles involved in umklapp scattering. G, a 
reciprocal lattice vector is taken as the polar axis of the coordinate 
system; N is the normal vector to the oxide barrier; K is the dif
ference between the incoming electron wave vector q and the 
outgoing electron wave vector p; p is the polar angle p-f-q makes 
and ^ is its compliment; the phonon wave vector k=K—G is the 
sum of the two pieces labeled ki and k2. 

Pines formula over the fourteen G's yields 8.7X10"52 

erg2 cm4. The transverse and longitudinal sound 
velocities in lead are SL= 2.35X105 cm/sec and ST= 1.27 
X105 cm/sec; since J^s~z we will neglect the longi
tudinal modes and take S G , S ( G - 4 S ) 2 = | X 1 4 G : 2 . Using 
N=3.32X1022 cm-3, M=3.83X105me, L=170A, 
(?=2.35X108 cm"1 and /2=7X10-5W2(?-2 erg2 cm4 

we obtain 

J=3.44X10-4/0F2ZM(2A-eW&r). 

VI. COMPARISON WITH EXPERIMENT 

(32) 

For lead 2A(0) = 4.2&rc and TC=7.2°K, so 7=3.4 
XIO-*J0(T)T2 

/30.24A(r)/ eV \ \ 

V TA(0) \ 2A(T)//9 

we use the BCS17 A(r)/A(0). In Fig. 5 we plot J against 
T for eV/2A(T) = 0.S. For intermediate temperatures 
the theoretical and experimental curves agree very 
well. At higher temperatures the theoretical current 
is too small. This is to be expected because of the simpli
fications, valid only at low temperatures, which we made 
in going from Eq. (18) to Eq. (19). At low temperatures 
the experimental current is seen to become temperature-
independent. This must be due either to a small "leak
age" current like the one observed for other super
conductors1 or to the error in subtracting the other 
tunneling processes from the total observed current. In 
any event the true temperature-dependent part of the 
current must continue to decrease exponentially with 
temperature. In Fig. 6 we plot / against eV/2A for 
T= 2.86°. Theory and experiment are in excellent agree
ment for ^O/2A<0.95. It is believed14 that due to the 
difference in thermal expansion between the lead film 
and its glass substrate, the lead is subjected to large 
stresses. Even if the stress were uniform, this would 
result in a different A for each crystalite depending on 

17 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). 
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its orientation. Thus, when eV/2A> 0.95, there may 
actually be some crystalites for which ^U/2A~1. The 
normal single-particle current tunneling through these 
crystalites would easily account for the excess experi
mental current. Hence, we conclude that over those 
ranges of *0 and T for which both theory and experiment 
can be expected to be valid, their agreement is excellent. 

We must finally look into the possibility of there 
being additional processes which could contribute to the 
temperature-dependent current and spoil the agreement 
between the theory and experiment. One such process 
could be tunneling assisted by phonons in the oxide 
layer. If we assume the same electron-phonon coupling 
in the oxide as in the superconductor this is down by a 
factor Z,0x/2X~ 20/340 from the phonon processes in the 
superconductors. There are obviously other factors in
volved as well which are difficult to estimate theoreti
cally because of a lack of knowledge about the phonon 
modes in the oxide layer. However, additional experi
ments14 on samples with Pb-oxide layers (the original 
samples had Al-oxide layers), yielded identical currents 
which seem to confirm the negligibility of the oxide 
phonons. 

Another group of processes is the many phonon 
assisted tunneling. These require integrations over 
intermediate states which in general we were unable to 
perform. However, we were able to make the calculation 
for second-order umklapp processes which should be 
the most important of the many phonon processes. This 
is because the energy of the intermediate states is 
proportional to (G+ki+pi)2—KF

2~G2 when averaged 

100 

T/Te 

eV/2A 

FIG. 6. Theoretical (solid line) and experimental (dashed line) 
plots of current versus voltage for T=2.86°K. 

over the angle G makes with N (and hence pi) where 
pi represents the wave vector of the incoming electron 
and ki the wave vector of the first phonon. With this 
simplification the energy denominator causes no trouble 
when ki or pi are integrated over. Because energy is not 
conserved in the intermediate state, all G's (not only 
those for which G<2KF) must be summed over until 
G2J2(G)~[G/(G2+X"S

2)]2 is negligible6 where Ks
2=3.73 

X1016 cm-2 is a screening factor. After performing 
integrals only slightly more tedious than those involved 
in the one-phonon calculations we obtain 

where 
/ = 7.9X 10r*JoT*F(2A-eV/2kT), (33) 

F(x) -L 'C*-In0<-1)] 
•dt 

• / . 

FIG. 5. Theoretical (solid line) and experimental (dashed line) 
plots of current in units of Jo, the discontinuity in current at 
el) = 2A, versus temperature. The voltage is fixed at geu/2A = 0.8. 

x t[_2x-t-\n(e2x-t-l)~] 
+ 1 ± dt. (34) 

'o e*-l 

Thus the two-phonon processes are down by more than 
three orders of magnitude from the one-phonon umklapp 
processes. 
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