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to be 205 keV.22 This unresolved level might be that 
reported to be at 277 keV by Hashizume et al.2Z 

B. Gadolinium-156 

A spectrum for Gd156 is shown in Fig. 4. In this and 
other runs there is evidence that the 6+ level is weakly 
excited by 17.5-MeV incident protons. Angular 
distributions for the ground state and first two excited 
states are shown in Fig. 6. The error bars reflect statis­
tical uncertainties as well as errors in peak separation. 
In each run the elastic oxygen peak and the elastic 
carbon peaks were displayed and used as a cross-section 

22 F. Ajzenberg-Selove, N. B. Gove, T. Lauritsen, C. L. 
McGinnis, R. Nakasima, J. Scheer, and K. Way, in Energy Levels 
of Nuclei: A=5 to A —257 (Springer-Verlag, Berlin, 1961). 

23 A. Hashizume, T. Takahashi, Y. Tend, and Y. Enomota, J. 
Phys. Soc. Japan 15, 2175 (1960). 

INTRODUCTION 

IN low-energy deuteron reactions there may exist 
processes which compete favorably with direct 

nuclear stripping. A complete analysis of such reactions 
may then comprise contributions due to electric 
breakup, nuclear disintegration, and evaporation from 
compound nucleus formation. The electric breakup 
aspects of this problem have been considered by 
DancofF for 200-MeV deuterons, by Mullin and Guth2 

for 15-MeV deuterons, and for lower energy deuterons 
by Landau and Lifshitz.3 A critical review of much of 
this work has been given by Breit.4 Disintegration due 
to nuclear potential as well as Coulomb disintegration 
has been theoretically investigated by Akhieser and 
Sitenko.5 

1 S. Dancoff, Phys. Rev. 72, 1017 (1947). 
2 C. Mullin and E. Guth, Phys. Rev. 82, 141 (1951). 
3 L. D. Landau and E. M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 

18, 750 (1948). 
4 G. Breit, in Handbuch der Physik, edited by S. Fliigge 

(Springer-Verlag, Berlin, 1959), Vol. 41, Sec. 1, pp. 304-320. 
5 A. Akhieser and A. Sitenko, Phys. Rev. 106, 1236 (1957). 
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check. The angular distributions taken for oxygen 
elastics agreed within 5 % with those taken previously 
in this laboratory.19 The amount of oxygen in the target 
was accurately known from the composition of the oxide 
G0I2O3. I t is felt that the error in determination of the 
gadolinium ground-state cross sections is less than 10%. 
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More recently, Hamburger et al.6 have adopted a 
semiclassical breakup model to fit experimental results 
obtained with 15-MeV deuterons. However, due to an 
error,7 the calculated values of the angle of maximum 
intensity are incorrect. I t now appears that the simple 
semiclassical model of deuteron breakup does not 
satisfactorily account for the observed angle of maxi­
mum intensity of the continuum protons. An integral 
of this continuum for6 EP<ED— 2.2 MeV yields total 
cross sections much larger than that calculated for 
either electric2 or nuclear5 breakup. This implies a 
serious disagreement with theoretical estimates as­
suming negligible contributions from compound nucleus 
and direct stripping processes. 

Recently, Anderson and Bauer8 have attempted to 

6 E. Hamburger, B. Cohen, and R. Price, Phys. Rev. 121, 1143 
(1961). 

7 If 0=0p-\-6d, where 6 is the angle of deflection, then Eq. (3) of 
Ref. 6 should read 

q = (Ze*/2EP) (1 +csc6p) = (Ze*/2Ed) (1+cscfc). 
8 J. D. Anderson and R. Bauer (private communication). 
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measure the deuteron breakup cross section by counting 
neutron-proton coincidences. For 15-MeV deuterons on 
cobalt and gold targets, they observe roughly the same 
number of low-energy protons (<2< —2.2 MeV) as 
Hamburger et al.e However, the coincidence measure­
ments for gold and cobalt yielded a preliminary breakup 
cross section which is at least an order of magnitude 
smaller than the continuum proton measurement of 
Hamburger et al.e and the breakup estimate of Mullin 
and Guth.2 I t now appears that the bulk of the con­
tinuum protons observed by Hamburger et al.6 do not 
arise from deuteron breakup. In addition, it appears 
that Mullin and Guth2 have overestimated the Coulomb 
breakup cross section at 15 MeV. 

These conjectures have been strengthened by the 
recent measurements of Udo and Koerts.9 For gold, 
they found the breakup cross section to be a rapidly 
varying function of deuteron energy with breakup 
cross sections of 80 and 180 mb at 23 and 26 MeV, 
respectively. Extrapolating to 15 MeV, it seems 
reasonable that the cross section should be quite small 
and not nearly as large as the 170 mb predicted by 
Mullin and Guth.2 In view of the recent interest in 
low-energy deuteron breakup, as well as the discrepan­
cies between experimental measurements6,9 and between 
theory2 and experiment,9 a critical examination of 
previous theoretical work is necessary. 

I t is our purpose to evaluate the Coulomb breakup 
cross section for low-energy deuterons. Our calculations 
will be carried out in a framework that may be called 
the "electric-dipole approximation." In this manner, 
we may anticipate more accurate results than an 
application of the Born approximation10 will permit in 
the low-energy region ( E D < 2 5 MeV). A comparison of 
our computations will be made with those of Dancoff,1 

who utilized the Born approximation, as well as with 
those of Mullin and Guth,2 who introduced the more 
general method of perturbation theory, but who 
effectively performed the 15-MeV cross-section calcu­
lation in the Born approximation. At lower energy, it 
will be possible to make a comparison of our results 
with the work of Landau and Lif shitz,3 who approximate 
the wave equation by employing a boundary condition 
in configuration space to represent the neutron-proton 
interaction.4 In order to compare these different 
approximations of the electric breakup of the deuteron, 
it shall be necessary to formulate the problem from 
first principles. 

GENERAL DESCRIPTION 

Consider the motion of the deuteron with respect to 
a target nucleus of mass MA as depicted in Fig. 1, 
where 0 is the origin of an arbitrary (laboratory) 

9 F. Udo and L. Koerts, Phys. Letters 3, 181 (1963). 
10 Use of the phrase, "the Born approximation," defines a calcu­

lation wherein the initial and final states of the projectile are 
described by plane-wave functions; hence, the potential function 
itself is treated as a perturbation. 

FIG. 1. The kine-
matical diagram for 
the deuteron break­
up problem. 

coordinate system. Herein, the vectors rn, rp, and XA 
define the position of the neutron, proton, and target 
nucleus, respectively. The points, d and Ce, which are 
designated by the vectors Rz> and Re, are the center of 
mass of the neutron-proton system and the center of 
mass of the deuteron-target system, respectively. 
Henceforth, we shall refer to the point C» as in the 
internal center of mass and the point Ce as the center 
of mass of the total system. 

Since the motion we shall consider is always non-
relativistic, we may utilize the Hamiltonian operator 
which is given by the ordinary Schrodinger theory. One 
has 

fi2 fi2 

H= Ap+Unp(\9\) Ar+Uc(\t-9/2\) 
M l\xD 

fi2 

2(2M+MA) 
*Rc> ( i ) 

where M is the nucleon mass, A is the appropriate 
Laplacian operator, and fi — h/2ir. The variables utilized 
in Eq. (1) are denned as follows: 

g=xn-xp, (2) 

x=RD-xA, (3) 

R e - (2MRD+MATA)/(2M+MA) . (4) 

In addition, fxD represents the reduced mass of the 
deuteron and the target nucleus. One has 

2MMA 2M 
Mi> = 

MA+2M (1+2M/MA) 
(5) 
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The potential functions Unp and Uc represent the 
neutron-proton interaction and the proton interaction 
with the Coulomb field of the target nucleus, respec­
tively. This choice of potential functions implies a 
neglect of the nuclear forces that arise in the interaction 
between the deuteron and the target nucleus. However, 
as we wish to confine our attention solely to the electric 
breakup process, it is then proper to omit from our 
consideration this purely nuclear interaction. 

The last term of Eq. (1), which describes the uniform 
motion of the center of mass of the total system, is 
separable. Since it does not contribute to our future 
considerations, it will be omitted. In addition, we shall 
utilize the following notation for the "internal" and 
"external" potential functions of the deuteron: 

U»P=Ut{\9\), 

Uc=Ue(\i-(9/2)\). 

(6) 

(7) 

With these definitions, the effective Hamiltonian 
operator for nonrelativistic motion is 

fi2 fi? 
H= Ap+Ui(\g\) A] 

M 2ixD 
•+4-;l) (8) 

I t is apparent from the form of Ue that a separable 
solution, in terms of a product of internal (p-space) 
wave functions and external (r-space) wave functions, 
is not generally possible. Consequently, we consider 
the appropriate Taylor series expansion of potential 
Ue about the point r. One has 

U. (|r_£|)=£7.(|tl)+_L 
P«r2dUe 

2 L dpa Jp/2=0 

1 PaPpr 4d2Ue 

Jp/2=l 

1 PaPpr WUe -j 

2 ! 4 Ldpa;dppJp/2=Q 
< 1 , (9a) 

wherein the summation convention is utilized on re­
peated subscripts. This is, of course, merely the multi-
pole expansion of the potential function. The first term 
represents the monopole Coulomb effect; the second 
term represents the dipole-interaction energy of the 
deuteron in the Coulomb field; the third term is the 
quadrupole interaction energy, • • • etc. 

Utilizing Eq. (9a) in Eq. (8), it is evident that 
Schrodinger's equation will admit of a separable p-space 
and r-space solution only in the zero-order approxi­
mation wherein the dipole term is negligible, i.e., 
(p/2f)<$Cl. Moreover, this condition simultaneously 
implies that an earlier assumption will be satisfied, 
namely that the deuteron never experiences the short-
range nuclear force. Let us write the Coulomb inter­
action in a form analogous to Eq. (9a), 

Here £7e(|r |) is the zero-order Coulomb interaction 
which is independent of p and V is the perturbation 
potential. Consequently, in this approximation, the 
Hamiltonian of Eq. (8) can be written as the sum of 
two independent Hamiltonian operators, Hi and He, 
in addition to the perturbation potential V. 

H=Hi(9)+H.(i)+V, (10a) 

Hi(9) = - (» a /Af) A p + Ui(\9\), (10b) 

He(r) = - {P/2nD) A r + Ue(\t\). (10c) 

The solution of Schrodinger's equation, corresponding 
to the unperturbed Hamiltonian operator of Eq. (10a), 
can be written in the product form 

><°>(r,p) = L>(9)x(r), (ID 
wherein D(9) and x( r ) are appropriate eigenfunction 
solutions of the operators given in Eqs. (10b) and 
(10c), respectively. 

We will utilize wave-function solutions of the above 
form in a first-order perturbation theory treatment of 
the system. The transition probability, duViVf, from an 
initial state vi to a final state between vf and v/+dvf 

is given by 

<fe>,iV = (2w/h)\ VHVf\
2b(Ev-EVf)dv. (12) 

The matrix element VHVf can be expressed in the usual 
form 

V.i,, = U>,,«»\V\W»), (13a) 

where the perturbing potential V is determined from 
the expansion of Eq. (9) as 

2 L do. A 
(13b) 

The delta function which enters into Eq. (12) implies 
conservation of energy for the transition of the system 
between states vi and v/. This transition probability 
can be expressed as a cross section (in units of cm2) by 
the appropriate normalization of the initial- and final-
state wave functions. 

The major features of our treatment have now been 
clearly defined. There remains, as yet, the assignment 
of a specific form to the Coulomb potential Uc. We 
shall choose the point nucleus approximation of the 
Coulomb field: 

UC=U (HIW 9 
t 

2 
(14) 

U.{\t-{9/2)\)=V.{\r\)+V. (9b) 

where Z is the atomic number of the target nucleus. 
The assumption of a point source Coulomb field is 
acceptable provided the deuteron-target nucleus motion 
satisfy the condition | r | >Ro, where RQ=PD+RA, with 
PD and RA the classical radii of the deuteron and the 
target nucleus, respectively. Moreover, this latter con-
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dition, |r|>jR0, should be adequate when the kinetic 
energy of relative motion is not more than the order of 
the Coulomb barrier energy. Consequently, the appli­
cability of ourjtreatment must be confined to low-
energy deuterons ( £ D < 2 5 MeV). In addition, it should 
also be noted that the requirement |r|>jRo automati­
cally satisfies the earlier assumption of the neglect of 
the short-range nuclear forces. 

Using Eq. (14), the perturbation potential V is 

V=(Ze*/2)(9-t/f*). (15) 

In addition to discussing the above assumptions, it is 
equally important to examine the range of validity of 
the perturbation theory treatment. As will be seen 
below, such an examination has the decided advantage 
of producing more quantitative estimates for use in 
comparing the validity of the various approximations 
mentioned earlier. 

To this end, it is instructive to examine the appli­
cability of the Born approximation. This may be 
expressed by the condition 

\Ue(\t\)+V\«(hv/r), (16) 

where v is the velocity of the deuteron center of mass 
with respect to the target nucleus. Independent of the 
magnitude of the perturbation potential V, condition 
(16) can be violated if J7«(|r|) is large. That is, con­
dition (16) implies 

|^.(|r|)|«(fe/r). (17) 

Let us examine condition (17) for initial-state motion. 
It is customary to write this latter condition in the form 

ni«X (18a) 
with 

m=Ze2/hvu (18b) 

where vi is the initial velocity of relative motion. Figure 
2 compares the values of n\ for 15- and 200-MeV 
deuterons as a function of Z. It is at once apparent that 
the Born approximation is not generally valid for 
15-MeV deuterons. Even at 200 MeV, the validity of 
the Born approximation appears to be somewhat 
questionable, although Dancoff1 has utilized this ap­
proximation for 200-MeV deuterons. This conclusion 
is further strengthened by examination of the final-state 
motion. If v2 denotes the final velocity of the deuteron 
center of mass with respect to the target nucleus, then 
v2<vi, hence, ti2>ni. Since one must have n<£\ through­
out the entire motion,11 the applicability of the Born 
approximation is even more questionable. From this 
viewpoint, the present treatment should provide more 
accurate electric breakup cross sections in the non-
relativistic region. 

In addition to their approximate treatment of the 
wave equation, Landau and Lifshitz3 utilize the con-

T 

ED « 15 M«V 

1 h - / ^ ^ 

p / / E Q " 200 MeV 

FIG. 2. WI as a \ I / 
function of Z for 15 «=H p / / 
and 200-MeV deu- I / / 
terons. |7 / 

O.i W-/ 

coil 1 1 1 1 1 
O 20 40 60 80 100 

Z 

dition ny>\. Consequently, a comparison with these 
calculations should be made at or below 10 MeV. 
Akhieser and Sitenko5 have determined this cross 
section for the two limiting cases w«l and C M . Since 
n<0. is not satisfied throughout the region of our 
interest, we must consider their results for O l . In this 
event, the cross section these authors obtain is only 
valid if an additional condition, namely E^>B, is satis­
fied. Here E is the kinetic energy of relative motion and 
B is the height of the Coulomb barrier. However, one 
has difficulty in applying these two conditions simul­
taneously. Indeed, it is simple to show that these two 
conditions tend to be mutually exclusive. Consequently, 
we shall not utilize this work as a basis for comparison 
with our results. 

According to perturbation theory,12 the first-order 
wave function is given by 

^ = = ^ ( o ) + ^ ( i ) > (i9a) 
where 

r vv>vi 
^ cn= / tfy<°W (19b) 

J En-Ev, 
and EVi7*Ev>. The condition expressing the applica­
bility of perturbation theory is usually written in the 
form 

K- (1) |«l^/0) |. (20) 
We shall defer an explicit examination of this important 
subject until after the evaluation of the transition 
probability. 

11 N. F. Mott and H. S. W. Massey, The Theory of Atomic 12 L. D. Landau and E. M. Lifshitz, Quantum Mechanics 
Collisions (Oxford University Press, New York, 1933). (Pergamon Press, Ltd., London, 1958). 
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I t should be emphasized that beyond satisfying con­
dition (20), one must independently satisfy the addi­
tional condition 

\p/2r\<l (21) 

throughout the entire motion. This requirement follows 
directly from our use of the multipole expansion for 
Ue(\r— p /2 | ) as given in Eq. (9a). This condition is 
obviously satisfied by the initial-state motion. For the 
final-state motion, one finds the asymptotic condition 

2r L £ 2 \ 2 M / J 
(22) 

where e is the internal disintegration energy and E2 is 
the kinetic energy of relative motion of the final 
deuteron-target nucleus system. As a result of our 
calculations, we shall be able to evaluate directly 
condition (22). I t should be stressed that the validity 
of condition (22) need not imply that condition (21) 
holds throughout the entire motion. On the other hand, 
it is evident that Eq. (21) will be satisfied under the 
same conditions which imply the validity of the point-
nucleus approximation. That is, | r | > RQ implies con­
dition (21). Hence, provided Eq. (22) is verified, we 
shall assume that condition (21) is reasonably well 
satisfied for low-energy deuterons. 

In closing this section we shall remark on the effect 
of deuteron polarization in the Coulomb field of the 
target nucleus. Within the scope of the dipole-inter-
action approximation, one obtains the separable Q- and 
r-space wave functions, as previously described. This 
automatically implies a neglect of all polarization 
effects. I t also follows that the roles of the neutron and 
proton can obviously be interchanged in this approxi­
mation. Consequently, the perturbation theory treat­
ment considered herein would predict similar angular-
energy distribution cross sections for both neutrons 
and protons. That this result cannot be exactly true is 
obvious. The very existence of the Coulomb field implies 
that different angular-energy distributions must exist 
for the neutrons and protons. Furthermore, it is evident 
that polarization effects are less important for the case 
of low-energy deuterons which are of interest in this 
application. That is, the deuteron never gets close 
enough to the target nucleus to experience the strong 
Coulomb forces. 

Conversely, let us discuss some of the implications 
of any attempt to account for polarization effects. 
Here, one must consider nonseparable solutions of 
Schrodinger's equation (with respect to r- and 9-space 
dependence) since the existence of polarization implies 
that the internal and external motions of the deuteron 
are no longer independent. In addition, if such solutions 
could be determined, there would be very small likeli­
hood of expressing the matrix element VViVf (hence, 
the transition probability, dwViVf) in a tractable analytic 
form, This conclusion will become apparent as we 

develop the results of utilizing the separable g- and r-
space wave functions. 

EVALUATION OF THE TRANSITION PROBABILITY 

Following along lines similar to the analysis of 
Mullin and Guth,2 we shall calculate the "electric-
dipole" transition probability of the breakup of the 
deuteron. We consider first the r-space wave functions; 
the appropriate eigenfunctions, which correspond to 
the Hamiltonian operator of Eq. (10c), have been 
determined by Sommerfeld.13 With the source point 
of the Coulomb field fixed at the origin of the r-space 
coordinate system, the initial- and final-state wave 
functions are (S-456, 457): 

*i(r) = Nfi exp(ik1-T)Lini(s1)=Nf#i(i), (23a) 

M£>Vi Ze2 

ki = , s i = i ( | k i | r - k i - r ) , m=——- , (23b) 
ft A|vi | 

Xf{x) = NE exp(ik2-t)L-in2(-S2) = NE&f(t), (24a) 

Mz>V2 Ze2 

k 2 = , S2 = i ( | k 2 | H - k 2 - r ) , n2 = . (24b) 
fi fi I v21 

Herein Vi and v2 are the initial and final velocities of 
the internal center of mass of the deuteron with respect 
to the fixed center of potential. Consequently, ki and 
k2 are the initial- and final-state wave number vectors, 
respectively. The function Ln(s) is the Laguerre func­
tion which is a special case of the confluent hyper-
geometric function. According to S-119, Ln{s) 
= F(-n,l,s)^ 

The normalization constants N/i and NE in Eqs. 
(23a) and (24a) are chosen so that the initial-state 
wave function X4(r) is normalized to unit flux and the 
final-state wave function, X/(r) is delta function 
normalized with respect to k2 space. With these re­
quirements, one finds 

Nfi 

Nn 

[ 2wnDni "J-

Mi(exp(27r^i) —1)J 
r n2 

L(27r)2(exp(27m2)-1)-

-11/2 

(25a) 

(25b) 

Turning our attention to the internal or 9-space wave 
functions, we must now consider the appropriate eigen­
functions of the Hamiltonian operator given in Eq. 
(10b). We will employ the analysis given by Bethe and 
Bacher14 for the calculation of the photoelectric dis-

13 A. Sommerfeld, Atombau und Spektrallinien (F. Vieweg and 
Sohn, Braunscheig, Germany, 1939) Vol. II. Hereafter, we shall 
refer to this text with the letter S; appended to this symbol will 
be the appropriate page number under consideration. 

14 H. A, Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936). 
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integration cross section of the deuteron. Thus, the 
initial-state wave function, A*(p), is approximated by 
the zero-range wave function 

finds 

and 

where 
A<e) = ^ £ e x p ( - a p ) / p ] , (26a) 

a = (Meo/h2)lf2 (26b) 

Ni=la/2Tj/2 

Nf=[l/2irJ12. 

(28a) 

(28b) 

and eo is the binding energy of the deuteron (eo==2.2 
MeV). The final-state wave function, D/(Q), is given 
by the plane-wave description of a free particle, i.e., 
the eigenfunction solution for the Hamiltonian operator 
of Eq. (10b), wherein Ui(9) = 0. This is 

where 
Df(9) = Nfexp(ikp-9), 

kp = Mvp/2h 

(27a) 

(27b) 

with vp and kp the velocity and wave number vector 
of relative motion. 

The normalization constants Ni and N/ may be 
chosen so that the initial bound state is unit normalized 
and the final state is delta function normalized with 
respect to kp space. Under these conditions, one 

However, if one is to approximately account for the 
neglect of the internal motion of the deuteron, then the 
normalization constant Ni should be modified. That is, 
it must be multiplied by the factor (1+^aa), where a 
is the range of the neutron-proton interaction.14 This 
would introduce a multiplicative factor of approxi­
mately ( l + a # ) « 1 . 4 m the subsequent cross section 
calculations. Since earlier theoretical investigations1,2 

have not carried this factor, it is convenient to omit it 
from our equations also. This will permit direct com­
parisons with these other theoretical estimates. How­
ever, for proper comparison with the results of experi­
ment, this multiplicative factor will be included in all 
numerical computations. 

Using these wave functions in Eq. (12), the breakup 
transition probability, to a state in which the internal 
center of mass possesses a wave number vector between 
k2 and k2+dk2 and the relative internal-motion wave 
number vector lies between kp and kp+dkp, is given by 

2TT exp(—ap) \ I2 
zir / exp(—-ap) \ r 

c7dk2dkp=~NfmE
2NmA(^f^Mikp^)\v\ $i)\5(EH-Evf)dk2dkp. 

ft I \ I I p / 1 

Introducing the final-state energy variables for internal and external motion, 

e=h2k2/M and Et=&kf/2nD, 

(29) 

one can write 

adE2dedti2d£lp -
7TfJLDMk2kf 

ft5 Nf?NE
2NWf2 / $ / exp (ft, • 9) V 

exp(—ap) \ I2 

) 
$i) d(EH-Eyf)dE2dedQ2dttp. (30) 

Integration of Eq. (30) over E2 yields the cross section for deuteron breakup with an internal disintegration energy 
between e and e+de, the internal center of mass ejected into the solid angle dQ,2 and the neutron ejected into the 
solid angle d£lp. Using Eq. (15) for the explicit form of the dipole perturbing potential, one finds the results 

irpLDMk2kp 

<rdedti2d£lp = N/t 
ft* 

WJNwA/*ftxp(ikp-9) 
Ze2 p»r 

2 r3 

exp(—ap) \ |2 

<£>; y dedQ2dQp, 

where 

(31a) 

(31b) E2~Ei~e—€o 

with Ei the energy of relative motion of the initial deuteron-target nucleus system, i.e., 

E^Wtf/lpD. (32) 

The p-space integration in the matrix element of Eq. (31a) is straightforward and the cross section reduces to 

6^k2kpfxDM I / |Ze2kp-r| \ I2 

adedQ2dttp = _ _ Nfi
2NE

2N?Nf
2 / $/1 ~r7-1 #» ) | dedQ2dttp. 

ft5(a2+V)4 2rz 
(S3) 

The matrix element, which occurs in Eq. (33) above, can be evaluated with the aid of the r-space classical equation 
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of motion of the deuteron in a Coulomb field.2 One finds 

<*/ —M= V M , (34) 
\ I 2 rz I / 2ft2 

where 
M = <#, | r |$ i>. (35) 

The matrix elements, M = (Jlf^M^ifs), have been calculated by Sommerfeld (S-509) with ki chosen along the 
direction of the positive x axis. Utilizing these results, Eq. (33) becomes 

16TT3& pk2HD3M /E2-Ei\* 
<rdeKl2$lp= -( J Nfi2NE

2Ni2Nf2| kp • M |2dedtt2dttp, (36) 
ftVW)4 V ft / 

with 
Mx= C[i (n2~n1 cos62)F+ (1 - cos02) (1 - x)F'~] (1 - x ) - ^ i - ^ 2 - i ? (37a) 

Mtf 

JWJ lsin</>2 

The constant C is given by 

1 fcos02] 
\ = -C\ # s i n ( 9 2 [ w i ^ + ( l - ^ / ] ( l - ^ ) - i n l - ^ 2 - 1 . (37b) 
J lsin<f>2 J 

hk2 /Jki+fc2VCni+n2) 

(fei+*2)2(fti-*2)4 

and the function F is the hypergeometric function defined by 

C = - 16r«'ni (37c) 

4&i&2 /( 
sin2( — 

(* i -* 2 ) 2 \ 2 
F=F(—ini, —in2, 1; x ) , with # = sin2! — ) , (37d) 

• ) • 

and F' is just the derivative, F'=dF/dx, of the hypergeometric function. The angle 62 is the scattering angle of 
the internal center of mass of the deuteron, i.e., it is the angle between the initial and final wave number vectors 
ki and k2. I t is convenient to introduce a spherical coordinate system in r-space whose polar axis coincides with 
the positive x axis (and, hence, the direction of ki). The angles (02,<£2) then define the direction dQ,2 of ejection of 
the internal center of mass of the deuteron. We shall utilize (#P,</>P) to designate the direction^of^the solid-angle 
element dtip with respect to the positive x axis as the polar axis. 

This rather complex result verifies our earlier conclusion. Namely, that any attempt to utilize higher order 
perturbation theory (e.g., to account for deuteron polarization) would probably lead to nontractable results, even 
if solutions for the nonseparable Hamiltonian operator were determined. 

THE TOTAL CROSS SECTION 

We now calculate the total cross section for Coulomb breakup. Using the above orientation, Eq. (36) can be 
written as (omitting cross terms which vanish when integration in the <£p plane is performed) 

167rzkp
zk2fxD

zM/E2-El\
4> r sin20p 1 

<rdedti2dttp = ( J NrfNJNWA cos20p IMX12H { | My 12+ | MZ \2} • dedti2dttp. (38) 

ft5(a2+V)4 \ ft / L 2 J 

Using Eqs. (37) as well as the explicit values for the normalization constants, the cross section takes the form 

8ftV/2€3%l2&l2&2
2 1 

adedti2d£lp — -
Mie+eoYikx-hY ( l - exp( -27mi) ) (exp(27ra 2 ) - l ) 

-\i(nx-n2 co$>02)F+(l-co$d2)(l-x)F'\2+ \imF+(l-x)F'\* lded£l2dtip. (39) 
(1-x)2 2 ( l - # ) 2 J 
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To obtain the total cross section one must integrate Eq. (39) over the solid-angle differentials d22 and dQp as 
well as the internal energy variable e. Integration over dQp yields 

32w¥ eo1/2e3/2 n^Wh2 1 
a dedQ,2= (IdU2)de (40a) 

3M (€+€o) 4 (^ i -^2) 4 ( l -exp( -27r# i ) ) (exp(27r^ 2 ) - l ) 
with 

/= (l-x)-2[\i(n2-ni cosd2)F+(l-cose2)(l-x)F,\2+sm2e2\in1F+(l-x)F,\2^ . (40b) 

The integral of / given by Eq. (40b) over the solid-angle differential dtt2, has been performed by Sommerfeld 
(S-526). This result can be expressed as 

2ir{k1-k2)
2 d 

M 2 2 = \F(x0)\
2, (41a) 

kik2 dxo 
wherein 

F(xo) = F(~inh —in2,l;xo) and x0= — [4£i&2/(&i—k2)
2~]. (41b) 

Consequently, an integration of Eq. (40a) over d02 yields the result 

128TT2^2 n^2 1 €0
1/2e3/2 

ade= —R(F1F^) \ XQde, (42) 
3M (k!-k2)

2 ( l -exp(~27r^i))(exp(27r^2)~l) (e+e0)4 

where we have utilized the relation15 

F'(a,b,c\ x)=(ab/c)F(a+l, b+1, c+l;x). (43) 

The notation R(FiF2*)\XQ signifies the real part of a product of two hypergeometric functions evaluated a t XQ. 
Here one has the hypergeometric functions, 

Fi=F(l — im,l—in2,l;%o), 

F2=F(l — ini, l — in2, 2; x0), 

-4&X&2 -2E1
1/2(Em-e)1/2 

xQ= = . (44a) 

n2=ixDZe2/fi2k2, 

k2= [_Em-eJ'2, (44b) 

and 

Also in recapitulation, 

Em=Ei—€o. 

The total cross section can now be obtained from Eq. (42) by numerical integration over the internal energy 
variable e. 

We have utilized the analytic continuation of the hypergeometric function16 to evaluate R(FiF2*) in terms of 
inverse powers of xo. One finds to third order 

1 1 
R{FlF2^)^-{{n1-n2)P)+~^{{Q2+Q2)l{n^ 

+M[tficos0i-tf2ai^ 
x0

d[ 
r(Ni-2) cos(di+d2)-2(n1-n2) sin(0i+02) N 

x • 

+P 

rir2 

~NZ cos2di+2n1
2n2

2 sin20i NA sin(0i+02)+i\r5 cos(0i+02)-

ri2 2r\r2 

r2ni2n2
2 cos29i-Nz sm261 N* C O S ^ I + ^ - ^ B sin(0i+02)""n 

+M\ + - I . (45) 
. L n2 2rxr2 J ) 

15 C. Snow, Hypergeometric and Legendre Functions With Applications to the Integral Equations of Potential Theory (National 
Bureau of Standards, Applied Mathematics Series 19, 1952). 

16 A. Erdelyi, Higher Transcendental Functions (McGraw-Hill Book Company, Inc., New York, 1953), Vol. I. 
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In Eq. (45) we have used the following notation : 

r i = [ l + ( ^ 2 - % ) 2 ] 1 / 2 , 

r 2 = [ 4 + ( ^ 2 - W l ) 2 ] 1 / 2 , 

tan0i=(ft2—ni), 

tan02=i(w2—ni), 

N2= (ni—n2)(n1
2+n2

2), 

Nz= (ni—n2)ni2n2
2, 

i V 4 = 2 ( 2 » i 4 - » i 8 » 2 - W l 2 - - » 1 » 2 8 - » 2 2 + 2 » 2 4 ) , 

^ 5 = (ni— n2){n£— 5nx2—4ttiw2— Sn2
2+n2

4), 

T(i(m-nt)) \ (46) 

reduces to 

/ T(i{ni-n2)) \ 
Q*=R[ J, 

\r(i+wi)r(i-w2)/ 

& = I m ( ) , 
\T(i+in1)T(i-in2)/ r(i+m1)r(i~m2)y 

£ = l n ( - a ; o ) , 

i , = (0 . 2 -C y
2 ) s i n# (n i -»2 ) 

+ 2 ( 3 ^ co$p(ni—n2), 

M=(Qx
2-Qy

2)cosp(n1-n2) 

— 2QxQy smp(ni—n2). 

The gamma function of a complex argument, which 
arises in Eqs. (45) and (46), can be evaluated from the 
asymptotic expansion of the logr(s).17 

HIGH-ENERGY DEUTERONS 

Let us examine the limiting case of high-energy 
deuterons. Although we are fully aware that our calcu­
lation cannot be applicable in this domain, nevertheless 
it is interesting to note that our result assumes a 
limiting form which is analogous to the cross section 
given by Dancoff.1 While one cannot assume that either 
ni or n2 is small (viz., Fig. 2), one does have | n\—n2 | <<Cl 
for laboratory energies in the neighborhood of a few 
hundred MeV. Since \n\—n2\<£\ implies |#o|^>l, we 
need only consider the first-order term in the analytic 
continuation of R(JFxF2*)™ Applying these conditions, 
one finds 

p sinhV^i 
* ( / W ) « ; | » i - » 2 | « l . (47) 

(—Xo) 7rW 

Using Eq. (47) in Eq. (42), the total cross section 

17 H. E. Saizer, Table of the Gamma Function for Complex 
Arguments (National Bureau of Standards, Applied Mathematics 
Series 34, 1954). 

18 For E\«200 MeV, the second-order term in Eq. (45) is 
approximately 10% of the first-order term. 

a(e)de — 
m2 

SM 

16ft2 

€ o l /2 e 3/2 

(e+eoY 
1/2^3/2 

ln(—Xo)de; 

2nx 

\ni-n2\<^l (48a) 

(e)de= m2 ln( We; 
3M (e+e0)4 \n2-nj 

| » i - » 2 | « l . . (48b) 

The total cross section given in Eq. (48b) coincides 
with the results of DancofF except for the argument of 
the logarithm. Instead of [2n\/(n2—ni)~], Dancoff finds 
the argument (hvi/Ro(e+eo)). For deuterons of a few 
hundred MeV, one has 

fivi / 2n\ 
- « i 

Ro(e+eo) \n2—fii. 

/ 2m \ 

\n2—ni/ 
(49) 

Hence, as we have anticipated, the cross section given 
in Eq. (48) is not adequate for high-energy deuterons. 
In fact, for deuterons of a few hundred MeV, this cross 
section yields values which are roughly an order of 
magnitude higher than Dancoff's results. 

Although this disagreement is striking, it can be 
readily understood. Dancoff obtains (hvi/Ro^e+eo)) for 
the argument of the logarithm by limiting the maximum 
recoil of the internal center of mass (of the deuteron), 
thereby effecting a separation between "nuclear" and 
"electric" collisions. I t is easy to show that the intro­
duction of such a momentum space cutoff in our 
analysis permits one to obtain explicit agreement with 
Dancoff. In this event, one can take h(ki+k2)= (h/Ro) 
as the maximum recoil momentum of the internal 
center of mass. Thus, instead of the inequality given in 
Eq. (49), one has an equality. Hence, Eq. (48b) reduces 
precisely to the cross-section formula of Dancoff. 

These remarks also clarify the behavior of the 
Coulomb breakup cross section obtained from per­
turbation theory at high energy [viz., Eq. (48b)]. In 
the present formulation, the separation between 
"nuclear" and "electric" collisions is attempted by 
introducing the point-nucleus approximation. For high-
energy deuterons, it is evident that the point-nucleus 
approximation will be poor and thereby can lead to an 
overestimate of the Coulomb interaction since the 
region r<Ro will contribute. This can only result in a 
subsequent overestimate of the Coulomb breakup cross 
section, as has been clearly demonstrated above. On 
the other hand, we have already emphasized the in­
applicability of the Born approximation in the low-
energy region. I t is just in this energy region that the 
perturbation theory treatment should prove superior. 

APPLICABILITY OF PERTURBATION THEORY 

Let us return to a consideration of the validity of the 
perturbation theory treatment. We begin by writing 
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Eq. (19b) in the form 

*„«= / 4 
J EVi—E„f 

I^Mdkjdk/. (50) 

Using Eq. (50), it is easy to verify that both wave 
functions which occur in Eq. (19a), *A„t

(0) and \f/Vi
(1\ 

possess the same units (sec1/2 cm-2). Consequently, 
these wave functions may be compared directly without 
any change in normalization. Changing to energy 
variables as before, one finds 

UDM r VV>H 
$ ( i > = — / $9wk;k2'dE%'dt'da*'da' (si) 

2¥ J Evi~-Ev> 

Equation (51) may be utilized to obtain an upper 
bound for | ^ ( 1 ) | and thereby determine an estimate 
of the validity of condition (20). To this end, one must 
realize that the integration over the energy variables, 
in Eq. (51), is not arbitrary, but must satisfy the con­
straint implied by conservation of energy. This con­
dition can be written as 

and 
EVi — J3„'+€o 

Ev>=E2~h €=EVf. 

(52a) 

(52b) 

To satisfy these conditions, one can introduce a delta 
function into the integrand of Eq. (51). However, we 
shall employ an alternate procedure. Namely, we shall 
use Eqs. (52a) and (52b) in Eq. (51), but withhold 
integration over the resulting energy variable E2 until 
a later point in the analysis. This procedure has the 
advantage of producing a more realistic upper bound. 

Applying Eqs. (52a) and (52b) in this manner, one 
has 

lxDM r 
\ VvfVi\f'yf«>)kpk2dedtt2dttpdE2. (53) +HV-

2fi% 

Equation (53) implies 

€0 J 2W 

Application of the Schwarz inequality in Eq. (54) yields 

fXDMk2kp 
(0)l dedQ2dttpdE2. (54) 

where 

and 

1 
| ^ ( 1 ) | < - A 1 / 2 - / 2

1 / 2 , 
€0 

h = j\V„„\ 
fXDMk2kp 

-ded£l2d&0dE2 
2W 

fJLDMk2kp 2 dedQ2dttpdE2. 
2W 

Utilizing Eq. (31a), the integral h reduces to 

/1HJT\ f 

(55a) 

(55b) 

(55c) 

(56) 

Since the integrand of Eq. (55c) vanishes exponentially 
for k2 —» 0, one needs only consider the contribution to 
this integral from large k2. In the event r—» <*>, the 
integrand of (55c) will no longer vanish exponentially 
as k2 —> 0. However, this special case need not be con­
sidered since \j/Vi

 (1) becomes negligible for r —> co. This 
behavior is due to the factor exp(ik2«r), which arises 
in the final-state wave function ^ / 0 ) . To evaluate the 
contribution to I2 from large k2, one can use the 
asymptotic form of L-in2(—s2). According to (S-795), 
one finds for |s2|^>>l 

| L-in2(—s2) 12~ (exp(27ra2) - 1)/2TT^2 , 

and thereby 

î /0)i 'l/(2x)«. 

Thus, for 72, one has the approximate form 

1 UDM 

•I (2x)6 2¥ 

This result can be written as 

4MD /2nD\lt2 

kikpiedQidOiAEi, 

(57a) 

(57b) 

(58) 

/»=-
(2;r)4^ 

/2VDV1 r r* 

KM) J JO 
ftp \Rm -kfiMdkJE,, (59a) 

with 
km*=(Mkt/2v>)-c?, (59b) 

and where the upper limit of integration, kp, must be 
consistent with the condition |^2 |^>1. Since km

2>kp
2, 

one has 

h< ( ) km UE2. (60) 
(2W)%AM/ 3 ' 

4*u> /2nDy*{jG,r r 
( I km I 

2 T ) W \ M) 3 J 

With these results, Eq. (55a) becomes 
1 T W W 2 M 1 ' 2 . -ii/2l r 

hi(1) < - ( — ) (K)3km / 
(0l3(2Tn\M) J \J 

dE, (61) 

In evaluating the remaining integral which arises in 
Eq. (61), one must again satisfy the condition | s2|i>>l. 
Since Eqs. (52) imply dE2= -de, one finds 

**»> < H ( ) ( — J(.h)7km (62) 

Since ki>k2, and we have assumed k&^>lf then 
kir^>l and the asymptotic expansion of |ZiniC?i)| can 
be used. This yields 

*r-a) 4ftVr /2MI>\1/2 kiK 

\{2TTY\M) M2 — < ( — ) — ( K V ]l/2 

1 (9- (63) 

It is appropriate to utilize the value (p) = pD=l/2a 
for the internal space variable which appears in Eq. 
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(63) above. In this event, one has 

I ^ - ^ K I ^ ^ I P ) - 1 ^ 
2TT2 \2M. 

klkm<TT/kp\7~\1/2 

or 

|M-a)KI^(0)|p>-

7 L 6 W J 

exp(J) / Mz> \1 /4[*i*^Y * \7/2l1/2 

2TT2 W / L 6 W J ' 

(64a) 

(64b) 

where 
e=h2(kp)

2/M. (64c) 

We shall utilize the results obtained from Eq. (42) 
in Eq. (64). Inspection of the differential cross section, 
cr(e)de, will permit a choice of e consistent with the 
condition |^2 |^>1. In this manner, we shall obtain an 
estimate of the applicability of the perturbation theory 
treatment. 

RESULTS 

We have calculated the differential cross section, 
o-(e)de, in the domain 4<Z<92 for deuteron laboratory 
energies [ED=(2M/tiD)E{} of ED=10, 15, 20, and 25 
MeV.19 Figures 3-6 display the behavior of o-(e) for 
Z=4, 26, 56, and 79, respectively. The total cross 
section for Coulomb breakup can be obtained by 
numerical integration over the internal disintegration 
energy e. Figure 7 displays the total cross section aT as 
a function of Z for the four laboratory energies utilized. 
As an alternate presentation, Figs. 8, 9, and 10 present 

FIG. 3. The differential cross section |V(e)] for Z = 4 with 
10-, 15-, 20-, and 25-MeV deuterons. 

<TT as a function of ED for the different target nuclei, 
4<Z<92, used in these computations.20 

These results also determine the upper bound 

exp(|) / nn \l!XkikmaT/ I \ "'-f2 

2TT2 O T T ^ T ™ 
given in Eq. (64b). We have arbitrarily chosen I as 
that point at which <r(e) falls to one percent of its peak 
value. Our calculations show that 8 is a monotone in­
creasing function of ED- Hence, we need evaluate 8 only 
for the two cases, ED =10 and 25 MeV, respectively. 
Figure 11 displays 8 as a function of Z for these two 
laboratory energies. 
• To examine the asymptotic condition given in Eq. 
(22), we have computed an effective upper bound 

y=£(e/E2)(»D/2M)J* (66a) 

FIG. 4. The differential cross section Qr(e)] for Z—26 with 
10-, 15-, 20-, and 25-MeV deuterons. 

19 These computations were carried out on the IBM-7090 
computer, Lawrence Radiation Laboratory, Livermore, California. 

20 As stated earlier, all numerical results presented here include 
the multiplicative factor (1 -\-aa) «1.4. 
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300 

FIG. 7. The total 
cross section (O-T) as 
a function of Z for 
10-, 15-, 20-, and 25-
MeV deuterons. Ex­
perimental points 
are the 26-MeV 
measurements of Udo 
and Koerts for cop­
per and gold. 
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FIG. 5. The differential cross section [o-(e)] for Z = 56 with 
10-, 15-, 20-, and 25-MeV deuterons. 

where e is determined as above and 

(66b) 

The upper bound 7, so obtained, is presented in Fig. 
12 as a function of Z, again for the two cases, ED= 10 
and 25 MeV, respectively. 

Finally, we must again point out that the results 
presented above have been obtained by utilizing only 

25 MeV 

the first three terms of the analytic continuation of 
R(FiF2*). Our numerical computations show that the 
third-order term is at most a few percent of the first-
order term throughout the domain of interest. Con­
sequently, we may estimate that the error so introduced 
into <r(e)de and or can be no larger than a few percent. 
In view of the other approximations entailed in this 
formulation, the accuracy furnished with only the first 
three terms of this analytic continuation should 
certainly be adequate. 

FIG. 8. The total 
cross section (or) as 
a function of deu-
teron energy for 
Z = 4 , 6, 10, and 16. 

FIG. 6. The differential cross section [<r(e)] for Z = 79 with 
10-, 15-, 20-, and 25-MeV deuterons. 
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FIG. 9. The total 
cross section (or) as 
a function of deu-
teron energy for 
Z=26, 35, and 45. 

FIG. 11. 8 as a 
function of Z for 10-
and 25-MeV deu-
terons. 

CONCLUSION 

Examination of Fig. 11 reveals that the perturbation 
theory treatment should be adequate throughout most 
of the domain of interest (ED<25 MeV; 4<Z<92). 
The upper bound 7, depicted in Fig. 12, indicates that 
the asymptotic condition given in Eq. (22) should also 
be reasonably well satisfied. Hence, we may expect that 
the present cross section values are more accurate (in 
the domain of interest) than estimates obtained with 
the Born approximation. However, one should recognize 

FIG. 10. The total 
cross section (or) as 
a function of deu-
teron energy for 
Z=56, 66, 79, and 
92. Experimental 
points are the gold 
measurements of Udo 
and Koerts at 23 and 
26 MeV. 

from earlier arguments as well as from Figs. 11 and 12, 
that the results for Z<20 or ED=2S MeV, although 
more accurate, may nonetheless be overestimates. 

This conjecture is borne out by the recent measure­
ments of Udo and Koerts,9 depicted in Figs. 7 and 10. 
Figure 7 clearly demonstrates that their measurements 
at ED=26 MeV for copper and gold are lower than the 
present calculations. The agreement is fair for gold and 
poor for copper. That the discrepancy is larger for 
copper may very well reflect the fact that the per­
turbation theory treatment is less valid for copper 
(viz., Figs. 11 and 12). The broader observed neutron-
proton angular correlation for the case of copper would 
seem to imply penetration of the nuclear surface by 
the incident deuteron. This implies an inadequacy in 

I l I * 1 ' I 

FIG. 12. 7 as a 
function of Z for 10-
and 25-MeV deu-
terons. 
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FIG. 13. A com­
parison of the total * 
cross section (or) as E_̂ 
a function of Z with *> 
the work of Landau 
and Lifshitz for 10-
MeV deuterons. 
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the point-nucleus approximation with a subsequent 
overestimate of the cross section. 

At 15 MeV, however, the situation should be con­
siderably improved. Compared to the earlier estimates 

of Mullin and Guth,2 the present results are considerably 
smaller. If one includes the multiplicative factor (1+aa) 
in the calculations of Mullin and Guth, then the present 
cross sections for copper and gold are lower by a factor 
of 3 and 6, respectively. 

A comparison with the results of Landau and Lifshitz3 

is given in Fig. 13 for 10-MeV deuterons. Here the dis­
agreement is even more striking. The present results 
range from one to two orders of magnitude lower than 
those predicted by Landau and Lifshitz. Consequently, 
the results of the perturbation theory treatment con­
tradict the conclusion of Landau and Lifshitz that the 
electric breakup cross section can be dominant. 

It is evident that additional measurements, on more 
elements in the 10-25-MeV range, are needed in order 
to assess the quantitative validity of the perturbation 
theory calculation. 
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