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Theoretical estimates are given for the production cross sections for a strangeness —3 baryon with spin-
parity f+ and mass of about 1.7 BeV, denoted by QT, in the following reactions: 

(1) p+D->tt-+K++Ko+K° 
(2) K~+p -> tt-+K++K°. 

For 2.8-BeV/c antiproton laboratory momentum, we obtain a lower limit on the cross section for the first 
reaction of about 0.01 jub. We also compute the ratio of Or to S~ production in antiproton-deuteron collisions 
and find this to be about 1% at the above momentum. For 3.5-BeV/c K~ laboratory momentum we obtain 
a cross section for reaction (2) of about 0.1 jub. 

IN this paper we present theoretical estimates of some 
production cross sections for a strangeness —3 

baryon with spin-parity f+, isotopic spin zero, and a 
mass of about 1.7 BeV. This particle, denoted by Or, is, 
according to the unitary symmetry of strong inter­
actions,1-3 the last experimentally undetected member of 
a decuplet of which the other nine members consist of 
the TV*(1238 MeV), the F!*(1385 MeV), and the 
E*(1530 MeV). The mass of 1.7 BeV is estimated from 
the Gell-Mann-Okubo mass formula4*5 for any unitary 
multiplet split by suitable4 symmetry-breaking inter­
actions. Since the estimated mass of the Or is too small 
to allow the strong decay into a S and a K, the particle 
will be metastable and could be observed to traverse 
macroscopic distances before decaying weakly. As such, 
it would appear as the first metastable baryon with spin 
greater than J. The experimental search for the Or is a 
matter of great current interest. We outline here theo­
retical estimates, in the "pole" approximation, for pro­
duction cross sections of the Or in two, perhaps a priori 
favorable processes. A comparison of the estimated 
cross sections for these processes, and knowledge of 
their smallness (in the submicrobarn range) may be of 
use in planning the experimental effort. In one process 
we also compute the ratio of Or production to S~ pro­
duction and find this to be about 1%. This ratio is less 
sensitive to calculational uncertainties than are the ab­
solute cross sections. 

Consider first the reaction 

p+D -> Qr+K++K°+K° (1) 
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Although there are four particles in the final state and 
although further, the process involves an annihilation 
within the deuteron with a strange baryon emerging, 
this process has an unusually low threshold (at a center-
of-mass total energy of about 3.2 BeV). Presently 
available antiproton beams reach substantially above 
this threshold. Our calculation will be performed for 2.8 
BeV/c-antiproton laboratory momentum, the momen­
tum of an experiment currently in progress in deu­
terium.6 At this momentum one is about 740 MeV above 
threshold in the center-of-mass. The "dispersion" 
(Feynman) graph to be calculated is illustrated in 
Fig. 1(a). The spin f Or will be described according to 
the formalism of Rarita and Schwinger,7 as first utilized 
by Kusaka.8 We have for the imaginary part of the 

FIG. 1. (a) Feyn­
man graph for the 
reaction in Eq. (1). 
(b) Feynman graph 
for the reaction in 
Eq. (18). 
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matrix element 9TC describing the graph in Fig. 1(a). 

Im9TC(22) = 7rX: 8(n-q)v(p)zfl(l) 

X (K+K»K» | J, | n)(n \j\D), (2) 

with n, p, I, and q denoting, respectively, the four-
momenta of the neutron, the antiproton, the S2~~, and 
the total center-of-mass energy-momentum; v(p) 
denotes an antiparticle spinor, z^(l) denotes the wave 
function of the Or, and J^ and j are, respectively, the 
currents coupled to Or and nucleons. One matrix element 
in Eq. (2) is completely known. We have9,10 

v(p)(n\j\D} = v(p)TuT(n)(m/n0y
i2

) 

T = (a/VS) (7' D+mD/mD) (y • f )C, (3) 

a?/4:Tr=8ZB/tn(l-art)Jl2^0A75. 

In Eq. (3), D is the deuteron four-momentum, m and 
mD are the nucleon and deuteron masses, respectively; 
B, a, and rt are the deuteron-binding energy, inverse 
size, and the triplet-effective range. C is the charge-
conjugation matrix and f is the deuteron-polarization 
vector, satisfying 

r-#=o, r-r=3. (4) 
The matrix element {3K[J^n) is obtained by con­
sidering a phenomenological interaction term of the 
following form: 

SM(r8)Xt ( r 4)^a^(r4) . K* ( n ) * ^ (r2) 

Xp(r)p'(r'W r3 )dr1dr2drzdu 

with 

G 

r = r ! - r 2 

R = rd-r2 

r' = r 3 - r 4 . 

0M(r3)/M(r3)</r3, (5) 

In Eq. (5) the corresponding field operators are denoted 
by the particle symbols, the n are the Pauli isotopic 
spin matrices, and p and p are density functions which 
allow for a nonlocality of this effective interaction or, 
equivalently, to a correlation between various momenta. 
A typical term in the matrix element of 7M in mo­
mentum space contains, in addition to a delta function 
giving over-all momentum conservation, the form 
factors p(ki—k2)p

/(p—k3), where p is the momentum 
of the nucleon and ki, k2, and k3 are the momenta of the 
K mesons. We will subsequently choose the factor p so 
as to restrict the integration of the square of the com­
plete matrix element, 9TC, over the four-body phase space 
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to an analytically performable rigorous underestimate 
of the complete integration, thus obtaining a lower limit 
on the production cross section from the graph in 
Fig. 1 (a). The factor of | takes into account the identity 
of two of the K mesons; neglecting interference, the 
above interaction generates six identical terms in the 
integration of the square of 2HX over the four-body phase 
space. For a typical term in 9TC we have 

(3K \Jfi\n)=Gnliu (n) (m/no) 1/2 (6) 

The coupling G may be written in terms of a dimen-
sionless constant g and a characteristic mass, mx as 

G=g/mxK (7) 

Substituting from Eqs. (3) and (6) into (2), performing 
the sum, and using CvT=— it, we obtain (suppressing 
form factors), 

Im3n(42) = Trd(n2-q2) (aGj\%)li2mD)zll(])nt)Ou{p), 

with (8) 
0 = (Y• n+ni) (7 • f) (—7 • D+MD) . 

The complete matrix element for the " dispersion" 
graph in Fig. 1 (a) is then 

J c (D+p)2 

aG ZpfynpOuip) 

(S)ll2mD (D+pY-m2' 

The total cross section is given by 

*(W)= (2TT)4 fv-18(D+p-l-k1-k2-h) 

with 

(9) 

/ mM \ d\dkzdydx 
X j E l ^ W I 2 , (10) 

\16#A/oCOiW2C08/ 2(2x)1 2 

x = ki+k2 

y = k i -k 2 . (10) 

Here W=D0+po is the total center-of-mass energy, V 
is the center-of-mass relative velocity of antiproton and 
deuteron, and the sum denotes a sum over the initial 
and the final spin substates of antiproton and deuteron, 
and of Or, respectively. The performance of these spin 
sums is facilitated by noting that n^ has only a fourth 
component in the center of mass and that, in a helicity 
representation, only two of the four wave functions, 
2M, have nonzero fourth components. These correspond 
to the helicity =bj wave functions, and are given ex­
plicitly by 

z<r1/2(0=(!)1/2-
M 

111 

.(O 
(11) 

*>1/,(0=(t)1«—MD. 
M 
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Here M is the Or mass and w_i(Q and ui(l) are Dirac 
spinors for spin-down and spin-up, respectively. For 
1 at an angle 6 with the antiproton beam direction (taken 
as the quantization axis), we have 

«*(*) -> i\r(flc*"W»x±i 
lo+M 

±UI 
(12) 

where x±i are ordinary Pauli spinors and N(l) is the 
normalization factor \1M(k+M)']~112. We give the 
result for the spin sum over the square of the matrix 
element in the center-of-mass system. 

v-
/ mM \ 

- i ( 2 x ) - « ( ) 

\16£oA)/oCOlW2C03/ 
EI^Wl2 

-Ŷ Y- -)(-T(i) 
X-

96*7 \ 4 T / \ (47r)3wa; 

W*(W+my(po+m) Q0+M) 

(TF2-w2)WD/ocoico2w3 

X I 
A + w B \ 2 

pa+m 
(13) 

This expression gives only the leading terms in an ex­
pansion of |2fTZ(PF) |2 in powers of (D/DO+MD) and the 
zeroth-order terms in an expansion in powers of 
[l(W-m)/(lo+M)(W+m)J For 2.8-BeV/c incident 
antiprotons the maximum values of these parameters 
are 0.32 and 0.175, respectively. In Eq. (13), I and D 
denote the magnitudes of the corresponding particle 
momenta, and o?i, co2, and co3 denote the total energies 
of the K mesons. Inserting Eq. (13) into Eq. (10) leads 
to a rather complicated series of integrations over the 
four-body phase space. We have chosen to perform these 
integrations analytically by making an approximation 
which rigorously underestimates the complete integra­
tion and leads to a lower limit on the production cross 
section. The approximation consists in setting 
x -y= ( l+k3) - y = 0 . This limits the angular variation of 
y, the relative momentum of two of the K mesons, to be 
perpendicular to the total momentum of these two 
mesons. Then 

C0i=C02 = O> (14) 

2co=(x2+y2+4wx
2)1 /2 . 

The two correlated mesons behave as a particle with 
mass, 4wj£2+y2 and momentum, ( l+k 3 ) . The correla­
tion can be thought of as being achieved through the 
form factor p(ki—k2) implicitly contained in 9HX. The 
integration over the angle between k3 and 1 can be taken 
out by the delta function, the integration over co3 

between limits which depend upon |y | and | 1 | can be 
performed and followed by an integration over |y | 
between zero and an upper limit dependent upon 111. 
Finally the integration over 1 can be performed approxi­

mately from zero up to the maximum lm. The result­
ing expression for the cross section is 

\967r/\47r/\(47r)%a ;
6/V 

(po+m)(W+m)2/ 

DW(W2-m2)2 

DW\2 

MDM/ 

D0+mD\2 

) Q ( U , (15) 
po+m / 

where 

QQmY, 
8 rm f 

i / xAdx A (x) la (x) - x2J'2 

W—mJo [ 

with 

1 Za(x)-x2Ji2] 

5 (W-Xo)2-x2\ 

-I- 4:MK2 

]• A(x) 
(W-Xo)2-x2, 

a(x)= (W—Xo—MK)2—^niK2 

x0=(x2+M2y2. (16) 

In Eq. (16), lm is the maximum value of the Or center-
of-mass momentum, which is about 1.05 BeV/c for 2.8-
BeV/c incident antiprotons. Approximate evaluation 
then gives Q(lm)^0.S6. From Eq. (16) with the char­
acteristic mass, rnx, taken to be the Or mass we obtain 

a(W=3M BeV)^0.84[g2/(47r)3]Mb. (17) 

With g2/(47r)3=0.01 [for the origin of the (4TT)3 recall 
that this constant might be a phenomenological repre­
sentation of the square of the product of three Yukawa-
type couplings] we obtain a lower limit on the cross 
section of 0.0084 /zb. This should be considered a con­
servative estimate for g2/(47r)3. 

I t is a direct matter to compute the production cross 
section for the process 

p+D -> Z-+K++K0. (18) 

The relevant graph is shown in Fig. 1(b). We assume 
the cascade spin-parity to be J+ and we take at the 
unknown vertex, a phenomenological interaction 
density of the form 

iG&*rdP-K**N with Gi=gi/m0. (19) 

Here mc is the cascade mass. In the ratio of the cross 
sections for processes (1) and (18), unknown corrections 
to the deuteron vertex and the neutron propagator 
cancel out, as these are the same in the graphs of 
Figs. 1(a) and (b). We obtain, for 2.8-BeV/c incident 
antiprotons, as a lower limit 

with 

cr(O-) g2/WSQ(lm)W2mc 

<r(H-)_g1V(4x)2 MWM* 

gV(4*)» 1 

gi2/(4x)2 2 

= 0.84% (20) 
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(a) 
FIG. 2. Feynman 

graphs for the origin 
of the phenomeno-
logical coupling term 
in Eq. (5). 

(b) 

This would give a cross section of about 1.0 jub for E~ 
production in the reaction (18). I t is worth noting that 
the Or production cross section grows extremely rapidly 
with W(~W8) and the ratio (20) goes like W6. Conse­
quently it is very sensitive to the characteristic mass 
chosen in the dimensional coupling constants in Eqs. (7) 
and (19). If, instead of choosing these masses as M and 
nic, respectively, we had chosen them both as MR, the 
ratio (20) would be ~ 1 . 8 ! A power of W2 in the ratio 
(20) is attributable directly to the spin § nature of the 
Or. 

Finally, we have estimated the production cross 
section for Or in the process 

K-+p->tt-+K++K°. (21) 

This is, of course, the first process in which one would 
look for the Or. The difficulty is that, in the experiment 
underway at the present time,11 the K~ laboratory mo­
mentum reaches to about 3.5 BeV/c, which is only 

about 100 MeV above the threshold for the reaction, 
(21), in the center-of-mass system. We can compute the 
matrix element directly from our phenomenological 
interaction introduced in Eq. (5). This interaction may 
be thought of as a representation of the graphs in 
Fig. 2, for example.12 We^obtain for the total cross 
section 

/ m \ 2 4 
r(W)9*tf/(4*)*)(-) -M~<I, 

\M/ p 
with (22) 

/ l + 7 \ [2yMv] 
1^1 )M*(yvyylmZ(W*-p2yi2-M']\-

{ p 

and 
v=p/W, 

T = ( l ~ ^ ) - i / 2 . 

In these equations, p is the laboratory momentum of the 
K~, W is the total laboratory energy, and lm is the maxi­
mum momentum of the Or in the center-of-mass system. 
We find, for 3.5-BeV/c incident K~ 

0-^8.4(g2/(4TT)3) Mb=0.084 Mb with g2/(47r)3=0.01. (23) 

This cross section is about ten times the lower limit for 
the cross section estimated for process (1) at 2.8-BeV/c 
incident antiproton momentum. Nevertheless, if even 
more energetic and intense antiproton beams become 
available prior to similarly improved K~ beams, a 
search for the Or in reaction (1) may become feasible. 
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