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Partial-wave dispersion relations are used with interaction terms arising from the exchange of a nucleon, 
the N* and the p meson to produce integral equations for the partial-wave amplitudes for pion-nucleon 
scattering. The solutions of these equations depend on a single arbitrary parameter, the energy at which the 
dispersion integrals are "cutoff." It is shown that when the value of the cutoff is adjusted to produce the iV* 
at the correct energy, a bound state, the nucleon, appears in the p wave, I=J = i amplitude. Thus, the 
nucleon mass, the pion-nucleon coupling constant, the width of the N*, and mass of the N* are all determined 
by the cutoff parameter. It is shown that when the N* mass has the experimental value the other quantities 
are in reasonable agreement with experiment. The effect of variations in the coupling constants controlling 
the interaction terms is also studied. In each case all of the / < § partial-wave amplitudes are calculated 
and compared with experiment. 

I. INTRODUCTION 

IN a recent paper Chew1 showed that the exchange of 
the N* [the (3—3) resonance] in pion-nucleon 

scattering can give rise to a sufficiently strong attractive 
force to produce the nucleon as a pion-nucleon bound 
state. The residue of this pole is proportional to the 
strength of the exchange force which is simply the width 
of the N*. Since the residue of the nucleon pole is, by 
definition, the pion-nucleon coupling constant, one finds 
a relation between the pion-nucleon coupling constant 
and the width of the iV*. In fact, Chew showed that the 
relation obtained in the static approximation is almost 
identical to the well-known result of the Chew-Low 
theory where the nucleon pole provides the exchange 
force and the N* is produced as a resonance. Thus, it 
appears that the nucleon pole and the 3 — 3 resonance 
should be treated on an equal footing in the calculation 
of pion-nucleon scattering amplitudes. Since these are 
the most prominent features of pion-nucleon scattering, 
a dynamical theory of the pion-nucleon interaction 
should produce both the nucleon and the TV* as com
posite particle states. 

In the static theory the masses of the nucleon and the 
N* are each separately controlled by a cutoff parameter. 
This type of calculation is therefore limited to providing 
relations between the pion-nucleon coupling constant 
and the TV* width. The same relation is also found to 
hold in the static-field theory as discussed by Low.2 On 
the other hand, it is not clear, a priori, whether the 
cutoff parameter needed to produce the nucleon pole is 
at all close to the cutoff parameter necessary to produce 
the N*. The purpose of the present paper is to perform a 
calculation of pion-nucleon scattering using the fully 
relativistic dispersion relations and including as inter
action the forces arising from the exchange of a single 
nucleon, the N*9 and the p meson. A single cutoff 
parameter is introduced. I t is shown that when this 
parameter is adjusted to give the N* at the observed 
energy the nucleon pole appears at approximately the 

* This work supported by the U. S. Atomic Energy Commission. 
1 G. F. Chew, Phys. Rev. Letters 9, 233 (1962). 
2 F. E. Low, Phys. Rev. Letters 9, 279 (1962). 

correct energy. This result is quite remarkable in view 
of the fact that the positions of both the nucleon pole and 
the N* are very sensitive to the cutoff parameter. Hence, 
the relation between N and N* is much more intimate 
than one would have expected from Chew's results. Once 
the cutoff has been fixed, we calculate all of the / < § 
partial-wave amplitudes. While the resulting bound 
state in the (1,1) amplitude and the width of the N* are 
of primary interest, the other phase shifts are also com
pared with experiment. 

Sections II , I I I , and IV contain the kinematical 
preliminaries, the definitions of the invariant ampli
tudes, and the partial-wave expansions. In Sees. V and 
VI we formulate the partial-wave dispersion relations 
with a set of parameters for the exchange of the nucleon, 
the (3.3) resonance, and the p resonance. All of these 
parameters are taken from experimental values except 
for the p-nucleon coupling parameter which is obtained 
through the isovector form factors. Numerical results 
are given in Sec. VII. 

II. KINEMATICS 

Scattering amplitudes for the process pr\-qi —> ^2+^2 
shown in Fig. 1 are considered as functions of the 

FIG. 1. Diagram representing the 
x — N interaction. 
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familiar scalar variables3 

+2[(^+m2)(£s
2+M2)]1/2, (2.1) 

t= - (Pi-p2)2= -2k*(l-zs), (2.2) 

u=-(p1-q2)
2=2m2+2fx

2-s-t, (2.3) 

where m is the nucleon mass, ju is the pion mass, 
k8 and zs are the center-of-mass momentum and cos0, 
respectively. 

If the diagram in Fig. 1 is considered to represent the 
annihilation of a nucleon pi with an antinucleon (—^2) 
into two pions (—qi) and #2, then the same scalar 
variables have different meanings in the center-of-mass 
system of the nucleon-antinucleon pair. Here, 

t=4(q2+fx
2) = 4:(p2+m2), (2.4) 

s=-f-f+2pqzt, (2.5) 

u=2m2+2jx2-s~t, (2.6) 

Since A and B are invariant amplitudes free of 
kinematical singularities,3 it is clear that S ^ and 3:

+_ 
will contain kinematical singularities as explicitly shown 
in Eqs. (3,3) and (3.4). These must, of course, be con
sidered when we construct the p-meson exchange term. 

3 W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960); 
119, 1420 (1960). 

where p and q are the center-of-mass momentum of the 
nucleon and the pion, respectively, and zt is the cosine 
of the scattering angle in this channel. 

Again, Fig. 1 can also be interpreted as representing 
the scattering of a pion (—#2) by the nucleon pi result
ing as (—qi) and p^ The role of s and u interchanges 
here as compared with the original scattering process. 
Thus, 

« = r f + ^ + 2 W + 2 [ ( W + r f ) ( W + / i J ) ^ , (2.7) 

t~-2ku
2(\-zu), (2.8) 

s=2m2+2ti
2-t-u. (2.9) 

III. CROSSING SYMMETRY 

The relation between the pion-nucleon scattering 
amplitude and the NN-^-TT amplitude was given by 
Frazer and Fulco.3 Following their notation, we use the 
A and B amplitudes for pion-nucleon scattering, ^-H-
and 3:

+_ for NN —» TIT amplitudes. The crossing rela
tion reads 

IV. PARTIAL-WAVE AMPLITUDES 

We relate the A and B amplitudes to the partial-wave 
amplitudes for the s channel, i.e., w—N scattering, as 
follows: 

Ms,*) = h E ( 2 / + 1 M I ( * ) P I ( S . ) , (4.1) 
1-0 

4W*i»/»(j,fl = i [ (4; 1)4 w » ( « , f l + ( - l ; 2)4»'»(«,<)] 

t \ w 

= - 8 x (1;1) ' ( — ) 
At-4m2/ 

5F++<+>(/,5)-
2mzt 

(*-4*»»)y*(i-s,*) 
-*+_<+>(* 

1/2 
,*)] 

+ (2 ; - l ) 7
 l V'2 

.V-4w 2 / 

2mzt 

( i ! _ 4 O T 2 ) l / 2 ( 1 _ 2 i 2 ) l / 2 
$4_<->(*: 4> 

j B( l /2;3/2)(^)=_l[-(4 ; 1)_B<3'2> ( « , < ) + ( - 1 S 2)SW» («,<)] 

16TT 

(*-V)v* (!-*«*) 1/2 
[ (1 ; l)SF4_(+>(/,*)+(2; -!)&,_<-> (M)], 

(3.1) 

(3.2) 

where the first variable always designates the center-of-mass energy squared in the appropriate channel and the 
second variable is the corresponding momentum transfer squared. 

The inversion of (3.1) and (3.2) gives four equations for the ff's in terms of A and B 

sW+i i f r //-4wV2 / / -vv'2 i 
->M =—• ( l ; l ) [ - ( - y - j A^(s,t)+mzt(——J S<v»Mj 

+ (2;-l) |-( J AW*>(s,t)+mzl J SW«(5 >0| =- ( i ; - i ) 

24T 
-{S—>M}, (3.3) 

{F+_fr.-)«,5) = 
48x 

- [ (1 ; l)B^(s,t)+(2; - 1)S<«« (*,<)]= (1; - ! ) [ , - > « ] . (3.4) 
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B(s,t) = iT,(2l+l)Bl(s)Pi(z.). 
Z-0 

(4.2) 

The phase shifts are then related to A i and Bi as follows: 

hj(W) 

sin5i„j-i/2(W) exp[ffii»/_i/2(W0] 
(E+m)ks

2J 

FIG. 2. The dia
grams representing 
the exchange of a 
single nucleon and 
the iV* in the u 
channel and the ex
change of the p in 
the t channel. 

(E+m)k2J 

sj-m 

sin5j=j+i/2(— W) exp[i5z==j+i/2(— W)~] 

(4.3) 

Aj_l/2(s)+(W-rn)Bj-.1/2(s) 

/E—m\ 
( - y - J C-^^+i/2(*) + (WH-ffO^+i/2 (*)] [; 
/E—m\2 

+ 

We shall use the following combinations of partial-
wave amplitudes when considering the interaction due 
to the exchange of the p meson 

l\{t)=(mEt/p\2) 

XlT+^(t)-(Et/2^m)TJ^(t)-], (4.8) 

where W^s1'2 and E=(s+m2-fx2)/(2W). The factor T2(t)=(Et/2p2q2) 
( E + m ) - 1 is introduced so that hj(W) has a constant X [ - 2 V " (0+ (m/2^Et)TJ^ (0], (4.9) 
behavior a t the threshold points W= (mzLu) and , r. 1̂ 1/9 -n J -n 4.1. 17 T? i r 
w = _ (m±u) The factor ^ is included so that all the w h e r e £ f = = ^ ' F l a n d F 2 a r e t h e F r a z e r - F u l c o a m P h ~ 
VV — \ "ri'ZjO IX J. JL11C l d C L U l O l b IJ.IU1UU.CU. o U t l l d t d l l t l l C . •% i • i ± • J ,1 i i * » / , i i i 
7, £ j j i_ ^/i /TT7\ ^ • r •*. j • • • i tudes which enter into the calculation of the charge and 
hs are bounded by 0(1 / W) at infinity and, m principle, ,, ,. * . £ £ * . *• i 

A. £ ,_/ \ ' ,. . 1 x- the magnetic moment form factor, respectively. 
satisfies a no-subtraction dispersion relation. ° ' ^ ^ 

The invariant amplitudes A and B can also be ex
pressed in terms of partial-wave amplitudes hj as 
follows: 

.4(5,0 = 4* £ ((^s^-1AJ)^(^)r(^+m)PV+i/2(2s) 
.7=1/2 I L 

+ (- )(^~^)^-l/2fe) 
\E—m) 

+LW 

B(s,t) = 4r- Z \{ks
2J-l/sJ)hj{W) 

J"=l/2 [ 

/E-{-m\ 

-W] 

V. INTERACTION TERMS 

In this section we will consider the w—N interaction 
generated by the exchange of resonant- and single-
particle intermediate states in the t and u channel. 

We will first take the renormalized Born terms corre
sponding to the diagrams in Fig. 2 where the resonances 
have been treated as single-particle states. Unitarity 
will later be enforced on the partial-wave amplitudes in 
the s channel. 

The nucleon pole term contributes onlj- to the 
( 4 4 ) amplitude B, 

B^2{ufy^3g2/{m2-u), (5.1) 

where gr
2 is the rationalized ir—N coupling constant. 

The contribution of the 3—3 resonance is given by 

/E+m\ 
•( W-1/2 
\E-mJ 

(*.) +[_W->-W~]\. (4.5) ^333/2(*M) = 87T733 
033—i{mzz+m)s 

The expansion of SF++ and 3 :
+_ in terms of NN —> -KIT 

partial-wave amplitudes is given by3 £33 3 / 2 ( *M) = 87T733 

g ?
+ + ^ - > ( / , 5 ) = ( l / ( 7 ) E ( J r + 4 ) ^ < + ^ ( 0 i > j f e ) , (4.6) where 

j 

a n d ass = [ (««33—m) (£33+mf 

(5.2) 

(5.3) 

SF+_<+»->(/,*) = 
( l-z<2) 1/2 

XE /+* 

—|(w33+w)(Jw 33 2—w 2—/z 2— ( m 2 — M 2 ) 2 / 2 W 3 3
2 ) 2 ] , 

^33=[-(^33+w)2 

+ t (w2+M
2-Jm332+ (m2-M

2)2/2w332)], 

p_y (+;-> / , \p7 ' ( z ) . (4.7) and £33 is the nucleon energy at the 3 — 3 resonance, W33 
7 [/(/H-l)]1 '2 ' is the mass of the N*. The coupling parameter 733 is 

file:///E-mJ
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normalized as follows: 

Im{hz/2(W)/s}c^.TryzZ8(W—MM) (5.4) 

and can be obtained from the experimental width 
of the TV*. 

The exchange of a p meson of mass mp gives rise to 
poles in the invariant amplitudes as a function of the 
t variable. In terms of the NN—^TTTT amplitudes $++ 
and SF-i—, we find 

-8TT •(-i-f, 
At-4M2/ 

£H_,P<->(*,J) 

2mzt 

67T72 

(-) 't,s) 1 

- ( 2 5 + / - 2 W 2 - 2 M 2 ) , (5.5) 

16a 

(/-V)1/^!-^2) 
-[>+_,/-> M ] 

1/2 

= — 12- j r j -
7 i 2my2 

Lmp
2—/ mp

2—tJ 
(5.6) 

where 71,2 are the residues which are normalized so 
that lmri,2(0—?T7i,25(/---wp

2). Furthermore, if these r ' s 
are used to calculate the nucleon-vector form factors, 
the following ratio is determined: 

T1/72-
<V(0) O.Se 

<V(0 ) 1.83(«/2f») 
(5.7) 

where the p subscript indicates the p contribution to the 
nucleon form factors. The fact that the contributions 
of the p are nearly equal to the total charge and mag
netic moment is the result of experiment4 as well as our 
previous analysis of the nucleon form factors.5 

VI. DISPERSION RELATIONS 

Before writing down partial-wave dispersion relations 
in the s channel, we first summarize the contribution to 
A (s ;t) and B (s ;t) obtained when all of the interaction 
terms are inserted into the crossing relations Eqs. (3.1) 
and (3.2). We use the superscript L to indicate that 
these terms have singularities only outside of the 
physical region in the s channel. We have 

72 
Aw.*iv(s,t)= (2; - l ) ( 6 i r ) [ 2 ^ + / - 2 m 2 - 2 / x 2 ] + ( | ; iX&ryas) 

((mu—m)(E3 Z+m)2 ?>{mzz+m) 

and 
miz'—u [• 

gr f 7i Zmy2~\ 
B ^ » ' « M = ( 1 ; - 2 ) + ( 2 ; - 1 ) ( - 1 2 T T ) + + ( - f ; - iX&ryss) 

m2—u Lm0
2—t mD

2—tJ 

(m2-fx2)2-]} 
W 2 + J U 2 _ _ i W 3 3 2 _ ^ + ( 6 t ) 

2(mzz
2-u) L 2m%%

2 J J 

2my2 

(Ezz+m)2 2 r (m 2 - M
2 ) 2 

X̂  + - : H m2+^2-imu
2-s+ 

3
2—u 2{mzz

2—u) -T" • ( 6 .2 ) 

Partial-wave projections of AL(s;t) and BL(s;t) are 
given by Eqs. (4.1), (4.2), and (4.3). For the remainder 
of this section, we will suppress the /-spin index. 
Explicitly, we rewrite Eq. (4.3): 

hjL(W)--
SJ-112 

16TT£S
2/-

X AJ-1/2
L(S)+(W-M)BJ-1/2

L(S)+ 
/E—m\2 

\ K ) 

/+1/2 ^ )+(W+tn)BJ+m
L(sm. (6.3) 

Since A L(s \t) and BL(s \t) are analytic in the ^-channel 
physical region, hjL(W) is also analytic in the physical 
region; W>(m+p) for the l~J—\ amplitudes and 
W< — (tn+n) for the l=J+% amplitudes. I t is easily 
seen that singularities of hjL(W) appear in the center 
region of the W plane including branch cuts on parts 

of the real axis, all of the imaginary axis and the familiar 
circle of radius (m2—JJ2)112. By evaluating the exchange 
terms directly, we have avoided considerations of cuts 
on such complex domains. 

Throughout this paper, we shall use dispersion rela
tions only as a tool to impose the unitarity condition on 
partial-wave amplitudes in the physical region while 
keeping all the singularities in the exchange terms un
changed. The elastic unitarity condition on hj{W) is 

lim Ivahj(W-{-ie) 

/E+m\ 
[ )\ks

2Jhj2(W)\; W>(m+ui) 
\ W2J / 

/E+m\ 

\ W2J ) 
k2Jhj2(W)\) W<-(m+p). (6.4) 

4 C. de Vries, R. Hofstacker, and R. Herman, Phys. Rev. Letters 
8, 381 (1962). 

5 J. S. Ball and D. Y. Wong, Phys. Rev. 130, 2112 (1963). 
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FIG. 3. The value 
of k cot5i as a func
tion of o>=W—m for 
the / = £ , s-wave solu
tion obtained with 733 
=0.06, and T l = - 1 . 0 . 

and 

N(W) = hjL(W)+~ / + / dW 
7T J —oo J (jn+M) 

rW'hjL(Wf) - WhjL(W)-l/ Ef+m\ 

L W'-W Jw,2W 
X\ks'\*

JN(W'). (6.8) 

Unfortunately, the hjL(W) resulting when the ex-

We have put the k8
2J factor inside the absolute sign to 

avoid all possible confusion on the over-all sign. 
If we assume that hjL(W) is sufficiently convergent 

for large W, the dispersion relation for hj(W) takes the 
form 

hj(W) = kjL(W)+- / + / dW 
IT J —to 

-f 
X-

(£'+m)|fc8'
2^/(W')l 

W'2J{W'-W) 
(6.5) 

<X} 

k 
co

t 

600 

260 

220 

180 

140 

100 

60 

20 

0 

-20 

- 6 0 

-ioo 

: \ 

^ \ ^ 
-

-

-

-
-r ^ \ 

1 \ 1 1 1 1 

FIG. 4. The value of k3 cotSn for the I=\\ / = i ^-wave solution 
obtained with 733=0.06 and 71= — 1.0. 

Once hjL(W) is known, Eq. (6.5) can be solved by the 
well-known N/D method: 

hj^N/D, 

where 

D(W) = 1-— / +/ 
7T J —oo J ( 

X 

dW 
(»H-M) 

/E'+m\\ks'\
2JN(W') 

- ) 
V 

W>2J+l/ (W'-W) 
(6.7) 

FIG. 5. The value of 
kscot8 for the I=i, 
/ = f ^>-wave solu
tion obtained with 733 
= 0.06 and 7 1 = - 1 . 0 . 

change terms given in Eqs. (6.1) and (6.2) are sub
stituted in Eq. (6.3) behave like W for large W. With 
this asymtotic behavior one can show that no solution 
exists for Eq. (6.5) in its present form. This is the well-
known divergent behavior associated with forces arising 
from the exchange of particles of spin > 1. To avoid this 
difficulty we modify Eq. (6.5) by introducing a cutoff 
for all dispersion integrals depending on a single 
parameter W c, This consists of simply terminating the 
dispersion integrals in Eqs. (6.5)-(6.8), i.e., replace 00 
by Wc. This will yield a solution for all partial-wave 
amplitudes depending on one arbitrary parameter Wc. 
Numerical solutions for Fredholm equations of the type 

FIG. 6. The value of ks cot5 for the I = i, J = $ <£-wave solution 
obtained with 733=0.06 and 71= — 1.0. 
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TABLE I. The results obtained by solving the ir—N dispersion relations for various values of the input parameters 733 and 71. The 
tabulated quantities are calculated values denned as follows: m is the nucleon mass; g2 is the pion-nucleon coupling constant; ^ 3 is 
the width of the N*; a\ and a% are the s-wave scattering lengths; the C2i,2j are the ^-wave scattering lengths; the ^27,2/ are the d-wave 
scattering lengths. The value of the cutoff parameter used to produce ^33 = 8.8 is Wc> All quantities are given in units in 
which -h—c—ix—X. 

733 C\\ c3 i C\z We 

0.05 
0.05 
0.05 
0.06 
0.06 
0.06 
0.07 
0.07 
0.07 

- 1 . 0 
- 0 . 5 

0.0 
- 1 . 0 
- 0 . 5 

0.0 
- 1 . 0 
- 0 . 5 

0.0 

5.6 
5.6 
6.0 
6.0 
6.1 
6.9 
6.2 
6.4 
7.6 

21.8 
18.6 
16.5 
23.6 
20.7 
18.5 
25.0 
22.2 
24.7 

0.96 
0.97 
0.84 
1.00 
0.98 
0.98 
0.97 
0.95 
1.04 

-0.511 
-0.459 
-0.390 
-0.504 
-0.448 
-0.372 
-0.497 
-0.439 
-0.359 

-0.137 
-0.176 
-0.196 
-0.153 
-0.184 
-0.197 
-0.165 
-0.191 
-0.198 

-0.068 
-0.056 
-0.080 
-0.105 
-0.108 
-0.311 
-0.147 
-0.176 
-2 .68 

-0.094 
-0.066 
-0.046 
-0.086 
-0.061 
-0.043 
-0.080 
-0.057 
-0.041 

-0.047 
-0.032 

0.081 
-0.045 
-0.022 
+0.301 
-0.042 
-0.007 
+4.25 

0.334 
0.324 
0.317 
0.336 
0.324 
0.316 
0.336 
0.321 
0.313 

-0.0003 
-0.0013 
-0.0043 
-0.0005 
-0.0017 
-0.0068 
-0.0006 
-0.0021 
-0.0106 

0.0007 
0.0010 
0.0013 
0.0006 
0.0010 
0.0013 
0.0006 
0.0009 
0.0012 

16.8 
17.5 
18.3 
16.6 
17.3 
18.0 
16.4 
17.0 
17.7 

(6.8) are readily obtainable by the use of a computer. 
The solution for N(W) is then substituted in (6.7) and 
then into (6.6). 

VII. NUMERICAL PROGRAM 

The value of mp, mzzy 733, and g? for the exchange 
terms are all taken from experimental data 

w p = 5 . 4 , 

W33=8.8, 

y 33~0.06, 

gr
2/47T=14. 

(7.1) 

On the basis of a calculation of the nucleon-isovector 
form factors we estimate that y i~—1.0 , but to illustrate 
the effect of this parameter we will give solutions for 
71= —1.0, —0.5, and 0.0. Furthermore, while we expect 
the uncertainty in 733 is of the order 10%, we will give 
solutions for 0.05<73 3<0.07. 

Our procedure is the following: For each set of FIG. 8. The value of kz cot5n for the / = §, J = i ^>-wave solution 
obtained with 733 = 0.06 and 71= — 1.0. 

parameters the value of Wc is adjusted to give the 3—3 
resonance at W=8.8, we then calculate all of the / < § 
partial waves from Eqs. (6.6) to (6.8) using that value 
of Wc For each set of parameters used a zero appeared 
in the D function for the J=%, / = § amplitude, thus 
producing the nucleon as a bound state of the TT—N 
system. I t should be emphasized that the nucleon pole 
was included only in the ^-channel exchange term and 
that the ^-channel pole was not included. For each set 
of parameters, we calculate the resulting nucleon mass, 
7T—N coupling constant (—f times and the residue of 
the pole appearing in A1/2), the width of the N*, and the 
scattering lengths for each partial wave. These results 
are given in Table I. For the parameters 733=0.06 and 
71= —1.0 we have plotted in Figs. 3-10 the ¥ cotbi for 
each partial wave. For comparison, the scattering 
lengths obtained from experimental data by Woolcock6 

FIG. 7. The value of k cot5 for the / = § s-wave solution obtained 
with 733 = 0.06 and 71= — 1.0. 

6 W. S. Woolcock, Proceedings of the Aix-en-Provence Conference 
on Elementary Particles, 1961 (Centre d'Etudes NuclSaires de 
Saclay, Seine et Dise, 1961), p. 459, 
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are given: ai=0.170±0.005, a3=-0.089±0.004, cn 

= -0.104±0.006, clz= -0.030=b0.005, c3i= -0.040 
±0.004, and c33=0.215db0.004. The experimental width 
of the N* is r33~0.7. It should be emphasized, however, 
that we have made no attempt to adjust the parameters 
733 and 71 to produce a good fit to scattering. 

VIII. CONCLUSIONS 

The solutions we have obtained for the w—N partial 
waves have the following interesting features: (a) They 
are solutions of relativistic dispersion relations satisfying 
the theoretical requirements of physical unitarity in the 
elastic-scattering region and containing what are be
lieved to be the most important exchange terms. Also, 
the pion-nucleon partial-wave amplitudes that are not 
included as interaction terms in the u channel are in 
fact small when calculated in the s channel. Thus, 
crossing symmetry is approximately satisfied (failing to 
the extent that the calculated 733 and gr

2 are not identi
cal to those used in the interaction terms), (b) The 
nucleon is produced as a bound state with approxi
mately the correct mass, (c) The residue of the nucleon 
pole and the width of the (3—3) resonance obtained 
from our solutions are typically within 30% compared 
with experimental values, (d) The rest of the partial-
wave amplitudes are in reasonable agreement with 
experimental data except for the / = § s wave which we 
will discuss later. 

The disagreement between the values of c33 given in 
Table I and the value from experiment is due to some 
extent to the curvature of kz cotfe near threshold. If 
one uses a linear extrapolation from the resonance region 
to threshold (the dashed line in Fig. 9) one obtains a 
scattering length consistent with the r33 given in 
Table I. In our model this curvature appears only 
below 50-MeV lab kinetic energy and may, in fact, be 
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present in the experimental data for k3 cot533. For this 
reason T33 is a better measure of the agreement of our 
(3,3) solution with experiment. 

The only result that seems to be in clear contradiction 
with the experimental analysis is the I=% s-wave 
scattering length. One may argue that the value of a,\ 
should receive a substantial attractive contribution 
from the low-energy pion production where the pion-
pair is likely to be produced in the 1=0 state. In tact, if 
one examines the isotopic spin of the lowest energy 
inelastic final states, one finds that they are pre
dominantly / = J; for example, the 1=0 pion-pair plus 
a nucleon, N—rj, N—co, and the K—A are pure / = § , 
while the one-pion exchange term leading to p—N favors 
7 = ^ t o / = f b y a ratio of 4 to l.7 Thus, one would 
expect inelastic effects to be more pronounced for 1= J 
amplitudes. We have, however, made no attempt to 
include any inelastic states in our present treatment of 
the pion-nucleon problem. The value of a3 seems to be 
in surprisingly good agreement with the observed value, 
particularly in view of the fact that it requires two 
orders of magnitude of "suppression'' from the anoma
lously large nucleon pole term. We should mention that 
the only amplitudes that are sensitively dependent on 
the p-meson exchange contribution are the / = J, / = f , p-
and d-wave amplitudes. Without the p-meson term, the 
repulsive interaction term arising from the N and N* 
exchange is so strong that zeroes are created in the real 
part of the D functions above the threshold. These 
zeroes do not correspond to normal resonances, however, 
as the amplitudes have the sign opposite to that of the 
usual resonance amplitude. When the p-meson term is 
included these zeroes disappear, and the p- and d-wave 
phase shifts are small. 

7 J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961). 


