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By means of a model for low-energy pion-nucleon scattering, it is shown that analyticity, unitarity, and 
the crossing properties are sufficiently strong conditions to determine the irN coupling constant, the P-wave 
phase shifts [including the position and width of the (f ,§) resonance] and to give restrictions on the TTTT cut. 
In addition, the solution for the (i,i) scattering amplitude turns out to be of the form describing the nucleon 
as a bound state of the TN system in close analogy to a bound state in potential theory. In the model, the 
7T7T cut is represented by a pair of conjugate poles, and crossing is approximated by the static crossing rela
tions. No cutoff parameter has to be introduced, and the crossing relations are fulfilled to a high degree. 

1. INTRODUCTION 

IN recent years, much progress has been made in the 
understanding of strong interactions. However, the 

calculations of the 7r-meson nucleon-scattering phase 
shifts using partial-wave dispersion relations1-3 are still 
in an unsatisfactory state. They rely on detailed experi
mental information. An arbitrary cutoff parameter has 
to be adjusted even to give a qualitative fit to the (3,3) 
resonance and its position. Another major difficulty is 
to find a solution which fulfills the crossing relations. 
Furthermore, in these calculations, the integrals in
volved have their main contributions from regions far 
above the validity of the elastic unitarity condition, due 
to kinematical factors arising from threshold behavior. 
These difficulties unfortunately also remain in the inter
esting treatments4-5 initiated by Chew,4 where the sug
gestion is explored that the (3,3) resonance provides the 
force (by means of a bootstrap mechanism) to make the 
nucleon a bound state. Many authors therefore feel that 
a knowledge of the contributions from inelastic channels 
and about the high-energy behavior is vital for a success
ful calculation. This is certainly true for any precise 
treatment. I t is the purpose of this paper to show, how
ever, that the entire qualitative behavior of the P-wave 
scattering amplitudes for small energies may very well 
be determined by singularities which lie relatively close 
to the physical threshold. The cutoff in the static Chew-
Low theory is needed because of the strong increase of 
the P-wave amplitudes due to the q2l+1 threshold be
havior. I t seems plausible to us, however, that this in
crease will be reduced through nearby singularities in a 
more important way than through the effect of relativis-
tic nucleon motion at much higher energies. We postu-

f Supported in part by the U. S. Atomic Energy Commission. 
* Present address: Institute for Theoretical Physics, University 

of Heidelberg, Philosophenweg, Germany. 
1 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). 
2 G. Salzman and F. Salzman, Phys. Rev. 108, 1619 (1957). 
3 S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486 

(1960); J. Bowcock, W. N. Cottingham, and D. Lurid, Phys. Rev. 
Letters 5, 386 (1960). 

4 G. F. Chew, Phys. Rev. Letters 9, 233 (1962). 
5 L. A. P. Balazs, Phys. Rev. 128, 1935 (1962); F. E. Low, 

Phys. Rev. Letters 9, 277 (1962); V. Singh and B. M. Udgaonkar, 
Phys. Rev. 130, 1177 (1963); J. S. Ball and D. Y. Wong (to be 
published). 

B 

late, therefore, that the nearby portion of the T-T cut is 
precisely of a form leading to such a reduction. This 
assumption automatically leads to interesting restric
tions for this cut which can no longer be chosen com
pletely arbitrarily. 

In order to study these ideas, we have solved numeri
cally a model which contains the essential features of 
the x-meson nucleon system at low energies, but which 
is still simple enough to allow a thorough investigation 
of its solution. In particular, we wish to incorporate 
unitarity and crossing to a high degree in order to cal
culate the P waves and the TN coupling constant. 

Our model consists of representing the TTTT cut crudely 
by a pair of conjugate poles, and using the static cross
ing relations.1 We find that in the framework of this 
model, the irN coupling constant, the P waves [includ
ing the (3,3) resonance position and width], the posi
tion and residues of the TTTT poles, are so intricately inter
woven that they determine one another. Also, without 
additional assumptions the nucleon turns out to be a 
bound state of the TTN system in much the same way as 
bound states occur in potential theory. There is no need 
for a cutoff parameter. 

In Sec. 2, we describe the singularities of the irN 
partial-wave scattering amplitudes. The coupled integral 
equations for the process are written down in Sec. 3, 
and the method of solution indicated. Lastly, the results 
for our model are stated and discussed briefly in Sec. 4. 

2. ANALYTIC STRUCTURE 

The analytic structure of the pion-nucleon partial-
wave scattering amplitudes can be deduced from the 
Mandelstam representation. In our model, which is 
relevant to low-energy phenomena, we shall take a 
simplified version of the singularities in the vicinity of 
the physical threshold, as shown in Fig. 1 for the E 
plane, where E is the total energy of the TT meson. The 
right-hand cut is the physical cut; the poles at the origin 
are the usual static nucleon poles. They consist of two 
parts: One corresponds to a short cut of the full relativis-
tic theory, which is a force arising from the nucleon ex
change ; the other part originates from the true nucleon 
pole in the energy variable and appears only in the 
/—J, / = § state. The arc in the figure arises from TTTT 
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FIG. 1. Singulari
ties of Ta(E) in the 
E plane. 

interactions, and the contribution from the p meson 
(mass =750 MeV) starts from the positions indicated. 
This effect we approximate in a crude way by two poles 
on the imaginary axis at the points E~±ib. 

We shall further use the crossing relations which 
follow from the correct expressions by letting the nucleon 
mass become large, namely the static crossing relations.1 

These relations do not mix states of different orbital 
angular momentum. In particular, we shall deal with 
P waves, which are important because the nucleon has 
the same quantum numbers as the / = ! , / = ! scattering 
state, and because of the well-known strong resonance 
in the /=•§ , J=i state. 

3. FORMULATION AND SOLUTION PROCEDURE 

In our treatment we shall use the amplitudes 

Ta(E) = E(l+E2/b2)ei8<* sinda/q*(E). (1) 

The label a denotes (27,2/) a n d a = l , 2, 3 corresponds 
to (1,1), (1,3)= (3,1) and (3,3), respectively. The am
plitudes Ta(E) therefore have only the right- and left-
hand cuts of Fig. 1 along the real axis. The cuts of the 
pion momentum6 q(E)=(E2—l)lf2 have been taken 
along the real axis for | E | > 1 , and thus r«(E) = r«*(E*). 
The asymptotic behavior of Ta(E) is given directly by 
the asymptotic behavior of the phase shifts. 

The crossing property for T is 

Ta(-E)=-?:caf>Tf>(E) (2) 

in the cut E plane, where 

cap~ 
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Putting Ta(E)=Na(E)/Da(E), where N contains the 
left-hand cut and D the right-hand cut,7 we obtain the 

6 We take the units :h = c — mir= 1. 
7 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 

Na(E) = ga+-

Da(E) = l-
E 

dE'-
Aa(E') 

E'(E'+E)' 

h(E')Na(E') 
7 

Ef(E'-E) 

(3) 

(4) 

where h(E) = q*(E)/E(l+E2/b2), and Da(E) has been 
normalized to 1 at the origin. I t may be seen that the 
(l+E2/b2) factor arising from the TT poles reduces the 
effect of the qz(E) increase in the integrand of (4). We 
have assumed that Na(E)/E and Da(E)/E—>0 as 
E—>°o. The quantity Aa(E) is the discontinuity of 
Na(E) across the left-hand cut; ga is given by 

(5) g*=m - 2 
V+4 

with f2 the renormalized unrationalized pion-nucleon 
coupling constant. The quantity gi= — (S/3)f2 can be 
written gi= + (l /3)/2— (9/3)f2 where the second term 
originates from the true nucleon pole. The physical 
phase shifts can be calculated from 

h (E) cotSa (E) = ReDa (E)/Na (E). (6) 

Further, on taking the imaginary part of the crossing 
relation (2), we obtain 

I m r « ( - E ) = - E cap ImTfiiE), (7) 
/ 3 = 1 

which yields a further equation involving Aa(E): 

h(E)Aa(E)/Da(~E)=Z CafiSw?Sp(E). (8) 
0-1 

To obtain a solution for Ta(E), we will use only the 
imaginary part of the crossing relation (7) and (8). This 
relation should be a good approximation to the true 
situation for low energies. 

I t is convenient to define the function £)a(E) which is 
closely related to Da(E): 

r E r ba(E') -i 
£>«(£) = exp / dE'— . 

L TTJI Ef(E'-E)J 
(9) 

S)a(E) has the same analytic properties, the same phase 
along its cut, and normalization, as Da(E). They may, 
however, differ by their asymptotic behavior and there
fore by a factor which is a real polynomial in E with 
value 1 at E = 0 . The asymptotic behavior of £)a(E) is 

©tt(E)->E5«(°°>/7r 

apart from logarithmic terms.8 

8 The phase shifts 8a(E) are denned to be zero at threshold. 
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An interation procedure was adopted to solve Eqs. 
(3), (4), (6), and (8). To start, Aa

l(E) was taken to be 
zero, that is Na

l(E)=ga which is obtained from (5) 
with an input value of p. In subsequent iterations, first 
Aa(E) is calculated from Eq. (8) using the values of 
8a and Da (or £)a as described later) of the previous 
iteration. This provides new values for Na and Da which 
are then used to calculate new phase shifts. 

It follows immediately from (4) and (6) that the first 
iteration phase shifts go logarithmically for large E 
as hl -» -7T, 82

l ~> -7T, and 8z
l -> 0. For a=3, £>«*(£) 

as calculated from (9) with these first iteration phase 
shifts is therefore equal to Da

l(E). However, for the 
cases a—1,2, 3VC&) and Da

1(E) are not equal, but differ 
by a polynomial of degree one in Ey thus illustrating 
their different asymptotic behaviors. Indeed, for 
a =1,2, Da

l(E) has a zero for a negative value of E 
[^corresponding to a ghost in Ta

1(E)']. In subsequent 
iterations, however, the values of D2(E) and £>2(£) 
rapidly became identical, showing that the final ampli
tude T2(E) has no ghost. Also for large energies, 82(E) 
like 83(E) approaches zero rather than — T. The ampli
tude Ti(E), on the other hand, behaves differently. The 
phase 81(E) continues to go asymptotically to — T and a 
ghost remains in this amplitude. It is not difficult to see 
how this ghost originates. The denominator Di(E) be
haves asymptotically (again apart from logarithmic 
terms) as 1/EXpolynomial in E. The ghost will dis
appear only if Ni(E) likewise contains this same poly
nomial factor so that it cancels out exactly in (6). This 
cancellation does not occur and a ghost persists in Ti(E). 

This situation is not discouraging. The behavior 
81(E) —> — 7r and Di(E) —» 1/E opens the way to use 
unsubtracted equations for this phase. Since (3) and 
(4) simplify, no ghost will appear. If successful, this 
approach will lead to physically significant results. The 
nucleon can then be considered as a bound state and the 
residue of the (1,1) pole can be calculated and compared 
with the original coupling constant used. In this treat
ment, the nucleon pole is automatically kept at E=0, 
which fixes the binding-energy to be equal to mv. 

In a new treatment, therefore, after the first iteration 
we used for a = 1 the unsubtracted equations 

1 r At(E') 
Ni(E)=— / iW , (10) 

W i E'+E 

1 C °° h(E')Ni(E') 
Di(E)=— dE> , (11) 

J ! E'-E 

h(E)Ai(E)/®i(-E)=j: cip s i n V (12) 
0-1 

Equation (12) is different from (8) since Di(—E) is re
placed by 3)i(—E). This is appropriate for the second 
iteration since ^(—E) has the asymptotic behavior 
necessary for unsubtracted dispersion relations and does 

not produce a ghost. Then in the second iteration, ZV (E) 
as calculated from (11) is identical to £>i2(E) apart from 
a multiplicative constant. Subsequent iterations showed 
that this proportionality property is maintained; Ti(E) 
therefore no longer contains a ghost. The multiplicative 
constant, which is Z>i(E)/£>i(E), may be evaluated by 
taking E = 0 ; it is just Di(§). 

By using £>i(£) in (12), we have tacitly chosen a 
particular normalization factor for Ai(E) which is 
arbitrary in the unsubtracted Eqs. (10) and (11). But 
in order that Eq. (12) is consistent with (7), the two 
forms Di(E) and £)i(E) should not only be proportional 
but equal. Thus 2>i(0) as calculated from (11) must be 
1. We shall later make use of this condition to find the 
coupling constant /2 for which the three crossing rela
tions (7) are fulfilled. 

For the other amplitudes a=2,3, we continued to use 
the subtracted Eqs. (3) and (4). For a =2, again the 
values of D2(E) and S)2(E) in further iterations rapidly 
became identical, showing that T2(E) has no ghost and 
82(E)~>0 as before. The amplitudes for the phases 
a=2,3 are therefore markedly different from the ampli
tude for phase « = 1 where we found it possible to use 
unsubtracted equations. 

Following the above procedure, we obtained a reason
ably rapid convergence. Indeed, the eighth, ninth, and 
tenth iterations for Aa(E) were within 1% of the 
seventh; this was true for all the mesh values of E used. 
(In the computation, we used the equations with the 
range 1<E<<*> mapped on to the finite interval 
0<z<l where z=l/E, and employed 70 mesh points. 
Using 100 mesh points did not produce any noticeable 
change in the results.) 

This convergence implies that the crossing relations 
(8) and (7) for the imaginary part of Ta are satisfied 
precisely for a= 2,3 along the cuts. Equation (12) is 
also satisfied. However, the relation (7) for a=l is 
satisfied only if Z>i(0) comes out to be exactly equal to 
1. If this is indeed the case, then it follows that the 
computed amplitudes Ta(E) fulfill besides unitarity the 
dispersion representation 

E r°° 
Ta(E) = ga+- / dE' 

7T J 1 

<ImTa(E') * GafiImTf>(E')} , . 

[E'(E'-E) *-i E'(E'+E) J 

Here g2 and gz are given by (5) with f2 having its original 
input value. However, since we used unsubtracted 
equations for a= 1, gi in Eq. (13) is given by the formula 

- 1 r00 Ax(E
f) / 

gi=— / dE' /DM. (14) 
7T Ji E' I 

The value of gi computed from (14) is of course not 
necessarily identical to —8f2/3. 
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FIG. 2. Chew-Low 
plot with b/mjr=S 
and/2=0.087. 

As mentioned earlier in our iteration procedure, we 
have made use of only the crossing relations (7) for the 
imaginary parts of the amplitudes. From (13), however, 
it follows that the complete amplitudes obey the 
relations 

Ta(-E)=-capTp(E)+da (15) 

in the entire complex E plane, with da = ga+23/s=i3 Capgp-
Equation (15) differs from (2) by the real additive 
constants da. The condition da=0 implies complete 
crossing [Eq. (2)]. 

By way of checking the relation (15) numerically, 
we calculated Ta{E) for a= 1,2,3 at the two points 
E=ib/2 and ib on the imaginary axis, and found that 
(15) is indeed well satisfied (within 3%). 

4. RESULTS 

(a) For a fixed value9 of f2=0.087, it is possible to 
choose a value of b (namely 6—5.0) such that the graph 
for q* cotdz(E)/E agrees well with experiment for ener
gies below the (3,3) resonance, as shown in Fig. 2. We 
have also drawn the phase shifts da(E) in Fig. 3. 

The solution so obtained with these values of b and 
f2 satisfies Eq. (7) for a = 2,3 accurately for all values E 
along the cuts. However, for the small phase a = 1, the 
relation (7) is fulfilled to only 79%; this follows since 
the computed value of Di(0) turned out to be 0.79 in
stead of 1. The crossing relations (2) are then not satis
fied precisely. 

Equation (14) makes it possible to calculate the cou
pling constant fc

2, defined by fc
2= — 3gi/8, and to com

pare it with the value f2=0.087. I t turned out to be 
0.075, deviating from f2 by 13.5%. Such a good agree
ment for f2 may be partially fortuitous since it is cal
culated from a ratio. Nevertheless, the qualitative agree
ment suggests that our basic assumptions and the under
lying ideas are correct. 

An interesting aspect of our model is that the residues 
of the poles representing the TTTT cuts are not arbitrary 
parameters, but are automatically determined. In a 
more realistic treatment of the TN problem with a better 
approximation for the inr cut, it therefore seems very 
likely that the physical requirements for the amplitudes 
impose strong restrictions on the TTTT contribution. The 

residues Ra=—iTa(ib) for the amplitudes eUa sinda/q
z 

at the pole position E=5i were computed to be 
#1=0.020-0.055; , # 2 =0.013-0 .011i , and Rz= -0 .027 
—0.029i. For points on the imaginary axis, crossing 
requires 

Re#2/Re#3= -0.5, Re#i/Re#3= - 2.0, 

and Im(R1+R2-2Rz) = 0. (16) 

I t is seen that these equations are satisfied reasonably 
apart from the second (which is to be expected, since 
we have not attempted to obtain the best crossing in the 
present paragraph). The contribution from these TT 
poles for physical values of E, namely [Ra/(E—ib) 
+ c . c ] , is smaller than that estimated directly4 from 
information on the p meson. A comparison is, however, 
hardly possible since our static model is certainly not 
good at E= dz5i. 

(b) In this section, we pursue our model further. Here 
we take the crossing relations of the model more ser
iously in order to study their full implication, rather 
than try to obtain a fit to experimental data. 

The calculation of the amplitudes was carried out 
over a range of values of b and f2. For a fixed b, it turned 
out that there is only one value of f2 for which Di(0) = 1. 
The crossing relations (7) for the cuts are then fulfilled 
(to within 1%) for a= 1,2,3 and for all values of E 
along the cuts. The wN coupling constant is therefore 

FIG. 3. Graph of 
phase shifts 8a(E) 
against Ey with 5 = 5 
and/2=0.087. 

E/m^-

9 S. W. Barnes, B. Rose, G. Giacomelli, J. Ring, K. Miyake, and 
K. Kinsey, Phys. Rev. 117, 226 (1960). 



C O U P L I N G C O N S T A N T A N D P - W A V E P H A S E S H I F T S B195 

FIG. 4. Determina- I \ 
tion of f2 by crossing. a l 4r \ 
The line gives the \ 
values of the irN 0.12 k \^ 
coupling constant as * N. 
a function of the I 0.10 h ^ v 
pole position b. For ~_ \ . 
values of j 2 and b I ^ v . 
corresponding to this ' | X ^ 
line, the crossing re-
lation (7) is fulfilled. ' 4 5 6 7 8 

not a free parameter but determined by crossing. The 
dependence of f2 on b is shown in Fig. 4.10 

As discussed in Sec. 3, the total amplitudes Ta(E) 
fulfill, in addition, the relations (15) throughout the 
whole complex E plane precisely. The coupling constant 
gi evaluated from the expression (14) turned out to be 
77% of the corresponding input value along the line 
in Fig. 4. The constants da in (15) are therefore small 
but not zero; their values are di=0.69f2, d2= —0.14/2, 
and dz=0.28f2. Thus, unitarity and the imaginary part 
of the crossing relations (7) can be fulfilled precisely, 
but the real part is only approximately correct.11 This 
result again emphasizes our point that these general 
requirements are very restrictive. 

It is worth noting that the spectrum conditions, 
together with unitarity and crossing, determine the 
solution of our model. Indeed, for a given pole position 

10 There may be additional solutions of our model which do not 
appear in the iteration procedure. In the sense of a bootstrap 
mechanism, however, our solution should have more physical 
significance than others. 

11 The restrictions imposed on our model are slightly too 
stringent. Another pair of poles on the imaginary axis would al
most certainly remove this difficulty. 

b, one is able to deduce the irN coupling constant as well 
as the phases and the residues Ra at these poles for all 
three amplitudes. It may seem surprising that the WT 
poles should have such an important effect on the solu
tions for all the quantities, for example, f2 and the posi
tion of the resonance. On the other hand, in our model 
at least, all these quantities depend very strongly on 
one another and their individual effects cannot be sepa
rated out.12 

Another general feature coming out of all our cal
culations is that unsubtracted dispersion relations for 
Ni(E) and Di(E) exist. Moreover, the coupling con
stant gi is negative and the phase 5i tends to - x a s E 
becomes large. This gives evidence that the nucleon 
can be considered as a bound state of the irN system, 
very much equivalent to the situation of a bound state 
occurring in potential theory. 

Our findings enhance the viewpoint, particularly 
emphasized by Chew,13 that elementary constants such 
as the TTN coupling constant and the position of the 
(3,3) resonance are determined dynamically by a con
sistent application of general concepts. 
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