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Scattering problems for three or more particles cannot be solved by a direct use of those techniques, like 
the Fredholm or quasiparticle methods, which work for two particles. The trouble is that the kernel 
[W—Ho2~xV of the Lippmann-Schwinger integral equation is not L2, even for complex W. In fact, this 
kernel has a continuous spectrum, giving rise to cuts in the coupling-constant plane for multiparticle scatter
ing amplitudes. We show how to overcome this difficulty, and calculate all Green's functions and scattering 
amplitudes in a systematic and essentially rigorous manner. The dynamical equations are rewritten as a 
sequence of linear integral equations for successively larger systems, each with a kernel and inhomogeneous 
term which can be calculated explicitly from the solutions of the previous equations. The kernels are L2 

because they arise from connected graphs only, so each integral equation can be solved by the Fredholm, 
quasiparticle, or other methods. The distorted wave approximation appears very naturally in this approach. 
One minor by-product is an explicit upper bound on the binding energy of any i^-particle composite system 
with square-integrable potentials. A mathematical Appendix on relevant topics in functional analysis 
is provided. 

I. INTRODUCTION 

THIS is the third paper in our current series on the 
quasiparticle method. The first1 showed how fic

titious elementary particles can be introduced into any 
theory, and the second2 proved that two-body scattering 
problems can always be solved by perturbation theory, 
provided that such a "quasiparticle" is first introduced 
for each resonance or bound state. 

The present article is not directly concerned with the 
quasiparticle idea, but rather with the more general 
problem of calculating nonrelativistic scattering proc
esses (with or without rearrangement) for arbitrary 
numbers of particles. Heretofore it has not been possible 
to do this in a systematic way, because the Lippmann-
Schwinger integral equation for more than two particles 
is not of the type that can be solved directly by either 
the quasiparticle or the Fredholm method. The trouble 
can be expressed in a number of ways: 

(1) The kernel [JV-H^rW of the Lippmann-
Schwinger equation is not of the Hilbert-Schmidt (or 
L2) type, even if the interactions are well enough be
haved to give an L2 two-particle kernel. 

(2) The L-S kernel has a continuous spectrum. 
(3) The graphs for the L-S kernel are not connected. 
(4) The scattering amplitudes are not meromorphic 

functions of the coupling constant, but contain cuts, as 
well as the poles which are present for two particles. 

(5) The "Fredholm alternative" does not hold. 
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1 Steven Weinberg, Phys. Rev. 130, 776 (1963). This article will 

be referred to as A. (See also other references quoted in A.) The 
relativistic case has been treated in a preliminary way by the 
author in the Proceedings of the 1962 High Energy Conference at 
CERN (CERN, Geneva, 1962), p. 683. The discussion in A can 
be extended quite easily to the true multiparticle case, as will be 
shown in the next paper of this series. 

2 Steven Weinberg, Phys. Rev. 131, 440 (1963). This article will 
be referred to as B. 

These difficulties are discussed in some detail in Sec. 
II, and we show how to overcome them in Sees. III-VI. 
Our method consists of rewriting the Lippmann-
Schwinger equation as a sequence of linear integral 
equations with connected and hence L2 kernels,3 which 
can be solved in succession by either the quasiparticle, 
Fredholm, or "algebraic" method, or even (if no com
posite particles prevent it) by ordinary perturbation 
theory. 

To a mathematician this would constitute a solution 
of the multiparticle problem, but the question naturally 
arises whether it is a convenient solution for actual com
putation of scattering amplitudes and binding energies. 
I do not know the answer, but there are two grounds for 
hope. First, our experience4 with two-particle problems 
has shown that the quasiparticle method is a very 
effective way of solving scattering problems with an L2 

kernel. And second, the formalism developed here leads 
quite naturally to the distorted wave approximation. 
(We may have more to say about this in a later article.) 
At any rate the attitude adopted throughout the present 
paper is that a problem is essentially solved if it is re-

3 This is also the essence of the method of solving the three-body 
problem developed by L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 
39, 1459 (1960) [translation: Soviet Phys.—JETP 12, 1014 
(1961)]; Dokl. Akad. Nauk. SSSR 138, 565 (1961) and 145, 301 
(1962) [translations: Soviet Phys.—Dokl. 6, 384 (1961), and 7, 
600 (1963)] and by C. A. Lovelace, Lecture Notes for the 
Edinburgh Summer School, July 1963, and paper in preparation. 
I am very grateful to Mr. Lovelace for informing me of his work 
and that of Faddeev. The Faddeev-Lovelace method is very 
similar to the one presented here for three particles in Sec. I l l , 
with the extra advantage that the original interactions no longer 
appear once the two-body problem has been solved, a point of 
some importance if the potentials are very singular. However, 
their method has the minor disadvantage of involving a great 
many more amplitudes and equations, and the possibly major 
disadvantage of being very difficult to generalize to more than 
three particles. The three-particle problem is qualitatively simpler 
than other multiparticle problems, because only one composite 
particle at a time can appear in any state. [The work of Faddeev 
has been applied in a recent article by L. Rosenberg, Phys. Rev. 
131, 495 (1963).] 

4 M. Scadron and S. Weinberg (to be published). 
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duced to a finite sequence of quadratures and of linear 
integral equations with L2 kernels. 

A word about how to save time in reading this article. 
It is rather long, because we develop our method of 
solution four times: in Sec. I l l for the three-particle 
case, in Sec. IV for the A^-particle case using graphs, in 
Sec. V for the AT-particle case without graphs, and in 
Sec. VI for more general theories (with creation and 
annihilation, multiparticle interactions, Bose or Fermi 
statistics, etc.) by a time-dependent method. Some care 
has been taken to make these sections logically inde
pendent, so that the reader should choose among them 
as his tastes dictate. Also, it should not be necessary to 
refer back to papers A and B, except to learn the 
physical motivation for the quasiparticle method. Much 
of Sec. II can be skipped if the reader already knows 
why multiparticle problems have been so intractable. 

Our continuing aim is to learn how to calculate rela-
tivistic strong interaction problems. In Sec. VI of this 
paper we get fairly close to the relativistic case, but at 
the last minute we are forced to restrict ourselves to 
theories without antipartides, in order to get linear 
equations. However, there is one moral to be learned 
from this present work which we hope will continue to 
be valid: Although we cannot expect the S matrix to be 
meromorphic in the original coupling constant, it is 
meromorphic in a set of coupling parameters, i.e., the 
magnitudes of those connected kernels which play the 
role of effective interactions for multiparticle systems. 

II. THE PROBLEM 

We shall consider a nonrelativistic system of N 
distinguishable particles, with Hamiltonian 

H=Ho+V, (2.1) 

where HQ is the sum of kinetic energy operators 

N V? 
H0=T,-—, (2.2) 

i=i 2m i 

and V is a sum of two-particle interactions 

F = E Vu. (2.3) 
*</ 

These particular assumptions are chosen in the hope 
that they will help to make this paper easy to read, 
rather than out of mathematical necessity; we will show 
in Sec. VI that all our essential results hold for theories 
with Fermi or Bose statistics, particle creation and 
annihilation, many-body interactions, etc., as long as 
there are no antipar tides or purely neutral particles. In 
the meanwhile, we will try to keep our notation and 
discussion as general as possible. 

It is well known that all physically interesting in
formation about any system can easily be obtained if 
we know the Green's function G (W), an operator defined 

for all W outside the spectrum of H by 

G{W) = [W-Hy-K (2.4) 
For example: 

(1) A composite particle with binding energy B shows 
up in G(W) as a pole at W== —B (in the center-of-mass 
system), and also generates cuts in W with branch points 
at the thresholds for states containing the composite 
particle. The residue of the pole gives the wave function. 

(2) The S matrix for a general scattering process 
a —» b (with or without rearrangement) is 

S ba = 5 ba — 2wtd (Ea — E &) T ba , 

where 

T 6 a= lim ($b\(H-Ea) 

+ (H-Eb)G(W)(H-Ea)\$a). (2.5) 

(The definition of <£a and $& requires some care in 
rearrangement collisions,5 where they cannot be re
garded as eigenstates of Ho. A way of avoiding such 
complications will be presented in the next paper of this 
series.) 

(3) The partition function in quantum statistical 
mechanics is 

ZN(j3)^Ti{exp(-l3H)} 

i r 
= — / exp(-(3E) Tr{G(E+ie)-G(E-ie)}dE. 

2w J o 

Our whole attention in this paper will be focused on the 
problem of calculating the fundamental operator G(W). 

Suppose first that we were rash enough to try to 
calculate G(W) by expanding in powers of V: 

G(W) = £l+K(W)+K*(W)+- - -UGoflfO, (2.6) 

where G0(W) is the unperturbed Green's function 

Go(W) = ZW-Ho]-1 (2.7) 

and K(W) is the "scattering kernel" 

K(W) = Go(W)V. (2.8) 

It is unfortunate that the series (2.6) will usually 
diverge just when we need it most. For instance, we 
have already mentioned that composite particles gener
ate poles and cuts in G(W)\ these singularities are 
absent in the individual terms of (2.6), and hence can 
only arise because the series diverges near the singu
larity.6 So the crucial question is not so much whether 
(2.6) diverges, but whether we can cure the divergence. 
The purpose of this section is to show that the tradi
tional remedies which allow us to calculate G(W) in 
two-particle scattering problems lose all their potency 
when applied directly to more difficult cases. By seeing 

6 See, e.g., H. Ekstein, Phys. Rev. 101, 880 (1956). 
6 For an example, see R. Aaron, R. D. Amado, and B* W, Lee, 

Phys. Rev. 121, 319 (1961). 
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how these remedies fail, we will learn how they can be 
modified and made to work. 

In seeking a better solution for G(W) than the series 
(2.6), it is usual to start by rewriting Eq. (2.1) in the 
Lippmann-Schwinger form 

G(W) = G0(W)+K(W)G(W). (2.9) 

The solution of such linear integral equations is known 
to be straightforward if (and really only if) the kernel 
K(W) is of the "completely continuous" type, described 
at the end of Appendix A; K(W) is completely continu
ous if (but not only if) it is an L2 or "Hilbert-Schmidt" 
kernel, i.e., if r{W)< oo, where 

r(W)^Ti{K(W)K^(W)} = Ti\ V2\ . (2.10) 
[\W-H0\

2 J 

1iK(W) is completely continuous, then Eq. (2.9) can be 
solved by a variety of systematic methods: 

(a) The quasiparticle method. This was developed in 
papers A and B as a way of introducing bound states 
and resonances as if they were elementary particles; 
mathematically it just amounts to the definition of a 
reduced kernel by 

F i ^ F - L s F | r s ) < r s | F , (2.11) 

K^W^GoiWW^KiW) 
-HsK(W)\T8)(Ts\Vy (2.12) 

where | Ts) and (Ts | are a finite set of state-vectors that 
we can choose as we like. The original Green's function 
and the new one are related by 

G(W) = G1(W) 
+ZstG1(W)V\Ts)Ast(W)(Tt\VG1(W)J(2A3) 

and the propagator A is given by 

LA-HW)l.t=d.t-(TAVG1(W)V\Tt), (2.14) 
where 

Gl(W) = [W-H,-V1-]-\ (2.15) 

G1(W) = G0(W)+K1(W)Gl(W). (2.16) 

The point of the method is to choose the reduced kernel 
so that (2.16) may be solved by perturbation theory: 

G1(W)^ll+K1(W)+K1(W)2+'-2Go(W) (2.17) 

allowing an immediate evaluation of G(W) from (2.13) 
and (2.14). This is always possible if K{W) is completely 
continuous, since then it can be uniformly approximated 
with arbitrary precision by a kernel of finite rank like 
the sum in Eq. (2.12); in particular we can always 
choose this sum so that 

\\KX(W)\\<1, (2.18) 

which immediately implies the absolute and uniform 
convergence of (2.17). (The bound j|iTi||, and such terms 
as "absolute" and "uniform" are defined in Appendix 

e A.) A more constructive argument may be based on the 
observation that (2.17) will converge as long as the 

s completely continuous kernel K\ (W) has no eigenvalues 
e outside the unit circle. (See Appendix A, Theorem V.) 

This can always be arranged by choosing the | Ts) and 
v ( I \ | in correspondence with the wave functions of all 
' resonances and bound states, as discussed in paper B. 
i [ In the absence of composite particles, or more pre-
1 cisely, if all eigenvalues of a completely continuous 
i K(W) lie inside the unit circle, the introduction of 

quasiparticles becomes unnecessary, and the quasi-
' particle method reduces to the ordinary Born series 

(2.6).] The quasiparticle method has been applied to 
two-particle scattering, and seems to work very well.4 

(b) The algebraic method.,7 This is similar to the 
' quasiparticle method, except that we don't take a fixed 

number of | Ts) and then calculate Gi(W) by (2.17), but 
3 instead take more and more terms in (2.12) so that 

l l^i (W)II - » 0 and GX{W) - » G0(W). The Green's func-
L tion G(W) is then obtained from (2.13) and (2.14). 
5 Again, this method works because a completely con

tinuous operator can be uniformly approximated with 
L arbitrary precision by a kernel of finite rank. 

(c) The modified Fredholm method. All versions of the 
Fredholm method are based on the fact, that if K(W) 

' is completely continuous then G{W) is a meromorphic 
function of the coupling constant, and hence may be 

. written 
G(W) = D-1(W)N(W), (2.19) 

where the operator N and the onumber D are entire 
functions of the coupling constant. Smithies8 has given 
modified Fredholm series for N and D (involving 
TriT2, TriT3, etc. but not TrK) and has proven that 

I these series converge if T(W) is finite. This is a slightly 
stronger assumption than complete continuity, the extra 
strength being needed to show that TrZ 2 , TriT3, etc. all 

. exist. 
So we see that if T(W)< OO, or at least if K(W) is 

completely continuous, then all our troubles are over. In 
' fact r (W)is finite for nonrelativistic two-particle scat-
) tering, under reasonable restrictions on the interaction. 

In this case the kernel is 
I 
: < P i P 2 | i W | P l ' p 2 ' > 

) a ( P - P ' ) 
= (q | ViS | q '), (2.20) 

i T F - q 2 / 2 M - P 2 / 2 M 
where 

; P = p i + P 2 , q = (w2pi—MiVz/mx+mz), 

M=tni-\~m2, M— ( ^ i w 2 / w i + m 2 ) . 

The 8 function prevents (2.20) from being an L2 kernel 
as it stands, but we can factor it out in the usual way by 

7 C. A. Lovelace has suggested using this method to solve the 
Faddeev-Lovelace three-particle equations, Ref. 3. 

8 F. Smithies, Integral Equations (Cambridge University Press, 
New York, 1958). 
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defining 

<Pip2|G(W0|pi'P2'> 
= 8 ( P - F ) ( q | G ( W - P 2 / 2 M ) | q ' ) . (2.21) 

Then Eq. (2.9) becomes 

« ( q - q ' ) 
(q\G(W)\q') = 

+ 

W-q2/2fi 

(q\Vn\q")(q"\G(W)\q') 
/ d3q"- (2.22) 

/ 
(2.23) 

W-q2/2fi 

and this integral equation has an L2 kernel if 

d3qd?q < °o . 
\W-q2/2fi\2 

We will assume from now on that (2.23) holds for all the 
Vij. I t should be recalled that W is complex or negative, 
so that condition (2.23) only amounts to a not un
reasonable limitation on the high-# behavior of the 
interaction.9 In particular, for a local potential, Fi2(r) , 
condition (2.23) becomes 

<*Wi2 2(r)<< (2.24) 

and thus holds for any decent short-range potential. [If 
Vu(r) is a local central potential, then in each partial 
wave the kernel is L2 if 

f r2V12
2(r)dr<™ 

Jo 
and 

/ " 
Vif(r)dr<ao, (2.25) 

and this holds even for the Coulomb case.] 
But, unfortunately, this very satisfactory situation 

does not persist when we turn to any problem more 
complicated than two-particle scattering. Let us con
sider for a moment the next easiest problem, that of the 
scattering of three distinguishable particles with two-
body interactions F#. In this case the kernel has matrix 
elements 

<P1P2P3|^(^) |P1 /P2 /P3 /) 

= {5(p3-p30(qi2 Fl2|qi2'} 
W-ZiVi2/2fm 

+ 5 ( p i - p i , ) < q 2 3 | F 2 3 | q 2 3 / ) 

+$(p2-P2 ,Xqi3|F1 3 |q1 3 '>}. (2.26) 
9 In scattering problems it is necessary to set W = E-\-ie} with 

£ > 0 and e—>0+, and in this limit the integral (2.23) becomes 
infinite. However, the quasiparticle and Fredholm methods retain 
their validity for e —> 0, provided that G(W-\-ie) has a well-defined 
limit. This point is discussed briefly in Sec. I l l of paper B, and 
much more fully in the work of Lovelace, Ref. 3. [I t is interesting 
that the existence of the scattering matrix has been proved by a 
time-dependent method by J. M. Cook, J. Math. & Phys. 36, 82 
(1957), using just the assumption (2.24) needed to show that 
K(W) is L2 for complex W.2 Our attitude throughout the present 
work is that the methods which allow us to calculate G(W) for 
complex or negative W will also work for G(E-\-ie); this has always 
been borne out in practice. (See note added in proof.) 

The over-all 8 function is completely innocuous, since it 
appears in both K(W) and G(W) and hence can be 
factored out just as in the two-body case. In the same 
way, if V2z and Vzi were zero then the factor 5(p3—p3') 
could also be factored out. However, if any two of the 
V^ are nonzero, then there are no 8 function factors in 
G(W) except the over-all momentum conservation 8 
function, and so we have to leave the three 8 functions 
inside the brackets in (2.26) as indispensable parts of 
the scattering kernel. This obviously then implies that 
K(W) cannotbe regarded as anL2 kernel, since Tr {KKf} 
will contain terms like [53 (pi—pi') J m its integrand. 

The same difficulty obviously occurs in all multi-
particle problems since the matrix element of Vy con
tains iV— 2 "dangerous" 8 functions, i.e., 8 functions for 
momenta which are not conserved by the full inter
action, and hence which cannot be factored out. This 
bars the way to a systematic solution of these problems 
by the quasiparticle, algebraic, or Fredholm methods. 

At first glance, the fact that K(W) is not an L2 kernel 
may seem like a pedantic difficulty, since we are 
generally used to thinking of all 8 functions as innocuous. 
In any case there does not exist any theorem to the 
effect that a kernel must be L2 in order to be completely 
continuous. However, a moment's reflection will show 
that the dangerous 8 functions in (2.26) and more 
complicated kernels occur just because of the one 
cardinal feature that makes multiparticle processes so 
different physically from the two-particle case, i.e., the 
possibility of a subset of particles interacting with each 
other, but being too far away from the other particles to 
interact with them. We shall now show that K(W) 
is not completely continuous, and that the Fredholm, 
quasiparticle, and algebraic methods actually do break 
down in multiparticle problems. The "physical" reason 
is that although these methods correctly display the 
bound-state poles which prevent the convergence of the 
ordinary Born series, they cannot cope with the cuts 
which also prevent the convergence of Eq. (2.6) in 
multiparticle problems. 

In order to facilitate our discussion of integral equa
tions like (2.9) or (2.16) whose kernels are not neces
sarily L2 or completely continuous, we have assembled 
in Appendix A a review of the relevant portions of the 
theory of functional analysis. The essential trick is to 
define the Green's function G (W,\) for a complex 
coupling parameter X by 

G(W,\) = G0(W)+\KQV)G(W,\). (2.27) 

[This discussion applies in its entirety also to the re
duced Green's function (2.15).] I t is well known (and 
proven in the Appendix, Theorem 1) that the Maclaurin 
series expansion (2.6) of G(W) = G(W,1) will converge 
uniformly and absolutely if G(W,\) is a bounded 
analytic function of X within the unit circle | X | ^ 1. 
(The precise meaning here of "analytic," "bounded," 
"uniformly," and "absolutely" is explained in Appendix 
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A.) Instead of working with G(W,\) it is convenient in
stead to define F(W,\) by 

F(W,\) = K(W)+\K(W)F(W,\) (2.28) 

=K(W)+\F(W,\)K(W), (2.29) 
so that 

G(W,\)={l+\F(W,\)}Go(W). (2.30) 

Clearly, G(W,\) will be bounded and analytic wherever 
F(W,i) is bounded and analytic. The points X where 
F(W,\) is n ° t both bounded and analytic are col
lectively called the spectrum of K(W). The basic aim of 
the quasiparticle method is to define a reduced kernel 
Ki(W) [see Eq. (2.12)] whose spectrum lies outside the 
unit circle, while the Fredholm method is just a way of 
rewriting the integral equation so that its kernel has no 
spectrum at all. In either case we can then use a simple 
perturbative expansion in the modified kernel to find the 
Green's function. 

In order to decide when these methods work, it is 
necessary to analyze the spectrum of K. The first step is 
to note that K is bounded, a fact proven in Appendix B 
under assumptions somewhat weaker than our general 
assumption that all Vy satisfy (2.23). (If the V%j are 
local potentials satisfying (2.23), then the bound of K 
is subject to 

r M*/ /2 r i112 

\\K(W)U E fflr\Vi,(r)\* (2.31) 1 feL27r|Im(2TF)1/2| J J 

where paj is the reduced mass of particles i and j.) One 
immediate consequence of some practical importance is 
that the spectrum lies entirely outside the circle 

|X|< 11*0*011-*, (2.32) 

and that therefore the Green's function G (W,\) is cor
rectly given by the absolutely and uniformly convergent 
series 

G(W,\) = tl+\KQV)+\2K* (W)+ • • -UGoOF) 

for at least all X inside the circle (2.32). In particular, 
the Born series (2.6) will work if (but not only if) X= 1 
lies in (2.32), i.e., if the V a are sufficiently weak so that 
||2T(W0||<1. T h e particular upper bound (2.31) on 
||i£(JF)jj is of no value here for scattering problems, 
where W approaches a positive real value and (2.31) 
becomes infinite.9 But (2.31) is finite for W<0, and it 
yields an absolute upper limit on the binding energy of 
any iV-particle bound state 

B^—\ Z M*//2 (#r\ Vn(i) |21 . (2.33) 

This formula was given for N= 2 in Eq. (132) of paper B. 
It is shown in Appendix A that the spectrum of a 

general bounded (or at least closed) kernel K consists of 
three disjoint sets: 

(i) The point spectrum of K consists of all X for which 

there exists a (normalizable) eigenvector T such that 

ZT=X-1T. (2.34) 

(ii) The residual spectrum of K consists of all X for 
which there exists a (normalizable) left-eigenvector & 
such that 

&K=\-*&, (2.35) 

but for which (2.34) has no solutions. 
(iii) The continuous spectrum of K consists of all X 

for which, given any e>0, there exists an "approximate 
eigenvector" Te, such that 

||(l-XiT)T€||S6, (2.36) 

| |T . |h l (2.37) 

but for which (2.34) and (2.35) have no solutions. 
A completely continuous kernel can have at most a 

point spectrum,10 so if K(W) can be shown to have 
either a residual or a continuous spectrum then it will 
stand convicted of being not completely continuous. It 
is easy to see that K(W.) does not have a residual 
spectrum, since time-reversal invariance tells us that 
there exists an antiunitary operator @ such that 

0 7 0 - 1 = 7 , QGo(W*)@n=GQ(W). (2.38) 

But (2.35) can be written 

FGo(PF*)$=X-1*$. (2.39) 

Multiplication on the left by Go(W)& shows that (2.35) 
always implies the existence of a solution of (2.34), i.e., 

T=Go(TF)0$ 

and that, therefore, there can be no residual spectrum. 
But K(W) does have a continuous spectrum for N^ 3. 

As an example, we shall show that if X(W) is the point 
spectrum for the two-body, center-of-mass system of 
particles 1 and 2, then \(W—E) will be in the continu
ous spectrum of the three-particle kernel K(W) for all 
E>0 . Just let T be a normalized state in which particles 
1 and 2 are in an eigenstate of their two-body scattering 
kernel, while particle 3 has a nearly sharp momentum p, 
but is so far away from particles 1 and 2 that its wide 
spatial spread doesn't overlap them. For example, we 
may take 

/ a \3 '2 

<q»,Pi|T>=( — ) H<m;w-E) 
V f / 

Xexp[-ia2(p3-p)2]exp(iP3-R), (2.40) 

where qi2 is the relative momentum of particles 1 and 2, 

io Very often the spectrum is denned to be the set of all 1/X 
satisfying (i), (ii), or (iii). With this convention, a completely 
continuous kernel may have a continuous spectrum consisting of 
just the point 1/X=0. In fact K{W) does have such a continuous 
spectrum in the two-particle case, since T« can be chosen to be a 
wave packet with well-defined kinetic energy and zero potential 
energy. 
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and \p is an eigenstate of the two-body kernel with 

C <qi2| l^ial 
\{W) / dtqW— - — ^ ( q i . ' ; W) 

J ^ - (q 1 2
2 / 2 M i 2 ) 

=^(q i2 ;W0, (2.41) 

Mi2= (m1m2)/(mi+m2), 

/ 
^3qi2|^(qi2)|2=l. 

(2.42) 

The parameters a and | R J will be allowed to become 
infinite, with |-R|^>a, while p is held fixed at a value 
such that 

p2/2/x3=E, fxz^mz(m1+m2)/ (mi+m2+mz). (2.43) 

The state T is constructed so that as (R|—»oo (with a 
and p fixed), particle 3 gets so far away from 1 and 2 
that F13T and F23T become zero; in momentum space 
this is, of course, due to the rapid oscillations of the 
factor exp(ip3«R) in the integrals for F13T and F23T. 
Hence, as IRI—*o°, 

/ a \ 3 / 2 r 
<qi2,P. | i f (I^ |T>^<qi2,p, |Go(l07i2 |T> = ^ — J I d\n' 

(qi2 | V12\q12')J,(q12'', W-E) e x p [ - | a 2 ( p 3 - p ) 2 ] exp{ip3-R} 

If we now let a —><*>, the Gaussian in p3—p will become 
more and more sharply peaked about p3—p, so that the 
p3 in the denominator may be replaced by p. Using 
(2.41) then gives 

\(W-E)K(W)\r)->\r), (R->«>, 0->oo). (2.44) 

But T does not have a well defined limit as | R|—><» and 
a—><*>, so \(W—E) is in the continuous spectrum of 
K(W). 

This hardly qualifies as a rigorous proof of the exist
ence of a continuous spectrum, but the argument is 
physically rather convincing. I t shows that K(W) is not 
completely continuous in problems involving more than 
two particles, and in fact because of the same dangerous 
d functions that prevent it from being regarded as an L2 

kernel. We can generalize the particular continuous 
spectrum found for the three-particle case to a general 
statement: 

Suppose Xs(W) is in the point spectrum of the center-
of-mass scattering kernel KS(W) for a system S of ^ 2 
particles. Then for all E>0, \S(W—E) is in the con
tinuous spectrum for any larger system which contains 
S as a subsystem; the locus of Xs(W—E) for 0 < £ < <*> 
forms a cut in G(W,\). 

So we finally see that there is no hope that a direct 
application of the quasiparticle, algebraic, or Fredholm 
methods could be used to calculate G(W) in general 
multiparticle processes. The existence of cuts in the 
coupling constant X shows that the quasiparticle method 
may fail, since (2.13), (2.14), and (2.17) make sense only 
if G(W,\) is meromorphic for | X | < 1 , while the 
Fredholm method must fail because (2.19) makes sense 
only if G(W,\) is meromorphic for all X. Furthermore, 
the algebraic method cannot work because a kernel 
which is not completely continuous can never be ap
proximated arbitrarily closely by a kernel of finite rank. 

We now also see what our problem is: Can we refor-

^-(q1 2V2/z1 2)-(p32 /2M3) 

mulate the Lippmann-Schwinger equation (2.9) for 
G(W) as a set of linear integral equations with kernels 
which are free of dangerous 5 functions, and which 
therefore have a chance of being completely continuous? 

III. THE SOLUTION: 3 PARTICLES 

In this section we show how to solve any three-body 
problem in which the interactions are reasonably decent. 
The Hamiltonian is taken as 

(3.1) H=Ho+V, 

where Ho is a sum of kinetic energy operators 

Ho=PIV2WI+P2V2M2+P32/2OT8 , 

and V is a sum of two-particle interactions 

F = F 1 2 + F 1 3 + F 2 3 . (3.3) 

(3.2) 

A three-particle term Vm could be included with only 
minor modifications. Our object is to calculate the exact 
Green's function 

GiW^lW-HJr1. (3.4) 

Let us define three "partially connected" Green's 
functions Lij(W) by 

Gi3iW) = Li3(W)+Go(W), (ij= 12, 13,23), (3.5) 

where 

Gij(W)^lW-H0- VijJ-1 (3.6) 
and 

G»{W)^tW-HQ~]-K (3.7) 

We can then define a "completely connected" Green's 
function C(JV) by 

G(W) = C(W)+L12(W)+L1Z(W) 

+L23(W)+Go(W). (3.8) 
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Our reason for calling these operators partially and 
completely connected will be made clear in the next 
section, if it is not obvious now. 

A little trivial algebra shows that 

LiAVn^KyiVnGisiW) (3.9) 
and 

C(W) = I(W)G(W), (3.10) 
where 

Ki3{W) = Go(W)ViJ7 (3.11) 

and the "irreducible kernel" I(W) is 

I(W) = Li2(W){V2,+ Vn}+L^W){Vu+Vn} 
+Ln(W){Vu+V2,}. (3.12) 

(Again, the term "irreducible" is justified in Sec. IV.) 
Substitution of (3.5) and (3.8) in (3.9) and (3.10) then 
yields our integral equations for Li$ and C: 

Lij{W)^Kij{W)G,{W)+Kij{W)Lij{W) (3.13) 
and 

(3.14) C(W) = B(W)+I(W)C(W), 

with the inhomogeneous term given by 

B(W) = I(W)lL12(W)+Ln(W) 

+LM(W)+Go(W)l. (3.15) 

The first step in solving these equations is to find the 
Lij(W). The kernel of the integral equation (3.13) for 
L12 is 

<piP2p31 K12(W) I pi'p/pa') 

^ ( P I ' + P Z + P S O ^ P S - P S O 

(qi2 l ^ q ^ } 
X- (3.16) 

(3.17) 

(3.19) 

[^-(p 3
2 /2M 3)-(qi2 2 /2Mi2)] 

where we have chosen a reference frame with 

Pl+P2+P3 = 0 

and again use the notation 

q12== (w2qi—m1q2)/(m1+m2), (3.18) 

Ml2== (wiw 2 ) / (wi+w 2 ) , 

/i3= ^3 ( w i + w 2 ) / (mi+ m2+mz). 

The solution of (3.13) will thus have the from 

<piP2p31L12 (W) | pi'p2/p3/> 

= «(P1/+P2/+P8 ,)«(P«-P8/) 

X<qi2|£i2(PF-p32/2M3)iqi2'>, (3.20) 

with the reduced matrix element obeying the integral 
equation 

<q|L12(W0|q'> 

<l\VM 
~ (W-q*/2nn)(W-q'*/2n12) 

f <q|F1 2 |q"Xq"|L1 2(H/) |q ') 
+ tPq" . (3.21) 

J PF-qV2/ii2 

In other words, (q | LX2 (W) | q'} is just the two-particle T 
matrix (off the energy shell), except for two extra energy 
denominators. As discussed in Sec. I I , Eq. (3.21) can be 
solved by either the quasiparticle, Fredholm, or alge
braic methods, providing that F1 2 is decent enough so 
that" 

!<q|^i2|q'>|2 

-d*q<Pq'< =o. (3.22) 
/ • W-q2/2fx12\

2 

We will take it for granted then that L12(W), and also 
L2$(W) and Lu(W), can be calculated without difficulty. 

The next step is to construct the kernel I(W) of the 
integral Eq. (3.14) for C{W). This is a trivial task; the 
first term is just 

(P1P2P31 L12(W)V2Z1 PiWps') 
-8{W+V2+Vz^u\L12{W-Vi/2^)\q12

f) 
X{q23 , / |F23 |q23

/), (3.23) 
where 

qi2/== (w2p/—wip20/(wi+w2) 
= P i / + [ w i / ( w i + w 2 ) ] p 3 , 

q2s / / = (w3p2 ,-w2p3)/(w2+w3) (3.24) 
= —Ps—[W(w 2 +w 8 ) ]p i ' , 

and 
P2/ = P l + P 2 - P l / = - P 3 - P l ' . 

Note that q i2 ' and q23
// mix initial and final momenta, 

keeping (3.23) from being a separable kernel. The other 
five terms in Eq. (3.12) for I(W) are given by formulae 
which differ from (3.23) only by permutations of 1, 2, 3, 
so we can regard I(W) as known. The inhomogeneous 
term B(W) can then also be found from (3.15) by simple 
quadratures. 

The final step is to solve (3.14) for C(W). Again, this 
may be accomplished by the quasiparticle, Fredholm, or 
algebraic methods, provided that I(W) is an L2 kernel. 
And now we reap the benefit of our reformulation of the 
dynamical equations, for (3.23) and its five sister 
equations show that I(W) is entirely free of dangerous 8 
functions. That is, if p i+p 2 +P3=0 , then I{W) can be 
written 

{piPaPsUWIpiVps') 
= 5 ( p / + p / + P3/)<PlP2P3[/c.n,(^)|Pl/p2V> (3.25) 

and Ic.m.iffl) contains no 8 functions at all. The 8 
function in (3.25) is of course innocuous, since it appears 
in C(W) and B(W), and can therefore be factored out 
of (3.14). Thus I{W) has at least a chance of being an 
essentially L2 kernel, i.e., of having ||/(W7)||2< co where 
the "center of mass Hilbert-Schmidt norm" ^ ( T ^ ) ^ is 

¥<W)h= <Ppl(P>P2<Ppt& (pl+p2+Ps) 

X ^ i ' d » # 8 ' ^ , ' 8 ( p 1 ' + p , ' + p , ' ) 

X |(plp2p3 I I cm. (W) | Pl'p2'P3'> | 2 
1/2 

(3.26) 
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Whether or not ||/(1^)112 is finite clearly depends on the 
behavior of the interactions for large momentum, unlike 
the case of the original Lippmann-Schwinger equation, 
where ||iT(JF)||2 could not possibly be finite for any 
choice of interactions. 

I t is shown in Appendix C that ||/(W0||2 is finite, 
provided that (3.22) holds for all ViU i.e., 

f |<q|^|q'>l2 

J IW-tf/l^l* 
( f i= 12, 13, 23) (3.27) 

and provided that 

\\Kii(W)Kjk(W)\\i<«>, 
(ijk= 123, 312, 231; note K{j=Kj%) , (3.28) 

where ||---| |2 is defined in general by equations like 
(3.26) and (3.25). If the Va are local potentials, then 
(3.27) and (3.28) are satisfied if, and only if, 

Vii= (dh\ F , 7 ( r ) | 2<oo ( t /=12 , 13, 23). (3.29) 

So we see that I(W) is an L2 kernel, and (3.14) can 
therefore be solved for C(W) without difficulty, as long 
as the Vij are reasonable interactions, like Yukawa po
tentials. We could then construct the full Green's 
function G(W) from (3.8); however, this is never 
necessary since the Ly and Go terms in (3.8) contain 5 
functions which kill their contribution to the nontrivial 
part of the three-particle S matrix, and which also 
prevent the three-particle bound state poles from ap
pearing anywhere but in C(W). 

We hope that this method is practical, as well as 
correct in principle. Such matters are outside the scope 
of this article, but there is one special class of ap
proximations which deserves mention here. Suppose 
that we know that particles 12 and 23 form bound 
states with binding energies B\2 and Bn, which might 
for example appear respectively in the initial and final 
states. In some cases it WOLIM then be reasonable to 
make the pole approximation11 

(qi21L12(W) | q u ' ^ i a ( q i * ) ^ * ( q i / ) / W + B 1 2 , 

<q231 L2Z (W) | q 2 3
r ) ^23 (q23^23* (qW)/W+BM, (3.30) 

<qis|£i8(W0|qi8'>=0. 

(This is essentially the lowest order quasiparticle or 
algebraic approximation.) Using (3.12), (3.20), and 
(3.23) gives the irreducible three-particle center-of-
mass kernel in this approximation as 

<PlP2P8|/c.m.(»r)IPl ,P2 ,P3 ,> 

= *i2 ( q i 2 ¥ i 2 * ( q i / ) V, ( p 8 - p , ' ) / W+Bl2 ~ Pa2/2M;} 

+ ^23(q23)^23*(q28 /)Pri(Pl—PlO/ 

(TF+^ 2 3 ~Pi 2 /2 M l ) . (3.31) 
11 Making the same pole approximation in the Faddeev-

Lovelace three-particle equations (Ref. 3) seems to yield a model 
suggested recently by R. D. Amado (to be published) rather than 
the distorted wave approximation shown in Fig. 9. 

We are assuming local potentials for simplicity, and 
have set 

Vz=Vn+VZ2, 7 i = F i 2 + 7 i 8 . 

Knowledge of the kernel (3.31) is sufficient to allow us 
to calculate three-body bound-state problems by solving 
the eigenvalue equation 

I(-B1M)*=¥ (3.32) 

by any of the standard methods available for L2 kernels. 
If we use (3.31) in the integral equation (3.14) and 
make the further assumption that overlap integrals for 
x//u and ^23 can be treated in first order, then (as shown 
in Fig. 9) we get the well-known distorted wave ap
proximation for the 5 matrix. 

IV. THE AT-PARTICLE SOLUTION: GRAPHS 

We have not yet made any attempt to motivate our 
method of solving three-particle problems, except by 
showing that it works. Actually, the manipulations 
leading to Eq. (3.14) represent one special case of a very 
general approach, which will be presented in Sec. V for 
N particles and in Sec. VI for still more general theories. 
In order to make very clear the motivation for what we 
have done for N=3, and what we shall do for general Ny 

we will describe our general approach here in terms of 
perturbation-theoretic diagrams, although of course our 
work does not rest on perturbation theory, but is rather 
intended to supplant it. 

The diagrammatic representation of the perturbation 
series (2.6) is well known. Suppose we want to find 
($a\G(W)\$p), where <£a and <£,? are iV-particle eigen-
states of the unperturbed Hamiltonian Ho. Any nth. 
order term in this matrix element is represented by a 
diagram drawn according to the rules: 

(1) Draw N horizontal "particle lines." 
(2) Draw n vertical wavy lines called "vertices" in a 

well ordered sequence from right to left, each vertex 
connecting a pair of particle lines. 

(3) Associate an intermediate state with each set of 
N lines lying between two vertices, by labeling each line 

(a) 

( b ) _ . (c) (d) 

1«) . , I*) . . (a) (h) (|) |fl-. . 

Ik) fi) (m) 

FIG. 1. The sum of all graphs for the three-particle Green's function 
G(W), up to second order. 
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with an "internal momentum"; associate the lines 
entering the diagram from the right and leaving at the 
left with the states <$>£ and $« by labeling these lines 
with the momenta of the particles in these states. 

The term in Ga$ corresponding to a given diagram is 
then calculated as the integral of a product of factors: 

(1) For each state (i.e., each set of N lines between 
two vertices, or before the first vertex, or after the last) 
include a factor 

r N ps - r - i 
ZW-EJr1^ W-Z , (4.1) 

L »=i 2m i J 

where E is the total kinetic energy of the state. 

After performing all the integrations, any term like 
(4.5) arising from a connected graph will involve only 
the over-all momentum-conservation 8 function, while a 
term like (4.4) which arises from a disconnected graph 
will contain additional 5 function factors, in this case 

«(P8-P80. 
I t is also possible to represent integral equations 

graphically. As an example, we have displayed in Fig. 2 
the Lippmann-Schwinger equation (2.9) for the three-
body Green's function, with kernel K(W) given by 
(2.26). The notation is obvious, except perhaps for the 
point that K(W) does not include the energy denomi
nator (4.1) for the lines coming into it from the right, 
since this factor is already present in G(W). 

Inspection of Fig. 2 immediately reveals why K(W) 
cannot possibly be a well behaved (i.e., completely 
continuous) kernel, and hence why we cannot find G(W) 
by direct use of the methods which work well for two-
particle problems. It is just because the diagrams repre
senting K(W) are not connected. A connected diagram 

FIG. 2. Graphical representation of the Lippmanp-Schwinger 
equation for the three-particle Green's function. 

(2) For each vertex connecting line i with line j 
include a factor 

<<LiiL\V<i\<kif)t(p<iL-V<j*) H Sfoj^-P**) , (4.2) 

where the p&E and j)kL are the momenta of the particle 
lines coming in to the vertex from the right or leaving 
to the left; p^ and qi3- are the total and relative momenta 

Pij=Vi+Vj, q*y= (nijVi—fniPj)/(mi+mj). (4.3) 

. (3) Integrate over all internal momenta. 

As an example, we have drawn in Fig. 1 all diagrams 
for three particles up to second order. The contribution 
from graph (e) is 

will contain no 5 functions after integrations have been 
performed over internal momenta, except for one in
nocuous factor required by the conservation of total 
momentum. [See Fig. 1(g) and Eq. (4.5).] But an 

(01 = 0 = = = + Z©= 

FIG. 3. Cluster decomposition of the Green's functions for 2, 3, 
and 4 particles. For pictorial clarity it is assumed here that the 
only interactions present are Vn, F23, and F34. 

individual diagram composed of m connected compo
nents will contain m—\ additional dangerous 5 functions 
required by the conservation of the total momentum of 
each cluster of connected lines. [See Fig. 1(e) and Eq. 
(4.4).] These subtotals are not conserved by the full 
K(W), so these 5 functions can't be factored out; hence 
K(W) cannot be regarded as an L2 kernel, and we can 
expect cuts in G(W) as a function of the coupling con
stant. This difficulty is present for any sort of inter
actions, and cannot be eliminated by imposing restric
tions on the Vij. 

<PlP2P3|G ( e )W|P l 'p2 'p3> ' 
{W-El-E2~Ez){W-E1

n-E2"-Ez
ff){W~-El

f-E2
f-Ez') 

X M F ^ I q i ^ P ^ - p ^ (4.4) 

while that from graph (g) is 

(pip aP8|G^(W0|p 1 'p 2V) = 
(W-E1-E2-EZ)(W-E1"--E2"-E3'')(W-E1'--E2

,-E3') 

X ^ l F i s l q i ^ P i g - p ^ (4.5) 
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The problem posed at the end of Sec. II can thus be 
reformulated: Can we find some way of rewriting the 
Lippmann-Schwinger equations (2.9) as a set of integral 
equations with kernels which correspond to connected 
diagrams only? 

The first step is to note that G(W) may itself be de
composed into connected parts.12 This is shown in 
Fig. 3 for the cases N=2, 3, and 4, and expressed 
formally for N=3by Eq. (3.8); for N= 1 the only con
nected diagram is a simple line. (For pictorial clarity we 
have drawn Figs. 3, 4, 6, and 7 under the assumption 
that the only interactions are Vu, F23, and F34. This is 
a completely inessential restriction, and is not made 
anywhere but in the figures.) 

We shall now show that the connected parts of the 
Green's function obey integral equations with con
nected kernels. If a general connected diagram is bi
sected by slicing through some intermediate or initial 
state (i.e., by cutting open the N lines of the state) then 
the part to the left of this state will be connected if this 
state is early enough (i.e., far enough to the right) and 

FIG. 4. Some typical connected graphs for the four-particle 
Green's function. The vertical dashed lines mark the critical states 
of each graph; the subgraphs to the left of these lines are irre
ducible. 

disconnected if this state is late enough (i.e., far enough 
to the left). We will define the critical state of any con
nected graph as the latest (leftmost) state which we can 
slice through and still leave the part of the diagram to 
the left of this state connected. The critical states of four 

12 This cluster decomposition is the same as that used to calcu
late virial coefficients in classical statistical mechanics by Ursell, 
Mayer, and others, and in quantum statistical mechanics by 
Uhlenbeck, Lee and Yang, and others. [For references, see T. D. 
Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959).] It is also the 
same as that used to calculate many-body ground state energies 
by J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957), and 
by N. M. Hugenholtz, Physica 23, 481 (1957). In all of these 
references the purpose of decomposing Green's functions, partition 
functions, resolvents, etc. into connected parts is to isolate objects 
with a simple volume dependence. This is really our purpose too, 
since instead of talking about dangerous 5 functions we could have 
used box normalization, with the result that the Fredholm or 
quasiparticle solution of the ordinary Lippmann-Schwinger equa
tion would give nonsense for infinite volume. [The example at the 
end of Sec. II shows that infinite volume is necessary for K(W) to 
have a true continuous spectrum.] The cluster decomposition used 
here is also the same formal device as that used in the theory of 
noise to reduce the correlation function of N random variables into 
its "cumulants"; see, e.g., R. Kubo, J. Math. Phys. 4, 174 (1963). 

m - 3HS 
FIG. 5. Structure of the sum C(W) of all connected graphs. 

connected graphs are indicated by vertical dotted lines 
in Fig. 4. A connected graph will be called irreducible if 
its critical state is the initial state, as in 4(a) and (b), 
and reducible if it is an intermediate state, as in 4(c) and 
4(d). In general, the part of any connected graph to the 
left of the critical state must be irreducible, while the 
part to the right is completely unrestricted, and may not 
even be connected. Thus, the sum C of all connected 
graphs may be written 

C(W) = I(W)G(W)y (4.6) 

where I(W) is the sum of all irreducible graphs and 
G(W) is the sum of all graphs; this equation is shown in 
Fig. 5, and given for N= 3 by (3.10). If we substitute for 
G its decomposition (Fig. 3) into connected parts, we 
obtain an integral equation for C with kernel / , shown in 
Fig. 6 for N=2, 3, and 4, and given for N=3 by (3.14). 

So far, our discussion has been strongly reminiscent 
of the development in relativistic theories of the Bethe-
Salpeter equation. However, there now appears a vital 
difference: It is possible to give a formula of finite length 
for our kernel II Suppose we bisect any irreducible con
nected graph in / by slicing through the earliest inter
mediate state, i.e., just to the left of the rightmost 
vertex. By definition, the part on the left must be dis
connected. Since the whole graph is connected, this part 
on the left must consist of just two connected parts 
which become linked together by the rightmost vertex. 
For example, the irreducible graph in Fig. 4(a) consists 
of a connected graph joining particles 1, 2, and 3 linked 
to the particle 4 line (itself a one-particle connected 
graph) by F34, while Fig. 4(b) consists of a connected 
graph joining particles 1 and 2 linked by F23 to a con
nected graph joining particles 3 and 4. We see then that 
the sum/ of all irreducible connected graphs consists of a 
finite number of parts, in each of which a pair of con
nected subsystem Green's functions are linked together 
by a single initial interaction. The equations for / are 
given in Fig. 7, for the cases N=2, 3, 4, and presented 

FIG. 6. The final linear integral equations for the connected 
Green's functions C(W), for 2, 3, and 4 particles; these equations 
are obtained by substituting Fig. 3 into Fig. 5. We are again as
suming for pictorial clarity that F u = V%i— 7is = 0. 
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(b) 

=0= -=s=z 

37£ = ̂  + ^ 

FIG. 7. The formulas for the irreducible kernels I(W) appearing 
in the integral equations for C(W), for 2, 3, and 4 particles. We 
again assume that Vu=V24=zVu = 0. Observe the crucial prop
erty, that all graphs for each I(W) are connected and hence free 
of dangerous 6 functions. 

formally for N=3 in Eq. (3.12). 
I t is therefore possible to solve iV-particle problems in 

a completely systematic and straightforward manner, 
by induction on TV. We must first solve for the two-
particle connected Green's function, using the ordinary 
Lippmann-Schwinger integral equation [Figs. 6(a) and 
7(a)]. This is then used to construct the three-particle 
irreducible kernel in Fig. 7(b) and the inhomogeneous 
terms in the integral equation in 6(b). The kernel is 
connected and hence (as we have seen for TV=3) com
pletely continuous, so 6(b) can be solved by any of the 
standard methods used in two-particle problems, e.g., 
the quasiparticle, Fredholm, or algebraic methods. And 
so on. 

These graphical considerations lead very naturally to 
an understanding of the famous distorted-wave ap
proximation. Suppose that the initial state consists of 
two bound systems X and Y consisting, respectively, of 
particles 1,2, • • •, Nx and 2Vx+1, • • •, N. Suppose also 
that the final state consists of two bound systems X' and 
Y', composed of particles 1, 2, • • - i W and iV.y+1, 
• • •, N. (In the simplest case of single particle scattering 
by a bound system we would have Nx=Nxf = 1, while 
for single particle rearrangement scattering we would 
have Nx= 1, Nx' = N—l.) These bound states give rise 
to poles in the connected Green's functions C(W) for 
these four sets of particles. I t is not unreasonable to 
guess that these poles will dominate the irreducible 

FIG. 8. The "pole approximation" for the irreducible kernel 
I(W). We only keep those terms arising from simultaneous bound 
states of subsystems X> Y or X'Y'. The horizontal wavy lines 
represent the "propagators" [W+i?]] -1, and the small semicircles 
indicate the wave functions of the various bound subsystems. The 
notation -f- • • • means that there are a few other terms arising from 
different ways that interactions Vtj can link the two subsystems. 

kernel I(W), leading to the approximation shown in 
Fig. 8, where we only keep those terms in I(W) con
structed out of Cx and CV or Cxf and CY> and represent 
these functions by their pole contributions, with the 
residues given as usual by the wave functions of the 
various bound systems. [For N=3, see Eq. (3.31).] In 
order to calculate the S matrix it is necessary to take the 
matrix element of the iV-particle kernel C(W) (stripped 
of final and initial energy denominators) between 4>x'$Y' 
and \pxypY. If we assume that the overlap between these 
two configurations is small then the S matrix will be 
given approximately by the sum shown in Fig. 9. The 
"ladders" on right and left just serve to correct the 
plane-wave relative motion of X, Y and X'Y' into wave 
functions distorted by the effective potentials VXY 
and Vx'Y'. 

V. THE iV-PARTICLE SOLUTION 

We will now present the exact integral equations 
suggested by the diagrammatic considerations of the 
last section. 

:©> 3H£ 
FIG. 9. The distorted wave approximation for the 5 matrix of 

the process X-f- Y —> X'-\- Y', derived by stringing together any 
number of 7's from the first line of Fig. 8, and then continuing with 
a string of I's from the second line of Fig. 8, with a single overlap 
integral inbetween. Again, the notation H indicates a few addi
tional terms arising from other V%j that can link the two sub
systems. 

In order to give a formal statement of the decomposi
tion of G(W) into its connected parts, it is necessary 
first to define the Green's function Gs(W) for any 
subsystem S consisting of Ns^N particles, as 

Gs{W) = lW-Hs]-\ (5.1) 

where Hs is the Hamiltonian of the subsystem. For in
stance, the Hamiltonian for the subsystem consisting of 
just particle i is 

tl^tfllmi, (5.2) 

while the Hamiltonian for the subsystem consisting of 
particles i and j is 

H^Hi+Hj+Vi^Hj,. (5.3) 

and so on. In general, any operator A s labeled by some 
subsystem S will act only in the momenta of the Ns 
particles in S, and its matrix elements will be diagonal 

file:///pxypY
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in all other momenta. For example, 

(pr • • P A H ^ U | P I / - " P I / ) 

= (Pi\Ai\pi')ILd(&-p/), (5.4) 

<Pi — Piv |-4 <y | Pi' — P^'> 

= {ViVj\Aij\p/p/} I I 5(P*-P*') . (5.5) 
k^ij 

If two subsystems 5 ' and S " are disjoint (i.e., have no 
particles in common), then any two operators labeled 
with S' and S" will commute: 

[Aa>yBa„l = Q. (5.6) 

If we used perturbation theory to calculate Gs(W), 
then each term would be represented by a graph with 
N s particle lines, according to the same rules as in 
Sec. IV. We want our formal definition of the connected 
part Cs(W) of Gs(W) to correspond to the sum of all 
connected graphs for Gs(W), so that the total G(W) is 
made up out of the Cs(W) as shown in Fig. 3. But this 
requires us to know how to combine graphs for subsys
tems S', S", etc. into larger disconnected graphs for the 
subsystem S*+S"-\ . For N= 3 there is no problem, 
since the addition of a single loose line to a connected 
two-particle graph can be accomplished [as shown in 
Eq. (3.20)] by supplying a 8 function, and shifting the 
W argument by the relative kinetic energy of the loose 
particle. However, for N^ 4 it becomes necessary also to 
combine two or more nontrivial connected graphs, as in 
the third term of Fig. 3. The work of Hugenholtz13 in 
many-body perturbation theory has shown that this 
must be done by performing a convolution on their W 
variables. Our work in this section will be independent 
of perturbative expansions, but we can see from the 
Hugenholtz theorem that we had better make use of 
convolutions in defining the cluster decomposition of 
G(W) into its connected components. 

For our present purposes, we can regard the convolu
tion f*g as a purely algebraic operation. If f(W) and 
g(W) are operator functions of the form 

a 

and (5.7) 

where the aa and bp are c numbers, and where the A a and 
B$ are operators such that 

D 4 « , £ , > 0 , (5.8) 

then we define their convolution as 

f(W)*g(W) = Z, aahlW-Aa-Bt]-\ (5.9) 

Note that f*g is again an operator of the form (5.7). The 
13 N. M. Hugenholtz, Physica 23, 481 (1957). 

convolution is bilinear, associative, and commutative: 

f(W)*[ag{W)+hh(wy] 
= af(W)*g(W)+bf(W)*h{W), (5.10) 

f(W)*g(W) = g(W)*f(W). (5.12) 

The Fourier transform of f*g is the ordinary product of 
the Fourier transforms of / and g, so it would be possible 
to avoid convolutions altogether by working in a time-
dependent formalism; this is done in Sec. VI. 

The connected part C s{W) of Gs(W) can now be 
defined implicitly by12 

GS(W)=Z — 
m=l ml 

X L ( S ) CSl(W)*CS2(W)*---*CSm(W), (5.13) 
*Sl* • • Sm 

where the sum X) (5 ) is over all ways of splitting the 
system S into m disjoint subsystems Si, • • •, Sm, whose 
union is S. The sum receives equal contributions from 
ml terms differing only in the permutations of the C 
factors [see (5.12)], so we have supplied a factor 1/ml 
to keep the counting correct. We will see that the Cs 
defined by (5.13) are indeed of the form (5.7). 

For subsystems S containing up to four particles, the 
cluster-decomposition formula (5.13) reads 

Gi=d, (5.14) 

Gij = dj+Ci*Cj, (5.15) 

{*ij k = = C ij ]c~T~ C # * C k\ v-' i k*^j 

+Cjk*Ci+Ci*Cj*Ck, (5.16) 

Gij k i = Cij k z+Cij k*C z+d j i*C *;+ C{ k i*Cj+Cj k i*Ci 

+Cij*C k i+Cik*Cj i+d i*Cj k 

+Cij*Ck*Ci+Cik*Cj*Ci+Cn*Cj*Ck 

+Cjk*Gi*C z+Cj i*Ci*Ck-\-Ck i*Ci*Cj 

+C%*C,*C#Ci. (5.17) 

Here i, j , k, I, • • • are any unequal particle labels be
tween 1 and N, and we have omitted the W arguments. 
Equations (5.15)—(5.17) correspond to Fig. 5; also 
(5.15) and (5.16) correspond to (3.5) and (3.8), since 
£i2=Ci2*C3, etc. 

These equations can be solved successively, yielding 
explicit definitions for the Cs'-

Ci(W) = \yr-Bilr\ (5.18) 

djOV^LW-H^-lW-Hi-Hj-y^ (5.19) 

Cijk(W)^£W-Hijky
i-LW-Hij--Hk]-1 

-lW-Hik-H^-[_W-Hjk-H^ 

+21W- Hi- IIj-Hk]-1, (5.20) 
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C « « a IW-Hiju']-1- [W-Hqu-Hd-1 

- [W-Hm-H^- [_W-Hikl-H^ 
- lW-Hm-H%^- [W-Hij-H^-1 

-[W-Hiu-H^-lW-Hu-H^ 
+ 2[W-Hij-Hk-HlJ-i+2iW-Hik 

+2tW-Hjk-Hi-HlJ-i+2[W-HJi 
-Hi-Hk]-1+2[W-Hkl-Hi~HjJ-1 

-6lW-Hi-H~Hk-Hi']-1. (5.21) 

It can be shown that in general 

Ns ( _ ) m - l 

m=l M 

X E ( S ) LW-HSl-HS2 HSm]-i, (5.22) 
Si.-'Sm 

the sum again being taken over all ways of partitioning 
5. Thus the coefficients 1, — 1,2, — 6 appearing in (5.18)-
(5.24) are just the firstJfew values of (— )m~l{m— 1)! 
As promised, the Cs(W) do turn out to be of the 
form (5.7). 

Now to dynamics. Figure 7 suggests that we should 
define our irreducible kernel Is(W) for Ns^ 2 as 

Is(W)^^S)Cs>(W)*Cs»(W)Vs>s»- (5.23) 
S'S" 

The sum runs over all ways of splitting the system 5 
into a pair of disjoint subsystems 5" and S", and V&> &' 
is the sum of all Vij with particle i in S' and particle j 
in S", or vice versa; in other words, V sr s" is the sum of 
all interactions which can link graphs for CV and Cs,f 

into a connected graph for Cs- For Ns—2, 3, and 4, 
Eq. (5.23) gives 

J^[C*Cy]7<y, (5.24) 

J ^ s s [Qy*Cfc] (F;fc+ Fifc)+[C,**Cy] (7*+ 7*) 
+ CC,y**C<](7y<+Fw), (5.25) 

/ , y f c ^[Q- f c *Cj(F,z+F y z +Fu)+CQz*Cj 
X (Vik+ Vjk+Vlk)+[Cikl*C^ (Vij+ Vkj+ Vy) 
+ LCjki*CiWji+Vki+Vli) 
+ lCij*Ckll(Vik+Vu+Vjk+VJi) 
+L&#Cnl (Vij+ Vu+ Vkj+ Vkl) 

+ [C^Cy*] (Vij+ Vik+Vv+Vik). (5.26) 

We will supplement this with a definition for the case 

/ ; = 1 . (5.27) 

With this definition of I s(W), it is possible to show 
that 

Cs(W) = Is(W)Gs(W). (5.28) 

We will not prove this here, as it has already been 
proved for N= 3 [note that (3.12) and (3.10) correspond 
to (5.25) and (5.28)] and for general N in perturbation 

theory (see Fig. 5); it will also be proved in Sec. VI in a 
more general context. The reader may amuse himself for 
hours by verifying directly that (5.26) and (5.21) do 
satisfy (5.28). 

Substitution of the cluster-decomposition formula 
(5.13) for Gs(ffl) in (5.28) now gives the integral 
equation for Cs> 

Cs(W) = Bs(W)+Is(W)Cs(W), (5.29) 
where 

BS(W) = IS(W)J: — 

X E ( S ) CSl(W)*---*CSm(W). (5.30) 
Sl.-Sm 

Equation (5.29) corresponds to Fig. 6 and to Eq. (3.14). 
Suppose now that we have calculated the Cs>(W) for 

all subsystems S'CS with NS><NS. The kernel ISQV) 
and the inhomogeneous term Bs(W) can then be ob
tained from (5.23) and (5.30), using the convolution 
integral 

Ca'(W)*Ca»(W) = — <fcs>(z)Cs„(W-z)dz, (5.31) 

the contour running counterclockwise around the singu
larities of Cs'(z) on the real z axis. Alternatively we 
could calculate the C sf in a time-dependent formalism 
and just multiply them, as shown in Sec. VI. (We have 
also developed soluble integral equations for the 
Cs'*Cs"*"-m themselves.) Thus, as already noted in 
Sec. IV, it is safe to regard (5.29) as a sequence of linear 
integral equations for successively larger systems, with 
"known" kernels and inhomogeneous terms. The only 
question is whether I s(W) is an L2 kernel (or at least 
completely continuous), so that (5.29) can be solved by 
the quasiparticle, Fredholm, or algebraic methods dis
cussed in Sec. II. 

It is easy to see that Is(W) has at least a chance to be 
L2, since it was specifically constructed to be free of 
dangerous 5 functions. Inspection of Figs, 3 and 7 shows 
that the only 8 functions in matrix elements of I s(W) 
and of Cs(W) are the innocuous factors 

« [ £ (P;~P/)] I I C P . - P / ] , (5.32) 

which can be factored out of (5.29). This can also be 
proved formally from (5.23) by induction on Ns- So 
Is(W) will be an essentially L2 kernel if the interactions 
Vij are nice enough. We will not make any attempt here 
to decide just how nice they have to be, but our work in 
Sees. II and III suggests strongly that for local po
tentials the necessary and sufficient condition for all 
Is(W) to be U is that 

/"^ |7<,(r) |*<oo, 

for all iy j . 
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Thus for well-behaved interactions there is no ob
stacle to a systematic calculation of the connected 
Green's function Cs(W) for any system S. We can then 
obtain the total Green's function Gs(W) from (5.13), 
but as already noted for Ns—3, it is Cs(W) that we 
really want to know. 

A very simple way of summarizing what we have ac
complished is just to say that if each Is(W) is replaced 
by \sIs(W), then the Green's function G(W) will be 
meromorphic in each of the \s- The cuts in G(W) as a 
function of the coupling constant only arise if we are 
foolish enough to identify all the \s with a single com
plex variable X. 

VI. THE GENERAL SOLUTION 

We now turn to a far more general sort of theory than 
has concerned us till now. Our assumptions in this 
section are: 

(a) The physical Hilbert space is spanned by a com
plete orthonormal set of "bare particle" states 

|0>, \pi), \pipt), •••, \PIP*---PN), •••, (6.1) 

where p now denotes the type of particle as well as its 
momentum and spin. These states are appropriately 
symmetrized or antisymmetrized, as required by the 
Bose or Fermi statistics of the various particles. With
out loss of generality the states (6.1) can be regarded as 
built up from the bare vacuum 10) in the usual way by 
the action of creation operators a?(p). 

(0) The Hamiltonian H is some given linear operator 

# = E / Hpv • -p,qv • -qtW(pi)-- -a* (p.) 
St J 

Xa(qi)- - -a{qt)dpv • -dqt. (6.2) 

(The "integrals" here include sums over spins and 
particle types.) Of course any linear operator on the 
states (6.1) can be written in this form, but we shall 
make the specific assumption that each form factor 
h(pv * 'psqv • *qt) is free of all 5 functions, except for an 
over-all momentum conservation factor 

S 3 (Pi+"-+P>-qi q«). (6.3) 

This requirement is indispensable to our method of 
calculating Green's functions, and is also necessary if 
the S matrix is to be physically sensible.14 

(7) There is a conserved additive quantum number 
A which takes only positive integer values for the vari
ous particles, and of course is zero for the bare vacuum. 
Thus there are no antiparticles or holes. In our previous 
work [based on the Hamiltonian (2.1)3, A was just the 
number of particles, but we now allow for creation and 
annihilation processes by allowing particles with 4̂ = 2, 
3, • • • as well as A = l. 

The only specifically nonrelativistic assumption made 
14 E. H. Wichmann and J. H. Crichton, University of California 

Lawrence Radiation Laboratory Report No. UCRL-10860 (un
published), and to be published. 

here is (7), and it will not actually be used until the end 
of this section. (However, for the sake of simplicity we 
will throughout make use of one of its consequences, 
that iy|0)=0. It would be easy to avoid even this as
sumption during most of the discussion, but at the cost 
of some tedious algebraic complexities.) We have left 
room in these assumptions for creation and annihilation 
processes, because we want to be able to treat an 
interaction like d<^p+n as if the deuteron were ele
mentary, and also because it brings us closer in spirit to 
the relativistic case. 

Our task as before is to calculate the Green's function 
for a given H. However, instead of working with G(W) 
^[W—H^y we shall instead use a time-dependent 
formalism and try to calculate 

G(t) = exp(-iHt). (6.4) 

If we can find G(t), then G(W) and the S matrix can be 
obtained from 

G(W) = -if eiWtG(t)dt, ImW>0, 
Jo 

= */"° eiWtG(t)dt, lmW<0. (6.5) 
J —00 

The point of adopting the time-dependent approach is 
the same here as in Goldstone's development of many-
body perturbation theory,15 i.e., it eliminates the neces
sity of performing convolutions of the W's. The reader 
who prefers to avoid a time-dependent formalism may 
easily translate all the equations of this section back 
into the W language used till now. 

In order to separate the connected part of G(t), we 
shall first have to introduce a new combinatorial tool. 
For any pair of linear operators Qi and Q2, we define the 
disconnected product (?i®(?2 as a linear operator with 
matrix elements 

(pv -pM\Qi®Qi\qv -qx) 

X(Pi M-I&ki**-••<?***>. (6.6) 

The sum X ) m is over all 2N ways of splitting the N 
initial indices 1, 2, • • •, N into subsets 1*, 2*, • • •, iV* 
and 1**, 2**, • • •, N**9 with N*+N**=N and O^iV* 

£N. For each N*, L(iV) contains (N*J terms. Like
wise, ]C(itf) runs over all 2M splits of 1—-M into 
1'- • -M' and 1"- • -M". The sign factor is + 1 or - 1 
according to whether the two permutations 1 • • • N —> 
l*...^*l**...iV** and l - - -M->l ' - - - JkfT ' - - -M" 
contain altogether an even or an odd number of 
interchanges of identical fermions. 

The disconnected product is bilinear, associative, and 

15 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 

file:///pipt
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commutative: 

(alQ1+a2Q2)®Qz^al(Q1®Qz)+a2(Q2®Q*), (6.7) 

(Qi® Q2)®Qz=Qi® (Q2®Qz), (6.8) 

Gi®G2=G2®6i. (6.9) 

[Strictly speaking, (5.9) holds only if Qi and Q2 have no 
matrix elements between states which differ by an odd 
number of Fermions, but this will always be the case for 
G(t) and all other operators to be considered here.] 
Also, if a{p) and cft(p) are any destruction and creation 
operators, 

a(p)(Qi®Qi) = a(p)Q1®Q2+Qi®a(p)Qi9 (6.10) 

(Qi®Q2)aHp) = Q1aHp)^Q2+Qi^Q2aHp). (6.11) 

If Qi and Q2 are time-dependent then 

d 
~(Qi®Q2)=Qi®Q2+Qi®Q2. (6.12) 
it 

The disconnected product may be used to give a very 
general definition of the connected part C(t) of the 
Green's function G(t), by stating the general cluster-
decomposition formula12 

C[m](t) 
G(0 = A o + E , (6.13) 

where A0 is the projection operator on the bare vacuum 

A 0 =|0) (0 | 

and C[m](/) is the w-fold disconnected product, 

CW(0 = C ( 0 , CW(t) = C(t)®C(t), • • • . 

Equation (6.13) is a direct generalization of (5.13). 
Now, on to dynamics. Schrodinger's equation for 

G(t) is 
iG(t) = G(t)H. (6.14) 

Differentiation of the cluster-decomposition formula 
(6.13) by use of the rule (6.12) allows us to write this as 

f oo 1 ] 00 1 

i C ( / ) + C « ® E —C [ w ](0 = £ —C™(t)H. (6.15) 

Consider any particular term (l/intyC[m](t)H. By suc
cessive use of (6.11) it is possible to distribute the crea
tion operators in H [see Eq. (6.2)] among the individual 
factors C(t). We shall define the irreducible kernel Im(t) 
as that part of (l/ni\)C[m](t)H in which one or more 
creation operators are thus distributed by (6.11) to each 
of the m factors C(t). In general, if no term in the 
Hamiltonian contains more than n creation operators 
then 

lm(t) = 0, (m>n) (6.16) 

for it is not possible to distribute ^ n creation operators 

among m>nC(t)'§ without skipping some of the C(t)'s. 
A theory with a Hamiltonian like (2.1)-(2.3) will thus 
always have only Ix(t) and I2(t) nonzero, while a 
relativistic Yukawa interaction could contribute also to 
Iz(t)> and a relativistic Fermi interaction would yield a 
nonzero Ji(/), 12(1), Ia(t), and 74(0- The Im(t) may be 
regarded as corresponding to graphs for the Green's 
function, in which m connected subgraphs are linked 
together on the right by a single interaction (which 
must obviously involve at least m lines); in particular I2 

corresponds to Fig. 7 and to Eq. (5.23). 

This definition is not very convenient for calculating 
or using the Im(t). Instead, we may note that 

1 m-\ 1 
—CM(t)H=Im(t)+Y, • C ^ ( 0 ® / r ( 0 (6.17) 
ml r=i (m—r)\ 

since the creation operators in H must be distributed 
by (6.11), either among all m C(0's, or among only 
r<m of them. Equation (6.17) can be successively 
solved for the Im(t), giving 

Ii(f) = C(t)H, (6.18) 

Ii(t) = iCW(t)H-C(t)®C(t)H, (6.19) 

h (0 = *C[8] (OH+iCM (t)®C(t)H 
- J C ( / ) ® C ^ ( / ) 7 r , (6.20) 

and so on. These equations may be regarded as the 
formal definition of the Im(t), replacing the discussion of 
the previous paragraph. 

Returning to Schrodinger's equation in the form 
(6.15), we see immediately by summing (6.17) from 
m= 1 to 00, that 

»|tf(0+tf(0® f—c[wl(d} 
[ m=lml J 

= £/»(*)+{ f: -cw(o}® z /-w 
m—l [ m = l ffl I J m = l 

and, therefore, 

*?(*)= E JmW. (6.21) 
m==l 

We also need an initial condition. Since G(0) is 1, C(0) 
must be the connected part of the unit operator. I t can 
be seen either intuitively, or by inspection of (6.13), that 
this is just the projection operator Ai on all one-particle 
states: 

C ( 0 ) - A i s fdp1\p1){p1\. (6.22) 

Before going on to solve (6.21) and (6.22), we will 
pause here to prove that C(t) and the Im(t) are con
nected, in the sense that any matrix element of any of 
these operators is free of all 8 functions, except for a 
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single over-all factor required by momentum conserva
tion. Equation (6.22) shows instantly that C{t) is con
nected at / = 0 . Thus if we can prove that the Im{t) are 
connected whenever C(t) is connected, then (6.21) will 
allow us to conclude that Im{t) and C(t) are connected 
for all /. So suppose C(t) is connected. Using assumption 
(J$) and the connectivity of C(/), it is easy to see that the 
only way that any term of Clm](t)H can conserve the 
total momentum of some proper subset of particles is if 
these particles (or all the other particles) are not acted 
on by H, but instead are acted on by one or more C(/)'s 
in the disconnected product which act on no other 
particles. But according to its original definition, Im{t) 
is just that part of C[m](t)H/m\ in which this doesn't 
happen, and therefore is connected whenever C{t) is; 
thus, Im(t) and C(t) are connected (in the sense of being 
free of dangerous d functions) for all L 

In solving (6.21) and (6.22) it will be very convenient 
to define a total irreducible kernel by 

I(t) = A1H+I2(t)+ • • •+ /» (*) , (6.23) 

so that (6.21) becomes 

iC(f)= {C(t)-A1}H+I(t). (6.24) 

[The term AiH is put in / ( / ) because the Hamiltonian 
itself acts as an irreducible graph in one-particle states.] 
Now (6.22) and (6.24) yield 

C(t)=A1-ij I(t')G(t-t')dt' 
Jo 

or 

C(t)=AL-if I(t-t')Gtf)W, (6.25) 
J o 

corresponding to Fig. 5 and to Eq. (5.28). 
We can obtain an integral equation for C(t) (corre

sponding to Fig. 6) by substituting the cluster-de
composition formula for G(t') in (6.25): 

C(t) = B(t)-if I(t-t')C{t')dt', (6.26) 
Jo 

where 
oo 1 r* 

5 ( / ) = A i - f £ — / I ( / - * 0 C w ( ' ' ) * ' . (6.27) 
™=2 ml JQ 

But the kernel I(t) and inhomogeneous term B(t) de
pend on C(t), so (6.26) is thoroughly nonlinear. In order 
to make progress toward a workable program for 
actually calculating C(t)9 it will be necessary at this 
point to make essential use of assumption (y) for the 
first time. 

The chief consequence of A conservation is that it 
allows us to break the problem into sectors with 
A — \}2J • • • by writing 

C(/)= £ C(t\A')9 (6.28) 

where C(t\A') has nonzero matrix elements only be
tween states which both have the value A' for the 
conserved quantity A, The same decomposition holds 
for B(f), I(t), G(t), Ai, etc. We can then write our basic 
equations as : 

C(t;A) = B(t; A)-i f I(t-t';A)C(t';A)dt', (6.29) 
Jo 

i r 
B(t;A) = A1(A)-iT. ZU) — I(t-t';A) 

ra=2 Ai>"Am Wl\ J o 

XC{t';Al)®C(t';A2)®---

®C(t';Am)dt', (6.30) 

I(t; A) = A1(A)H(A)+h(t; A)+- • -+In(,t; A), (6-31) 

h{f,A) = Y.U){KC(t;A1)®C(t;Ai)-]H(A) 
A1A2 

-C(t;A1)®C(t;Ai)H(A2)}, (6.32) 

h(t;A)= ZlA) { | [ C ( / ; ^ i ) ® C a ; ^ 2 ) ( g ) C 0 ; ^ 3 ) ] 

A1A2A3 

XH(A)+^C(t;A1)®C(t;A2) 

QCfcAJHiAd-iCfcA!) 

®[C( / ; A2)®C(t; AZ)-]H(A2+AZ)} . (6.33) 
Here Ai(^47) is the projection operator on a 1 one-
particle states with A—Ar. The sum YLU) r u n s o v e r &U 
integers A\^A2y • • •, Am whose sum is A ; the individual 
Ai thus take values from 1 to A —m+1. [Formulae for 
14, etc. can easily be obtained from (6.17), but it is very 
unusual to have ^ ^ 4 , or even w=3 , in nonrelativistic 
theories.] 

Our program for calculating C(t) is now rather obvi
ous. If we have calculated C{t-,A') for all A'-^A — 1 
then (6.30)-(6.33) allow us to calculate B(t;A) and 
/ ( / ; A) by straightforward integrations. Equation (6.29) 
is then an honest linear integral equation for C(t;A) 
(with known kernel and inhomogeneous part) whose 
solution is discussed below. Furthermore, it is trivial to 
start the program going, since 

I(t;l) = A1(l)H0(l), 5 ( / ; l ) = A1(l) (6.34) 

and, therefore, 

C(t; l) = Ax(l) e x p { - C # o ( l ) / ] l , (6.35) 
where #o( l ) is just the kinetic energy of all particles 
with A = l. 

The only remaining question then, is whether (6.29) 
can be solved for C if we know B and / . This can best be 
answered by writing it in the W representation: 

C(W; A) = B(W;A)+I(W; A)C(W; A), (6.30) 

where C(W; A), B(W; A), and I(W; A) are related to 
the corresponding time-dependent quantities by formu
las like (6.5). We have seen in Sec. I I that such linear 
integral equations can always be solved by a variety of 
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straightforward methods if the kernel I(W; A) is L2, or 
at least completely continuous. But we have already 
noted that I(t;A), and hence I(W; A), is connected, in 
the sense that its matrix elements contain no 8 functions 
except for the ones required by over-all momentum 
conservation. Our experience with the two- and three-
particle problems indicates that / (W; A) will therefore 
be an L2 kernel, under some reasonable restrictions on 
the interaction. The integral equation (6.30) can thus 
be solved by either the quasiparticle, Fredholm, or 
algebraic methods, and C {t; A) then determined by 

C(t\A) = — <fdWC(W;A)e-iWt, (6.31) 

the contour being taken counterclockwise about the 
singularities of C(W; A) on the real W axis. Presumably 
(6.29) could also be solved directly, without this detour 
through the W representation. 

VII. CONCLUSIONS 

The nonrelativistic multiparticle scattering problem 
has been reduced to a set of linear integral equations 
with L2 kernels. We have been content to list the 
methods (quasiparticle, Fredholm, algebraic) by which 
such equations can be solved, but it may be useful in 
closing to say a few more words about the quasiparticle 
method. 

A bound state of an entire system 5 (or for a par
ticular value of A) occurs when the connected Green's 
function for that S (or that A) has a pole. Such poles 
arise when one of the eigenvalues of the corresponding 
irreducible kernel passes unity. [See Eq. (3.14), or 
Fig. 6, or Eq. (5.29), or Eq. (6.30).] If an eigenvalue 
passes through the unit circle at a complex value close 
to unity, we have a resonance instead of a bound state. 
More generally, we speak of a composite particle being 
present for each eigenvalue that ever gets outside the 
unit circle. (See paper B for a full discussion of these 
matters in the two-particle case.) Since each irreducible 
kernel is completely continuous, the integral equation 
for any connected Green's function can be solved by a 
simple perturbative expansion in powers of the corre
sponding irreducible kernel, providing that there are no 
composite particles for the entire corresponding system 
(or the corresponding A value). 

If there is a composite particle in some system (or 
with some value of A), then it is always possible to 
rewrite the theory so that the composite particle is re
placed by a fictitious elementary particle, or quasi
particle. The details will be discussed in our next paper, 
but the essential points are already given in Sec. I I . 
[Just replace K(W) by I(W) in Eqs. (2.11)-(2.18) J If 
every composite particle is eliminated in this way for all 
subsystems of the system of interest (or for all A values 
up to and including the A value of interest), then every 
one of our integral equations can be solved by simple 
iteration. 

Our work in this paper does not provide even a solu
tion in principle of the true many-body problem, for as 
N —-> oo or A —» oo the number of equations also becomes 
infinite. This problem can be hidden by using hole 
theory, but the equations are then as nonlinear as in 
relativistic problems. 
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APPENDIX A: THE ANALYTIC FOUNDATIONS 
OF PERTURBATION THEORY 

In this Appendix we offer a rigorous account of the 
mathematics needed for a general understanding of the 
convergence or divergence of perturbative expansions.16 

Most of the material below may be found in the mathe
matical literature on functional analysis,17 though not 
perhaps collected in a form suitable for immediate 
application to perturbation theory. 

We consider a linear integral equation of the form 

F\\l=K+\KF[\l=K+}J?\Xfi, (Al) 

or equivalently 

( l - X Z ) ( l + X F [ X ] ) = ( l + X F [ X ] ) ( l - X i ^ ) = = l . (Al') 

Here the kernel K is a general linear operator defined 
everywhere on a Hilbert space 3C, and the coupling 
constant X is a complex variable. For the present, we 
don't assume that K is Hermitian, L2, or even bounded, 
or that 3C is a separable space. (The Lippmann-
Schwinger equation for multiparticle scattering theory 
may be cast in this form, with 

1 1 
F = V, K^ V, X = l . (A2) 

W-H W-HQ 

The integral equation resulting from the introduction of 
a quasiparticle is also of the form (Al), with a modified 
kernel. Also, any linear integral equation with kernel 
\K can be solved immediately if we know ^[X].) Our 
main question is: When can we solve (Al) by the 

16 A less self-contained treatment was presented in Sec. I l l of 
paper B. Our discussion there was limited to L2 (or "Hilbert-
Schmidt") kernels. 

17 Some books which have been useful include (in order of in
creasing abstractness): B. Friedman, Principles and Techniques of 
Applied Mathematics (John Wiley, New York, 1956); F. Riesz 
and B. Sz-Nagy, Functional Analysis (Frederick Ungar, New 
York, 1955); N. I. Akhiezer and I. M. Glazman, Theory of Linear 
Operators in Hilbert Space (Frederick Ungar, New York, 1961); 
E. Hille, Functional Analysis and Semi-Groups (American Mathe
matical Society, New York, 1948). Our treatment is closest to 
that of Hille, except for our discussion of completely continuous 
kernels. (I am told that there is a second edition, by Hille and 
Phillips, which goes somewhat further than the first.) 
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"Born" series given within this circle by its Taylor series expansion 

F[\1=K+\K2+\2K*+ • • • ? (A3) 

For finite matrices the answer is very simple and well 
known18; the series (A3) provides a solution of (Al) if, 
and only if, X is less in absolute value than the reciprocal 
of any eigenvalue of K. We will see that this is always, 
more or less, the right answer for a general kernel K, 
but that it is strictly valid only for the special class of 
"completely continuous" operators. 

We begin by defining the two operator properties that 
will be indispensable to our discussion. After proving a 
theorem about a general operator function Q[X], we 
will then return to F\JC\. 

Definition L A general operator Q[\] which depends 
on a complex parameter X is said to be analytic within a 
finite open region 3D of the complex X plane if each fixed 
matrix element (<£ | <2[X] | SP) is an analytic function of X 
forXGSD. 

Definition 2. A general operator Q is said to be 
bounded if there is a number M such that for any state 
vector SI>: 

110*11̂ 11*11, (A4) 
where the length Û H of any state vector ^ is defined as 
usual as 

n*iN[<*i*>:r. (AS) 
Boundedness of Q allows us to define a finite quantity 
||Q|| as the least upper bound: 

||Qlhlub||Q*||/||*||. 

I t will be understood that to be bounded an operator 
must be defined over the whole Hilbert space 5C. 

If an operator Q£k] is analytic for all X£ 3D, then it 
follows by the rules of ordinary analysis that all deriva
tives of any matrix element (<£ | Q£k] | >£) will be analytic 
in 3D, and that these derivatives can be used to con
struct a Taylor series expansion of the matrix element 
about any point XoG3D, which will converge in any 
circle about Xo which lies entirely in 3D. The following 
fundamental theorem shows that these results apply 
also to the operator Q[\] itself, provided that it is 
bounded as well as analytic in 3D. 

Theorem 1. If an operator Q£h~] is bounded and 
analytic for X in a finite open region 3D, then it has 
"derivatives'' <3(n)[X] which are themselves bounded 
analytic operators for XG 3D, and which satisfy 

<*|g<">MI*>=—<*|gMl*> (A7) 

« (X-X0)n 

n=0 n\ 
(A8) 

This series converges uniformly, in the sense that 

P?*MII-0 for *-*«,, (A9) 
where Rv is the remainder of the series (A8), i.e., 

P ( \ - X 0 ) n 

i?P[x><2M-£ 0 (n)CXo]. 
n=0 n\ 

I ts convergence is absolute, in the sense that 

« X—Xo n 

-lie(n,[>o]ii<». 

(A10) 

(Al l ) 

Proof, At any point X=Xo where Q[\] is analytic, the 
right-hand side of (A7) will exist and define a bilinear 
functional of $ and ^ (i.e., linear in ^ and antilinear 
in <£). To show that it is also a bounded functional, we 
note by Cauchy's theorem that 

d« n\ r(*\QLzl\V) 
< $ I < ? M ¥ > = — Q> dz, 

d\0
n 2iriJc ( s -X 0 ) n + 1 

(A12) 

where C is any circle \z— Xo| = r whose interior and 
circumference lie entirely in 3D. The matrix element 
(<i> | Q[f\ | \£) is an analytic and hence bounded function 
of z on C which satisfies the Schwarz inequality 

K#leHI*>l^ll*IINIIlQHI|. 
I t follows19 then that this matrix element is uniformly 
bounded, i.e., that there is a number ||Q(C)|| such that 

I <* IQHI *> I 1̂1*11 IN 116(C) II (Ai3) 
for all z on C. Hence, by applying (A13) to (A12) we get 

dn 

d\0
n -@IGM*> 

nl 

^ - i i e c o i i II*II n*ii 
and we repeat that r is. any positive number such that 
z£3D for \z—\o\^r. Now that we know that (A12) is a 
bounded bilinear functional, we may make use of a 
corollary20 of the Riesz representation theorem to con
clude that there must actually exist an operator Q(n)[\] 
satisfying (A7), and having a bound 

nl 
\\Q(nmU-\\Q(c)\\. (A14) 

for any fixed state vectors $ and S .̂ Furthermore, if the 
circle |X—Xo|^f lies entirely within 3D, then Q\jC\ is 

18 See, e.g., H. W. Turnbull and A. C. Aitken, An Introduction 
to the Theory of Canonical Matrices (Dover Publications, Inc., 
New York, 1961), p. 160. 

That Q ( n )[>] is analytic for XG3D follows trivially 
from (A7). 

19 See, e.g., E. Hille, Ref. 17, Theorems 2.12.3 and 2.12.2 (in that 
order). 

20 See, e.g., N. I. Akhiezer and I. M. Glazman, Ref. 17, p. 42. 
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To prove the validity of Taylor's expansion, we again 
make use of Cauchy's theorem, which gives 

<*KMI*>= 
(X-Xo) 

2« 

p + i i <*iewi*> 
(z-X^iz-X) 

-dz, 

where i^[V] is the Taylor series' remainder defined by 
(A10), and C is again any circle \z—Xo| =r whose in
terior and circumference lie entirely in 3D, but chosen so 
that X is inside it, i.e., | X—Xo| <r. Applying (A13) again 
we get 

K$|^[X]|*)|:g 
X-Xc v+i/r\ 

- )iie(on 11*1111*11, 

where d is the minimum distance from X to C This 
implies20 that i^P[X] is bounded, with 

\\RJX\\U -JIKKOII. (A15) 

Since r was chosen to be greater than |X—Xo|, result 
(A9) follows immediately. The absolute convergence 
statement (All) follows immediately from (A14). 
Q.E.D. 

It should perhaps be emphasized that the uniform 
convergence result (A9) implies21 both strong con
vergence, i.e., 

IW>3*l|-+0, (£-»«>, any*) (A16) 

and weak convergence, i.e., 

K * | * P M | * > | - > 0 , (£->«>, any <£>,*). (A17) 

Weak convergence would follow from the analyticity of 
Q[X] in 3D alone, but the boundedness assumption is 
necessary to ensure uniform or strong convergence. 

We now return to the operator F[X] defined by (Al). 
Theorem 1 has shown that the radius of convergence 
for the expansion of any operator function in powers of 
X—Xo is governed by the shape of the region in which it 
is both analytic and bounded. For the particular opera
tor -FfXL we will be able to show that boundedness 
implies analyticity; hence it is given priority in the next 
definition. 

Definition 3. A point X is said to belong to the resolvent 
set of K if there exists a bounded operator F[X] which 
satisfies (Al). (We require F[X] to be defined every
where in the Hilbert space 3C; this is slightly different 
from the conventional definition of the resolvent set.) 
The spectrum of K is the complement of the resolvent 
set, and consists of all points at which F[\] either does 
not exist or is not bounded. 

We can see immediately that the operator F[X] is 
unique if it exists at all. If there were two operators 
Fa[X] and Fb[X] satisfying (Al'), we should then have 

(l+XFa[X])(l-X20(l+XF6[X]) 
= l+XFa[X]= 1+XF6[X], 

21 See, e.g., N. I. Akhiezer and I. M. Glazman, Ref. 17, p. 61. 

and so Fa[X]=Fb[X]. (For the case X=0 see below.) 
Therefore, to prove that F[X] is analytic in the resolvent 
set we need only construct a power series that satisfies 
(Al). This is done in the next theorem. 

Theorem 2. If a point Xo is in the resolvent set, then so 
are at least all points in the circle 

IX-XoMlFOoJ-1. (A18) 

Throughout the resolvent set F[X] is analytic as well as 
bounded, with derivatives given by 

F<w>0] = »!F*[\]. (A19) 

Proof. The formal power series expansion of F[X] 
about X=Xo can be obtained in the usual way from (Al'): 

^M=E(x-Xo)^[Xo]^ 1 . 
n=0 

We must show that the sum converges, and that it 
actually is equal to F[X], Define the partial sums as 

E.[x]=E(x-x0)^[Xo]"+1, (A20) 
w=0 

and note that for p>q 

K3>|E.[X]|*>-<3>|E9[X]|M>>| 

E (X-X,)"<$|F[>o]-+M*>l 
tt=g-K 

S E |X-Xoh||FCXo]|h+1||#||||^||. (A21) 
n=g-|-l 

When X satisfies (A18), this will become arbitrarily 
small for sufficiently large p and q, so by the Cauchy 
convergence criterion the quantities (<£ | Yi v [\\ I ̂ ) c o n" 
verge for p —><*> to a value X) ($>^; X) which is obviously 
a bilinear functional of $ and ^ . To see that it is a 
bounded bilinear functional we need only set g=0 in 
(A21) and get 

\\FM\ 
K*IEPIX]|¥>I^ 11*11 Wl-

Using the Riesz representation theorem20 again, we now 
see that there exists an operator £ [X] whose matrix 
elements are given by 

<$|£[X]|*H£(3>*;X) 

- E (X-Xo)^|F[X0]"+1 |*>, (A22) 
n=*0 

and which has the bound 

!l£[x]||g-
II^CXolll 

(A23) 
l-|X-Xo|||F[X„]|| 

Since (A22) and (A23) show that E [X] is bounded and 
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analytic within any circle |X—Xo| ^p<||27[Xo]| |_1 , we 
can conclude from Theorem 1 that 

E ( w ) [ X o ] ^ L F [ X 0 ] - H , (A24) 

and when (A18) holds: 

E M = E (A-Xo)^[Ao]"+ 1 , (A25) 
n=0 

the convergence being uniform and absolute. 
Next we must show that E [X] = ^[X] . We note first 

that the partial sums satisfy 

E , [ X ] - ^ [ X 0 ] - (X-Xo)F[A0] ZP [X] 
= (X-Xo)^ 1 F[X 0 ]^ 1 , 

so that 

| | £ , [ X ] - F [ A o ] - (X-X„)F[X„] ZP M i l 
:S|X-Xo|J '+1 | |F[Xo]||»+I 

and, therefore, by the triangle inequality, 

HE [X]-F[Xo]- (x-x0)F[Xo] E Wll 
^Ix-Xol^HFCXo]!!^1 

+ ||i-(x-Xo)F[x0]|| HE CX]-EP[X]]| . 

Now let p—>co. The first term on the right-hand side 
becomes zero by (A18) and the second vanishes because 
(A25) converges uniformly. Hence, the left-hand side is 
zero, and so 

E [X] = ^ [ X 0 ] + (X-X0)JF[Xo] E [X]. (A26) 

In exactly the same way we can show that 

E [X] = ^ [ X 0 ] + (A-A 0 )E [X]^[Xo]. (A27) 

By hypothesis, ^[Xo] satisfies (Al) at X=Xo. Mul
tiplying the first of Eqs. (Al) on the right by 
1+(X—Xo)E [X] and then using (A26), we get 

0 = { F [ X 0 ] - i r - X o ^ [ X o ] } { l + ( X - X o ) E [ X ] } 

=E [x]-iqi+(x-x0)E [x]}-Xo^E [x] 
=E[x]-i£-xzE[x]. 

Using the second of Eqs. (Al) at X=Xo and (A27) in the 
same way, we can also show that 

o=E[x]-*-xE[xK. 
Hence, £ [X] satisfies (Al), and therefore equals F[\]-

What we have proven then is that F£k] exists and is 
bounded and analytic in the circle (A18) centered at Xo, 
and has derivatives given at Xo by (A19). The final and 
crucial step is just to realize that Xo could have been 
taken anywhere in the resolvent set; hence F[_\\ is 
analytic as well as bounded, with derivatives given by 
(A19), throughout the whole resolvent set. Q.E.D. 

The first part of Theorem 2 shows that the resolvent 
set is open, and that we may therefore make the next 
definition: 

Definition 4. The radius of convergence p(X) at any 
point X in the resolvent set is defined as the distance 

from X to the nearest point of the spectrum; in other 
words it is the largest radius such that all points z in the 
open circle 

| * -X |<p(X) 

belong to the resolvent set. We may have p(X) infinite 
(as for Volterra kernels) but according to Theorem 2 it 
can never vanish, and in fact 

PM^I I^MII - 1 . (A28) 

Theorems 1 and 2 may now be combined, and we 
immediately get our first main result: 

Theorem 3. If Xo is in the resolvent set then F[\] is 
given by the absolutely and uniformly convergent 
series 

^ [ X ] = E (X-X0)"F[X0>+ 1 (A29) 

n=0 

for all X within the circle of convergence: 

|X-Xo|<p(X0) . (A30) 
Until now we have considered expansions of F[\~] 

about an arbitrary point Xo. This was an indispensable 
part of our method of proof, but in practice we will 
usually be expanding about Xo^O. In this case, we need 
only note that (Al) gives 

F[QT[ = K, (A31) 

and hence Theorem 3 immediately specializes to : 
Theorem 3°. If K is bounded, then X=0 is in the re

solvent set and has radius of convergence 

P(0)^\\K\\-\ (A32) 

defined as the distance from the origin to the closest 
point of the spectrum. (The quantity p-1(0) is some
times given the name "spectral radius.") For all 
| X | <p(0) the operator F[\] is given by the series (A3), 
which converges uniformly and absolutely, and satis
fies (Al). 

I t must be emphasized that the radius of convergence 
p(X) is not usually equal to UFO]!!"1 [except for K(W) 
self-ad joint] , but is generally larger. [ In particular p(0) 
is generally larger than | | i r | | - 1 . ] Our method of proof has 
essentially used Cauchy's theorem to piece together the 
little circles |A—Ao| ^ ^[AoHH-1 m t o the big circles 
|A-Ao|<p(A0). 

In fact, the inequality (A32) can be sharpened con
siderably by the following little theorem: 

Theorem 4. If K is bounded and if \n(n=2, 3, • • •) 
belongs to the resolvent set of Kn, then A belongs to the 
resolvent set of K, In particular, this shows that 

p(0)*\\K»\\-u« ( n = l , 2 , . . . ) . (A33) 

Proof. If An belongs to the resolvent set of Kn, then 
the operator [1 — An i£n] - 1 exists and is bounded. I t also 
commutes with K since [1—\nKn~] does, Hence, if K is 
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bounded we may form a bounded operator 

n - l 

m=>0 

n - l 

= £ Xm iTm[l-XnJS:n]-1 . 
7/i=0 

If we multiply on the left or right by [1—Xi£] and use 
the identity j 

w—1 n—1 

[ l -X t f ] £ X ^ ^ E X- .K-[1—X£] s l -V£>! 

we see that 

[ l - X Z ] [ l + X F [ X ] ] = C l + X F [ X ] ] [ l - X i T ] , 

and that, therefore, F[\] is a bounded operator satis
fying (Al ') . The inequality (A33) follows because all 
points Xw such that |Xn| <||Zn | |"-1 are in the resolvent 
set of Kn, and hence in the resolvent set of K. Q.E.D. 

I t may even be proven22 that the right-hand side of 
(A33) increases to the limit p(0) as n—><*>. But this is 
not a very convenient way of determining p(0). Instead 
we now turn to an exploration of the spectrum. 

First let us recall what precisely is meant by Eqs. 
(Al) or (Al') . We may define the range of 1—\K as the 
set (R(X) of vectors ^ in the Hilbert space 3C which may 
be expressed in the form 

¥ = ( 1 - X 2 0 $ . (A34) 

In other words, (R(X) is that part of 3C obtained from 
(A34) by letting <£ sweep over 5C. Obviously (ft(X) is a 
linear manifold, and it is nontrivial unless K is the 
operator —X-11, a case we can safely exclude. (However, 
it may not be a space; that is, it may not contain all its 
limit points.) The result of operating with 1+XF[X] on 
any vector M>£ (R(X) may be defined as 

(l+XF[X])^E=<i> (A35) 

if, and only if, the correspondence SF—><£ defined by 
(A34) is unique. In this case, we have for all $ G X 

( 1 + X F [ X ] ) ( 1 - X i 0 $ = $ (A36) 

and for al l^£(R(X) 

(1 -XiQ ( 1 + X F [ \ ] ) ¥ = * , (A37) 

so that (Al') will hold within the range (R(X). Hence a 
point X belongs to the resolvent set X if, and only if: 

(a) The correspondence ^ —-»• <£ defined by (A34) is 
unique. 

(b) The range (R(X) of 1—\K is the whole Hilbert 
space 3C. 

(c) The operator F£k~] defined by (A35) is bounded. 
Thus there are just three mutually exclusive ways that 

22 F. Riesz and B. Sz-Nagy, Ref. 17, p. 425. 

a point X can qualify for membership in the spectrum 
oiK: 

(i) The operator F[\~] is not well denned at all, be
cause (A34) does not define a unique <£. In this case the 
difference of the <l>'s must be a vector T which is anni
hilated by 1—\K> i.e., 

JK:T=X~1T. (A38) 

We then say that X is in the point spectrum of K. 
(ii) There are no eigenvectors T satisfying (A38), 

but the range (R(X) on which (Al) holds is not every
where dense in 5C. (A set is said to be everywhere dense 
in 3C if 3C is equal to the closure of the set, obtained by 
adding to the set all of its limit points.) In this case, the 
closure of (ft(X) is a linear subspace (R'(X)C3C which is 
not equal to 3C. The projection theorem23 tells us then 
that there must exist a vector T which is orthogonal to 
(R'(X), and hence to all vectors ^ which can be written 
in the form (A34). But then for all<£, <T| 1 - X Z | $ ) = 0, 
and hence 

T tZ=X~1T t . (A39) 

We then say that X is in the residual spectrum of K. 
[Time reversal invariance excludes the possibility of a 
residual spectrum in scattering theory, since it can be 
used to show that (A39) implies (A38).] 

(iii) There are no vectors T satisfying either (A38) or 
(A39), so that F[\] is defined and satisfies (Al) on a 
range (R(X) everywhere dense in 3C; however F[\] is not 
bounded. This implies that 1+XF[X] is not bounded, so 
that for any integer n however large, there exists a state 
vector §n such that | |(l+XF[X])$n | |^ | |<l>n| | . We may 
then define a vector Tn as 

_ ( l+XF[X])$ n 

THlU+AF[X]>M 
so that Tn is normalized, 

||T»|| = 1 (A40) 
and, using (Al'), 

| | ( l - \ 2 0 T „ | | g l / » . (A41) 

Thus, although there is no vector T which satisfies 
either (A38) or (A39), we can find a sequence of nor
malized vectors which approximately satisfy (A38) to 
any desired accuracy. In this case X is said to belong to 
the continuous spectrum of K. (The continuous spectrum 
is very much present in the theory of scattering for 3 or 
more particles, and it is what makes perturbation theory 
so tricky there.) 

Strictly speaking, there is still one other possibility. 
I t may happen that there are no vectors T which satisfy 
(A38) or (A39) either exactly, or approximately in the 
sense of (A40) and (A41), so that F[\] is defined, 
bounded, and satisfies (Al) on a range (R(X) which is 
everywhere dense in 3C, but that nevertheless (R(X)F^3C. 

23 See, e.g., B. Friedman, Ref. 17, p. 51. 
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But then any vector ^ which cannot be written in the 
form (A34) can still be expressed as the limit of a 
sequence SF* of vectors which can be written 

^ ( l - X i Q ^ , (A42) 
where 

<S>;=(1+XF[X])^. (A43) 

Since F£k~] is bounded, the <£; must converge to a vector 
<£, and we can define F{\]^ by (1+XF[X])^=<I>. In this 
way, F[\] can be extended to a bounded operator 
defined and satisfying (A36) everywhere, but still 
satisfying (A37) only for ^G&(X). 

In order to eliminate this awkward last possibility, it 
is usual to restrict the discussion to kernels K which are 
closed, i.e., such that the sequence K<&i converges 
(strongly) to K& if it converges, and if the sequence <£; 
converges to <£. In this case (A42) gives SF= (1 — \K)$, 
contradicting our supposition that \F(£(R(X). Any 
bounded kernel is obviously closed, by virtue of its 
continuity, and any closed kernel which is everywhere 
defined is bounded,24 so the division of the spectrum into 
the point, residual, and continuous spectra is really only 
applicable for bounded kernels. 

The residual and continuous spectra are much less 
familiar than the point spectrum, probably because they 
are absent when K is a finite matrix. For the continuous 
spectrum, this is just because any finite matrix is neces
sarily bounded; for the residual spectrum, it is because 
(A39) would require the vanishing of the determinant of 
1 — XK and hence would imply the existence of some 
other T satisfying (A38). The absence of any but a point 
spectrum for finite matrices is very important, because 
it implies the result already quoted,18 that the radius of 
convergence p(0) for the series (A3) is |Xi|, where Xi_1 

is the largest eigenvalue of K. 
There is a very natural extension of the class of finite 

matrices, which shares their property of having only a 
point spectrum: 

Definition 5. An operator K is said to be completely 
continuous if for any infinite set of vectors <£<,, which is 
bounded in the sense that all ||$ff|| are less than some M, 
the set K$ff is compact, i.e., it contains a convergent 
subsequence. 

Any completely continuous operator K is bounded, 
since otherwise there would exist a sequence of vectors 
$ n for which J|$»|| = l, \\K$n\\>n, (»=1, 2, • • •), which 
is impossible if the sequence K$n contains a convergent 
subsequence. 

The definition of complete continuity is tailor-made 
to guarantee the absence of a continuous spectrum. For 
if X were in the continuous spectrum then there would be 
a sequence I n satisfying (A40) and (A41); the complete 
continuity of K would then imply that the sequence 
{KTn} contains a subsequence which converges to some 
vector T. But then (A41) would imply that the corre
sponding subsequence of {Tn} converges to XT, and, 

24 F. Riesz and B. Sz-Nagy, Ref. 17, p. 306, 

since K is bounded and hence continuous, XiTT=T, 
violating the requirement that a point in the continuous 
spectrum cannot be in the point spectrum. 

Furthermore, a completely continuous operator can
not have a residual spectrum. For a bounded kernel K, 
we may write (A39) as Z+T=X_1*T. But for a completely 
continuous kernel, it can be shown25 that this would 
imply that X-1 is an eigenvalue of K, violating the re
quirement that a point in the residual spectrum cannot 
be in the point spectrum. 

Hence, for a completely continuous kernel K we have 
the promised result: 

Theorem 5. If K is completely continuous then the 
radius of convergence p(Xo) for an expansion of F[_\\ in 
powers of X—Xo is the distance from Xo to the nearest 
point Xv for which \v~

l is an eigenvalue of K (with a 
normalizable eigenfunction). 

We will end by listing without proof some useful facts 
about completely continuous kernels: 

(1) If 3C is a separable Hilbert space (such as the 
space of square-integrable functions or square-sum-
mable sequences) so that the " trace'' operation is well 
defined, and if K is an L2 or "Hilbert-Schmidt" kernel, 
i.e., TT{KK^} < oo, then K is completely continuous.26 

(This is usually the key theorem used in proving the 
complete continuity of physically interesting kernels, 
and it may be regarded as the implicit basis of our work 
in paper B.) In particular, a finite matrix or a kernel of 
finite rank is completely continuous. 

(2) Products, linear combinations, and adjoints of 
completely continuous kernels are completely con
tinuous.27 

(3) If K is completely continuous and B is bounded 
then BK and KB are completely continuous.27 

(4) If IOK is completely continuous and if K is 
bounded then K is completely continuous.27 

(5) If for any e>0 there exists a completely continu
ous kernel K€ such that \\K—K€\\<e then K is com
pletely continuous.27 

(6) Any completely continuous kernel may be ap
proximated arbitrarily closely by a kernel of finite 
rank.28 That is, we may find a sequence of "separable 
kernels" \s)(s\ such that for any e>0, 

pi-ZkXslIKe 
8 = 1 

for sufficiently large p(e). [The converse follows im
mediately from (5) and (1).] 

(7) A kernel K is completely continuous if, and only 
if, the sequence K^fn converges strongly whenever \Fn 

converges weakly.29 

25 N. I. Akhiezer and I. M. Glazman, Ref. 17, p. 57 (corollary) 
and p. 122 (theorem 1). 

26 See, e.g., N. I. Akhiezer and I. M. Glazman, Ref. 17, p. 58. 
27 N. I. Akhiezer and I. M. Glazman, Ref. 17, p. 57. 
28 F. Riesz and B. Sz-Nagy, Ref. 17, p. 204. 
29 F. Riesz and B. Sz-Nagy, Ref. 17, p. 206. 
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(8) A kernel K is completely continuous if, and only 
if, (tyn | K13>n) converges to (>£ | K | <£) whenever \Fn and 
<£n converge weakly to ̂  and <£.29 

(9) The eigenvalues of a completely continuous oper
ator K form a denumerable sequence which can have 
only zero as a limit point. Hence, there are at most a 
finite number of eigenvalues greater in absolute value 
than any given quantity. To each eigenvalue rj there 
corresponds a finite number of linearly independent 
eigenvectors. The operator K^ has an equal number of 
linearly independent eigenvectors corresponding to the 
eigenvalue y\*.30 

I t follows from the last remark that the singularities 
of F[\] which limit the radius of convergence of pertur-
bative expansions are isolated (and in fact just poles), 
and that they can be removed by the methods discussed 
in Sec. I I and in paper B. 

APPENDIX B : BOUNDEDNESS OF THE AT-PARTICLE 
LIPPMANN-SCHWINGER KERNEL 

We will first discuss the boundedness of K(W) for 
two-particle subsystems, and then will show that this 
implies the boundedness of the i\f-particle kernel. 

We are assuming throughout that each two-particle 
subsystem has an 1? kernel,31 i.e., that for all complex or 
negative W 

&q<Pq'\(q\Kii(W)\q')\*=Tii(W)<«> , (Bl) 

where 

<q|2T,7(PF)[q'> 
<qlP«|q'> 

(B2) 

I t follows that the two-particle kernels are bounded, 
with 

*d/dV<q|*«(l*0|qW) 

^ri3{W) /<P?|*(q)|* (B3) 

for any L2 function ^(q) . Furthermore, as RelF is de
creased to — co each TijiW) will stay finite and eventu
ally vanish, and it therefore has a bound <Tij(W) such 
that 

TijiW-E^aviW) (B4) 

for all E^O. For example, it was shown in Appendix I 
of paper B that, for local potentials, 

..3/2 

'ijiwy-
27r |Im(2IF)1 /2 1/2 1 

<Pr|7<y(r)l*. (B5) 

30 N. I. Akhiezer and I. M. Glazman, Ref. 17, pp. 118, 124, 
31 See the discussion in Ref, 9, 

But |ImpF—E~JI2\ reaches its minimum for E = 0 , so 
in this case we can take 

^i(W)=Tti(W). (B6) 

To prove the boundedness of the TV-particle kernel, it 
is only necessary to assume that there exist quantities 
<Tij(W) such that 

Jd4jd*q'(q\Kij(W--E)W)>P(qr 

^ • i W M 3 ^ ( q ) l 2 (B7) 

for all complex or negative W, all J E ^ O , all L2 functions 
^(q) , and all i^j. [This follows from (B3) and (B4), 
but is considerably weaker than our general assumption 
(Bl) . ] We will show that under this condition the 
kernel K(W) = Go(W)V is a bounded operator on the 
1'center-of-mass Hilbert space'' of L2 functions ^(pr * *piv) 
defined for pH hPiv= 0. That is, 

\\K(W)n£\\KQV)\\ 11*11, • (B8) 

where the length of a vector in the c m . Hilbert space is 

* 
: / 

<PpV<PpN&($l+'-+VN) 

X | ^ ( p i - - - P i v ) | 2 

and so 

MM 

-.1/2 

J ' (B9) 

d3pv • • d3pNS(f>i-\ \-pN) 

X 

l2 l I / 2 

XK(W)\VI'---VN')HVI'---VN')\\ • (BIO) 

The matrix element of K{W) in (BIO) is (for p d 
+piv=0) 

{VVVN\K(W)\VI •••?*') 

= Z < q « l ^ y ( ^ - - E « ) | q « ' > 

X « ( P I ' + - - - + P J / ) I I « (P*-P*0 , (Bl l ) 

where 

£«•=• E 
P*r 

- ( E P O 2 - (B12) 

Using (Bl l ) and the triangle inequality, we get 

i<3 
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where, for example, 

||/r(W0*ll» 

[/ d3qndzpS'--dspN ds
qi2

f(qi2\K12(W-E12) 

X\qi2f)^((ii2Vz'"PN) 

1/2 

(B14) 

But then (B7) gives 

\\K(W)*\\12 

^12(W) / d\12d
zpr • • d*pN\\f/(q12pz- "PN)\ 

nl/2 

For local potentials, (B5), (B6), and (B16) give 
Eq. (2.31). 

There is obviously nothing in these arguments which 
would prevent their extension to the more general class 
of theories discussed in Sec. VI. However, it is not 
possible to conclude that the kernel K(W) will be 
bounded in theories with antiparticles (or holes), since 
the sum (B16) is then infinite and may perhaps diverge.32 

APPENDIX C: COMPLETE CONTINUITY OF THE 
IRREDUCIBLE THREE-PARTICLE KERNEL 

We will first show that 

\\HW)h<«> (ci) 
under assumptions (3.27) and (3.28). We remind the 
reader that, for a general momentum-conserving opera
tor Q, the "center-of-mass Hilbert-Schmidt norm" is 
defined by 

IIGIN #^3/>2<Z3/>35(Pl+P2+p3) 

X | (PlP2P3 \Qo.m.\ Pl'P2'P3') I 2 

1/2 

(C2) 

where Q0.m. is defined for pi+p2+P3 = 0 by 

<Pip2p31QI P i 'p /Ps '} = 5 ( p i / + p 2 / + P a / ) 

X(PlP2P3|ec.m. |Pl /p2
,P3 /) . (C3) 

32 Arguments implying that K(W) is not bounded in field theory 
have been presented by F. J. Dyson, Phys. Rev. 85, 631 (1952). 
Whether or not Dyson's reasoning applies to any given interaction 
seems to me to be a very difficult dynamical question, of the same 
sort as encountered in trying to prove the stability of nuclear 
matter against collapse. 

In general, p + £ | | 2 ^ p | | 2 + | | 5 | | 2 , so it will be suffi
cient to show that the c m . H-S norm of each of the six 
terms in formula (3.12) is finite. These six terms differ 
only by permutations of 123, so it will be sufficient to 
prove that 

\\L12{W)V2,\\2<<». (C4) 

I t is easy to show algebraically that Ln(W) obeys an 
integral equation similar to (3.13), 

Lu(W) = Ku(W)Go(W)+Ll2(W)V12Go(W) 

and, therefore, 

L12(W)V2Z-=K12(W)K2Z(W) 

= <ri21/2(W0IMI, (BIS) where 

so (B13) shows that (B8) is satisfied, with 

\\K(W)Ui:<rii1/2(W). (B16) 

+F12(W)K12(W)K2Z(W), (C5) 

F12(W)^L12(W)(W-H0) 
= K12(W)+K12(W)F12(W). (C6) 

By assumption (3.28), the first term in (C5) has a finite 
c m . L-S norm, so all we have to show is that : 

\\F12 (W)K12(W)K23(W)\\2<<». (C7) 

However, the operator Fu(W) is an D kernel (see Sec. 
I l l , paper B) within the space of L2 functions of qi2, and 
therefore by the arguments of Appendix B it is a 
bounded operator on the three-particle c m . Hilbert 
space. I t follows33 that 

\\F12(W)K12(W)K2Z(W)\\2 

g | | F 1 2 ( I F ) | | | | i r 1 2 ( ^ ) ^ 2 3 ( ^ ) | | 2 , (C8) 

where IIF12II is the bound defined in Appendix A, and is 
finite. Thus (C7) is true, and hence (C4) is true, and 
hence (CI) is true. 

We now assume that the Va are local potentials, i.e., 

( p ^ p s l F i ^ p / p / p s ' ) 

- 5 ( P 3 - P 3 , ) 5 ( P 1 + P 2 - P 1 ' - P 2 , ) ^ 1 2 ( P 1 - P 1 0 , (C9) 

and likewise for F2 3 and F13. We shall show that (3.27) 
and (3.28) both hold if, and only if, 

' « • - / <fy|F<y(q)l2<«>, (*/ = 12,13,23). (CIO) 

Equation (CIO) is, of course, equivalent to the position-
space condition (3.29). We have already shown (in 
paper B, Appendix I) that (3.27) holds if, and only if, 
(3.29) does, so we will only have to show here that 
(CIO) implies (3.28). I t will again be sufficient to choose 
ijk—123} and show that 

\\Ki2(W)K2z(W)\\2<<». (C l l ) 

In order to do the integrals in (C2) for Q = Ki2K2z, it 

33 This trick was suggested to me by C. A. Lovelace, who used it 
in Ref. 3 to prove that the Faddeev-Lovelace kernels are L?. 

file:////F12
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will be convenient to use as integration variables and 
P3, ps', Qi2, and qi2", where m2pi'—Wip2" mx 

q12" = = P l ^ p3 . 
w2pi—wip2 mi w i + m 2 mi+m2 

q12== . = p H ; p 3 , 
m i + w 2 nti+ni2 

\\K12(W)K2Z(W)\\2 = 

where 

(PqiifPqW'<Pp*Ppi'-

We then have 

|F1 2(q1 2-q1 2 '0 |2 i^23(p3'--p3) |2 

T 7 - (q12
2/2/x12) - (P32/2M3) 121W- (q12'/2/2Ml2) - (p3

2/2/x3) |2. 
]l/2 

, (C12) 

Mi2= (wim 2 ) / (wi+w 2 ) , ju3=mz(mi+m2)/(mi+m2+m^) . 

The p3 ' integral can be done immediately, giving 

with 

P(q)-

11*12 W ^ 2 3 W | | 2 = , 2 3 

d*q'd*p 

^ l ^ i 2 ( q ) l 2 p ( q ) 

1/2 

(C13) 

I ^ ~ ( (q+q0 2 /2Mi 2 ) - (p2Au3) [2| W- (q'2/2jui2)- (p2/2M3) |
2 
, [ q = q i 2 - q i 2 " ; P = p 3 ; q ' ^ q u " ] - ( c l 4 ) 

I am not strong enough to do the integral (C14), but 
it is possible to check its convergence and find its 
asymptotic behavior, using methods34 which were de
veloped some years ago to study the similar integrals 
arising in Feynman perturbation theory. The integrand 
of (C14) can be regarded as a function /((P) of t h e , 
nine-vector 

<p={q,q',p}. 

Its asymptotic behavior as (P —» °° in any typical direc
tion within some sub space S' of the full nine-dimensional 
space (R9 is 

/((P)~(P«<§), ((P->oo). (C15) 

A complete list of the a(S') for non-null subspaces 
S'C&9 follows: 

(i) S'=(R9; dimS' = 9; a ( S ' ) = - 8 

(ii) q' = 0, p = 0; dimS' = 3 ; « ( § ' ) = - 4 (C16) 

(iii) q ' + q = 0 , p = 0 ; dimS' = 3 ; a(S') = - 4 

(iv) o t h e r s ' ; d imS '<9 ; a(&')=—8. 

The integral (C14) converges if 

a ( S ' ) + d i m S ' < 0 (C17) 

for all subspaces §>' within the plane q = 0 . The largest 
value of a ($')+dimS' for such S' is — 8 + 6 = —2 for the 

plane q = 0 itself, so (C17) is satisfied and p(q) con
verges. Its asymptotic behavior is 

where 
p(Q) = 0{q"Qnqy), ( g - > « ) , 

a=max{a(S0+dimS'-3}. 

34 S. Weinberg, Phys. Rev. 118, 838 (1960), Eqs. (3.11) and 
(3.12). 

The maximum is now over all subspaces S'C<3l9 except 
those in the plane q = 0 . The quantity a (§>')+dim§>'—3 
has the values (i) —2, (ii)—4, (iii)—4, (iv) < — 2 for the 
four cases listed in (C16), so a— — 2, i.e., 

p(q) = 0 ( r W ) . 
But then (CI3) is obviously finite if *>23 < °° and v\2 < °°, 
and hence ||/(PF)||2< <*> if v2z< °°, vu< °°, and vn< <*>. 

Note added in proof. Recent developments have closed 
two annoying gaps in our work on scattering theory. 
First, F. Coester and M. Scadron have independently 
shown that the two-particle kernel Go (E+ie)V, while 
not completely continuous for £ > 0 in the limit e = 0, 
is nevertheless related by a similarity transformation to 
a kernel that is L2 for e = 0, so that all results in paper B 
can be justified with complete rigor. Presumably the 
same is true in the multiparticle case. Second, we have 
found a way of rearranging the Born series so that it 
converges for any repulsive interaction. I t is therefore 
unnecessary to introduce quasiparticles to replace the 
composite systems that would exist for an interaction 
of opposite sign. 


