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It is shown that the interference particle parameter, bv{ML,EL'), appearing in the directional correlation 
of internal-conversion electrons, has the opposite sign from that given in the literature. It is also shown that 
in the high-energy limit, the directional-correlation pattern for conversion electrons is identical with that 
of the corresponding gamma rays. 

INTRODUCTION 

DIRECTIONAL-CORRELATION experiments in­
volving conversion electrons are important sources 

of information about the atomic nucleus. The inter­
pretation of such experiments is based on the formulas 
and tables of the classic review article of Biedenharn 
and Rose,1 which is referred to hereafter as BR. Their 
paper presents expressions which relate the results of a 
conversion-electron directional-correlation measurement 
to the corresponding directional-correlation involving 
the gamma ray. This relation is formally accomplished 
by the introduction of factors, particle parameters, b, 
into the expression for the gamma-ray correlation. 

The present note points out that a sign change must 
be introduced in the expression in BR for the particle 
parameter corresponding to the interference between 
ML and E(L+1) transitions. The old result is in error. 
In particular, the sign of bv[ML, E(L+\)~] in Eq. (101) 
of BR, as well as the signs of the numerical values of 
this quantity in their Table IV, must be reversed. 
Similar sign reversals are also necessary in the corre­
sponding conclusions of other authors.2-5 The signs of 
the expressions for the particle parameters not involving 
the interference between multipoles are unaffected. 

BR have also discussed the high-energy limits of the 
particle parameters for the Coulomb case and Z=0. 
They conclude that for pure multipoles the particle 
parameters approach + 1 , and that for mixed multi-
poles, the interference particle parameters approach — 1 
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edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. XLII. 

4 A. Z. Dolginov, Gamma-Rays, edited by L. A. Sliv (Academy 
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6 H. Ikegami, Phys. Rev. 120, 2185 (I960). This paper includes 
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for finite Z, and + 1 for Z=0. In this note it is shown that 
all particle parameters, bv, approach + 1 for both Z = 0 
and finite Z, in the high-energy limit. When the signs 
of the interference parameters in the formalism and 
tables of BR are corrected, the proper high-energy 
limits are obtained. It is also shown that this simple 
limit holds for more general and more realistic potentials 
than the pure Coulomb. 

This sign change in the relation between the gamma-
ray and conversion-electron correlation has drastic 
consequences in the interpretation of experimental 
data involving mixed transitions. 

CORRELATION FORMALISM 

The proper sign of the interference particle parameter 
is demonstrated below in a number of ways, in addition 
to a straightforward recalculation of the correlation 
formalism using traditional techniques. Second, the 
simple free-particle case (Z=0) is considered in two 
ways: by direct application of the formalism, and imme­
diately from the primitive form of the conversion inter­
action. In the high-energy limit, both of these pro­
cedures give the same result: all particle parameters 
approach + 1 . Third, the high-energy Coulomb case is 
considered in the same two ways, with the same result. 
This result for the 6's parallels the fact that the conver­
sion coefficients are independent of multipole order in 
the high-energy limit. The arguments for the point-
Coulomb case are also shown to apply to more general 
potentials. 

That all the particle parameters approach + 1 and 
that all conversion coefficients become equal in the 
high-energy limit mean that the conversion-electron and 
gamma-ray correlation patterns become identical. This 
simple physical situation can be understood in the 
following way. In the high-energy limit, the mechanics 
of the conversion process are such that the major con­
tributions arise from distances which are large com­
pared with the wavelength of the photon. This means 
that the important part of the electron functions lie 
in the wave zone of the radiation, that the effects of 
the centrifugal barrier on the ejected electron may be 
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neglected, and that the initial electron momentum is 
negligible. Under these conditions the conversion occurs 
at essentially macroscopic distances, and the gamma-
ray and conversion-electron patterns must necessarily 
follow each other. Although these considerations are 
implicit in any derivation of the high-energy limit, they 
are given explicitly with reference to the Coulomb case 
discussed below. 

Recalculation 

A detailed recalculation of the particle parameters for 
mixed transitions, using methods similar to those of 

Biedenharn and Rose,1 has been carried out. This re­
calculation results in a formula for the interference 
parameter, bv[_ML, £ (L+1)] , which has the opposite 
sign of the standard result, Eq. (101) of BR. There is 
agreement between the present derivation and that in BR 
up to and including their Eq. (100), but the sign difference 
appears between (100) and (101), and is carried through 
into the evaluation of their Table IV.6-6a 

For the specific case of the iT-shell (or any S1/2 initial 
state) conversion of a mixed ML and E(L+1) transi­
tion, the correct result for the mixed particle parameter7 

is, in the notation of BR: 

blML,E(L+l)~]=(-l) 

UL+2) 

L(2L+l)(2Z+3). 

1/2 

Re )[!+ )(1 

where 

£+1 \ / •(L+l)(L+2)\-|1'2 

1+ ) i+ ) 
L\Tm\*J\ ITJ2 / . 

(1) 

Tm(L)--
exp(idL+i) 

exp(id-L) 
drr*hL^(UZi+Z«rfi) / 

K / - I + 1 ' 

drr*hL™(Jvgi+gvfi) 
—1K/=—L 

Te(L+l)=(L+l) 
exp0'5i+1) 

exp(f'5__L_2) 
dr r\ (L+l)/zL+1«> (f.Ji+g^i)- QL+VhLVJvgi-hLVgtifi} 

Kf=L+l' 

dr r\ (L+ l > i + 1 « (jt/fi+g,fgi)+2(L+ l)AL(l)g,,/4 

and 

i drr*hLV(fKfgi+gKffi) 

i drr^iL+^hL^^f^i+g^-ilL+S^L^f^-h^g^ 

•- Phase of 

6e= Phase of 

The Dirac radial functions / and g, and the continuum 
phases 5K, are defined in accord with convention,8 and 
hLa)z=:hLa)(kr) are the spherical Hankel functions. It is 
worth noting that the interference parameter, bv, is 
independent of v. 

The point made here is that the expression (1) is 
opposite in sign to Eq. (101) of BR, and to correspond­
ing expressions in the literature.2-5 

Example : The Free-Electron Case 

The calculation of the formalism leading to the 
above result requires many steps which have no simple 
physical interpretation. It is advantageous, therefore, 
to consider a particularly simple example which allows 

6 We have spot-checked values in Table IV of BR for Ml, 
El mixtures against Eq. (101) of BR, using values of the radial 
integrals obtained from p. 164 et seq. in M. E. Rose, Internal Con­
version Coefficients (Interscience Publishers, Inc., New York, 1958). 
We have also spot-checked values of the pure Ml and E2 particle 
parameters against BR (95a) and (97). I t is to be noted that, in 
accordance with the phase convention used by BR [see their Eq. 

Kf=L+l 

(2) 

(3) 

-l ,c / ==L+l 

a result to be calculated in two different ways: first, 
from the formalism above, and second, directly from 
the primitive form of the conversion interaction.9 Such 
a procedure is especially useful in demonstrating the 
sign of the result. 
(94)], the values of i?2 for both Ml and E2 transitions given on pp. 
164 et seq. of this latter reference, must be multiplied by —1. 

6a Note added in proof. L. Biedenharn and M. E. Rose have sent 
us a preprint of a recalculation of bv[ML, £ ( L + 1 ) ] which agrees 
with the sign correction presented here. 

7 For completeness we give also the form of the pure multipole 
particle parameters from BR: 

olML^l- > ( * + 1 ) — L{L+V l 1 - 7 ^ -

b,ZE(L+l)l = l+-

2 L ( L + 1 ) - K H - 1 ) 

v(v+l) 

2L+1 L+l+L\Tm\ 

L+l 
2(L+l)(L+2)-p(r+l) 2L+3 

X 
\L+2+Te\ 

( L + l ) ( L + 2 ) + | r . | 
8 M. E. Rose, Phys. Rev. 51, 484 (1937), and BR Eq. (94). 
9 The method used here closely resembles the treatment of a 

very similar problem by N. M. Kroll and W. Wada, Phys. Rev. 
98, 1355 (1955). 



S I G N O F I N T E R F E R E N C E P A R T I C L E P A R A M E T E R B37 

The example considered consists of using free-
particle Dirac wave functions of momentum p for the 
final-state electron, and a corresponding free-particle 
initial state of zero kinetic energy. Further, we de­
liberately consider the situation where all penetration 
effects10 are negligible. Finally, only the high-energy 
limit of this case is considered. Some care must be 

taken in defining this limit, In particular, it is under­
stood that kR, the transition wave number times the 
"source" radius, remains small, as is usual in low-energy 
nuclear physics. 

The calculation of the particle parameters for this 
free-particle case using the formalism (l)-(3) is straight­
forward.11 The results are: 

J , [£ (L+1)]=1-

J,[Af£,JS(Z+l)]= 

4v(v+l)(L+l) 

[2(Z+l)(Z+2)~K^+l)][(^+2)^2+4(L+l)] 

1 

(4) 

[l+4(Z+l)A2(Z+2)] 11/2 

These results are in agreement with the Z = 0 ex­
pressions written on pages 755 and 759 of BR. However, 
it is important to note that had this calculation been 
based on Eq. (101) of BR, the sign of the interference 
parameter, bv[ML,E(L+l)~], would have been re­
versed. The correct sign on pages 755 and 759 of BR 
was obtained by their use of correct expressions previous 
to their final Eq. (101). 

In the high-energy limit, & —» oo, all of the above 
expressions, Eq. (4), approach + 1 . This, taken with 
the fact that in this limit the conversion coefficients are 
independent of multipole order, means that the con­
version-electron and gamma-ray directional-correlation 

10 E. L. Church and J. Weneser, Ann. Rev. Nucl. Sci. 10, 193 
(1960). 

11 We consider the specific case of the mixed conversion of ML 
and E(L-{-l) transitions from a *; = —1 initial state. The radial 
Dirac wave functions, fK, gK, for the initial state are simply: 

£_i = l , / _ i = 0. 

The corresponding functions for the final electron states of ML 
conversion are: 

(W4-1\ l /2 /W—1\1/2 

(pp'-f-ix 1/2 /jy—i\V2 

~^-) PJL+i{pr), / L + 1 = - ^ — — J PjUpr). 
The functions for the final electron states of E(L-\-l) conversion 
are: 

/W-\-l\112 (W—1\1/2 

L+2 (pr). 

\ WP / 

s-L-2=+[r^r) fjL+i(pr), f.L^—[-^-) PJ. 
In the above W= (p2-j-l)m is equal to the total energy of the 

ejected electron and Ŵ  —1 is the nuclear transition energy, k. The 
above final-state wave functions are in agreement with the nor­
malization and phase conventions (Ref. 8). 

Substituting the above wave functions into the previous ex­
pressions, Eqs. (2) and (3), we find for this case of Z = 0: 

Tm(L) = \, 
T,(L+1) = (£+1) - (2L+3)k/(k+2), 

0e-0m = Phase of T,(L+l). 
In evaluating the above the general relation 

/ > rWHMMpr) - | ( f ) * ^ , P*k 
has been used. 

patterns become identical for any mixture of ML and 
E(L+1) multipoles. We will now derive this simple 
result directly from the primitive conversion interaction. 

The electromagnetic interaction between the nucleus 
and electron is, to lowest order in e2 (which is all that 
will be considered here), 

/

eik\Tn—Te\ 

dTndTe()n')e—pnpe) . (5 ) 

|rn—re | 
For the free-particle case, a plane-wave representa­

tion of this interaction permits an immediate evalua­
tion. In the plane-wave representation 

\ /. eik''(rn~Te) 

H' = / dTndTedkf(]n-]e— pnpe) k'2-k2 

This Feynman expression can now be rewritten12 

1 f gik'<(Tn—re) 

H' = / dTndTedk' £ in'fyie'tf 

(6) 

2TT k'2-k2 

2ir2J k2 
(7; 

Substitution of the above values into Eq. (1) gives the particle 
parameters quoted in Eq. (4) in the text. 

12 The transformation steps are given here in full. The use of 
the identity 

1 Ji'2 1 1 
b'2—k2 k2 k'2—k2 k2' 
IV IV tv IV IV IV 

and the explicit separation of the currents into transverse and 
longitudinal parts by means of the identity 

jn' je = 2 in'e/h'ej+ln'k'je-k' 
J 

puts W into the form 

^'—Si/^^^'{fi--^-«'i5rp«*'-fr--r-) 

- g*k'-(rn—re) }• PnPe£'2--£2 
The continuity equations 

V-j»—ikpn^O, V-ie+ikpe=*0, 
imply that the (jn*&%•&') appearing in the second term above 
may, after two partial integrations, be replaced by k2pnpe> This 
term is then seen to cancel the last term above, so that the scalar 
part is no longer explicitly present. The result is Eq. (7). 
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where it is understood that the singularity is denned in 
the usual way, k2 —> (k+ie)2. 

The basic step in the conversion-correlation calcula­
tion involves the comparison of the probability of 
emission of a conversion electron in a given direction, 
u, with the probability of emission of a corresponding 
gamma ray in the same direction. In the free-particle 
case considered, the final electron state is then to be 
taken as an eigenfunction of linear momentum, v=pu: 

xl/f(re) = D(Tf,v)eivre. (8) 

The initial electron state is taken to be a K»= — 1 state 
of zero momentum 

^ ( r e ) = JD(r»,p=0) = ( . J . (9) 

Here D is a Dirac spinor, and x a Pauli spinor. 
The integration over the electron coordinate in the 

interaction (7) may now be done immediately, and 
leads to the simple factor 5 ( k ' + p). The important point 
here is that the retardation denominator, p2—k2=2k, 
in the first term in (7), is small compared with the 
factor k2 appearing in the denominator of the second 
term. If we now assume, in conformity with our previous 
neglect of penetration effects, that ) n - & is not especially 
small relative to ]n'k, only the first term in (7) is 
important in the high-energy limit, and the second term 
is dropped. 

The calculation of the spin-summed square of the 
interaction, which appears in the expression for the 
transition probability, is readily accomplished using the 
usual spin-trace methods. The result of these calcula­
tions is 

4 T T V A I f i2 

£ | f f T = — - I E drnU'tje-^l . (10) 
Ti.rf k2\kV i \J I 

In the high-energy limit, p—>k and p —» k, where 
k = M . The probability of conversion-electron ejection 
in the direction u is then proportional to 

4rr2 

/ 
drnU-$je-ik-tn\ (11) 

This form is recognized to be identical to the usual one 
for gamma-ray emission in the same direction Hi. In 
other words, in the case considered here, the proba­
bility for conversion and gamma-ray emission in any 
given direction become proportional. This propor­
tionality is equivalent to the statement that the con­
version coefficient is independent of multipole order, and, 
more importantly here 

All particle parameters, b, = + 1. 

The above result then illustrates the correctness of 
the formalism (1) for this particular case of free par­
ticles in the high-energy limit. This proof is more 
general than the direct calculation discussed at the 

beginning of this section in that it includes all possible 
multipole mixtures, in addition to the particular case 
of ML, E(L+l). The corresponding high-energy limit 
for the case of pure Coulomb wave functions is dis­
cussed below. 

High-Energy Coulomb Limit 

The radial integrals appearing in (2) and (3) can be 
evaluated analytically for the case of a pure Coulomb 
potential.13 The limits of these integrals can then be ex­
plicitly evaluated as &—><*>. I t can be shown directly 
that this result is also obtained by evaluating the same 
radial integrals after replacing the final-state con­
tinuum wave functions and the Hankel functions by 
their asymptotic forms in the integrand, then perform­
ing the integration, and taking the high-energy limit of 
the result. This procedure is called the Casimir approxi­
mation in BR. The validity of the Casimir approxima­
tion has, therefore, been demonstrated by an explicit 
calculation. 

In this high-energy limit we find the same results for 
the Coulomb case as obtained for the free-particle case11 

rm(z)->i, 
ra(i+i)->-a+2), 

0e—Qm-^ Phase of Te 

(12) 

Substituting these results into the expressions (1) and 
those in Ref. 7, the same high-energy limits are ob­
tained as before for the free-particle case; bv{ML), 
i„[E(Z,+ l ) ] , and J , [ J f £ , E ( L + l ) ] all approach + 1 . 

The conclusion, that bv[_ML, £ ( L + l ) ] - > + 1 in the 
high-energy limit of the Coulomb case, differs from the 
statement in BR concerning this limit by a sign 
reversal.14 

One can also understand in a direct way the coinci­
dence of the conversion-electron and gamma-ray corre­
lation patterns in the high-energy limit of the Coulomb 
case. A derivation is given here which parallels the 
free-particle example. 

This derivation starts with the conversion interaction 
written in the form of Eq. (7). In the high-energy limit, 
this interaction can again be approximated by its first, 
the transverse, term: 

27T2 /•• J J 
• e5 el 

X-
(k+ie)' 

dTe]e-eje~iW' (13) 

13 M. E. Rose, G. H. Goertzel, B. I. Spinrad, J. Harr, and P. 
Strong, Phys. Rev. 83, 79 (1951). 

14 The discussion of this high-energy limit in BR is further 
obscured by the need for another sign readjustment. This occurs 
in the expressions for the high-energy limits of the radial integrals 
labeled as Q(K,L,M) and Q(K,L,e) on p. 755 of BR. One or another 
of these expressions, but not both, must be multiplied by (—1). 
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The wave functions entering in the electron current, 
j«=—^7*a^t-, are those appropriate for the Coulomb 
case: \pi is the initial bound-state wave function, and 
\f/f is the final-state electron wave function. 

The final state corresponds to an electron moving 
off with linear momentum p=pu. The wave function 
xpf is, then, that solution of the Dirac equation which is 
asymptotically a "plane-wave" plus an ingoing wave. 
It will be demonstrated below that, in the high-energy 
limit, only that region of the re integration is important 
for which this asymptotic form is a sufficient approxi­
mation. It will further be shown that in this limit the 
parts of \f/f corresponding to ingoing waves contribute 
negligibly. For a potential which falls off more quickly 
than the Coulomb potential, 1/V, these arguments im­
mediately establish that \[/f is to be replaced, in the 
high-energy limit, by a plane wave, 

D(r,p) e^'r. 

The Coulomb case is somewhat more difficult on two 
counts: the well-known divergence in the forward 
direction, and the logarithmic phase. However, as will 
be seen, neither of these difficulties are actually im­
portant here. 

The divergence difficulties of the Coulomb case have 
to do with the addition of an infinite series of partial 
waves. However, only a finite number of partial waves 
appear here; those picked out by the limited number of 
multipoles which are present in the nuclear radiation. 
As will be shown, these partial waves can be approxi­
mated by their asymptotic forms. In any case, the 
other partial waves enter with zero weight and can 
certainly be so approximated. The resultant series can 
then be immediately summed—not to a plane wave, 
but to a plane wave times a logarithmic phase factor. 
This last factor is related to the second difficulty noted 
above. 

In the Coulomb case each partial wave has its phase 
shifted, not only by an r-independent amount, A, but 
also by an additional logarithmic term, (aZlnr). Since 
the phase factor, exp(iaZlnr), is independent of the 
partial wave, it appears as a common factor in each 
of the outgoing wave components. Parenthetically, it 
can be noted that each ingoing wave appears with the 
factor exp(—^Zlnr); however, it will be proven that 
ingoing waves contribute only negligibly, and so only 
the outgoing waves need be considered. 

These conclusions are summarized by the statement 
that in the high-energy limit the final-state wave func­
tion can be approximated, to lowest order, by 

eiaZlnrD(r,p)ei^) (14) 

Two points remain to be proved: that the asymptotic form of 
the final-state wave function can be used in the whole region of 
integration, and that the ingoing wave parts of the final-state 
wave function contribute negligibly. The proofs are written below 
for the specific case of a /<=—1, relativistic S1/2, initial electron 
state, since it presents the greatest difficulties. The proofs for 
other electron states and for weaker potentials are automatically 

included, although they could have been carried through with 
many fewer precautions. 

To demonstrate the validity of the use of the asymptotic form 
of the wave function \pf in (13), the electron integral is divided 
into the regions re<Z and re>£, where £ is a small distance to be 
defined more precisely in the course of the discussion. It will be 
shown that the contribution of the region re<% is negligible, while 
in the region re>£ the asymptotic form is valid. 

We begin with the contribution from the small region, r«<£: 

x [ c | W / H • */ « r * ' . r . J . (15) 

We are interested in the high-energy limit, that is, p large, and in 
particular, p large compared to the important momentum com­
ponents of xj/iy which are of order aZ. The distribution of k' 
determined by the last factor in (15) is then one lying about —p 
with a range of order l/£. The value of £ is chosen so that this 
range, l/£, is small compared with p. In other words, the important 
range of the variable t, t=k'-f-p, is such that t<&p. Therefore, on 
changing variables, noting that in the high-energy limit 

k»t, p»t, (16) 

p—k—>E, E=total initial electron energy, ^ ; 

and dropping terms of order 1/k, we conclude that 

(17) 

Then, (15) becomes: 

1 

2p(E-u-t-ie) 

2ir*2p j J E-V H—ie 

X e 

\jdTn)n-tj<rirTe~\ X (18) 

The nuclear integral in (18) has been simplified by noting that 
the retardation factor 

eik
,»Tn=.re~ip»rn eit»xn~\c^Lf>-i^*Tn. 

This follows from the fact that rn<R, where R is the source radius, 
which —> 0 as 1/k, in the high-energy limit. The integral over t 
is most easily carried out in rectangular coordinates, taking the 
z axis along d 

h. I 
E-V 

g-tt.r* 

- - (2TT)H8(X)8(y)e~iE*, z>0 
(19) 

=0 , *<0. 

Inserting this t integration, (18) becomes 

- ^ j > n j n . , 6 - < - ] 
x[e f dr^f*(rfl)aMrfl) • ^ C ^ > ' | > (20) 

where ^(r,0) denotes the wave functions evaluated at 0 = 0, <f> = 0. 
We can now obtain an upper bound for the possible value of 

(20). The initial function fa is bounded by dr7^"1, where <n is, 
of course, independent of k. The function \pf is bounded by a 
quantity [bf{pr)^~lJrc/], where b/,c/ are numbers independent 
of p or k, and where T i ^ (1 — («Z)2)1/2. To see this, it has to be 
noted (i) that in the high-energy limit \pf is a function of the com­
bination (pr) only, (ii) that after the diverging {pr)yr~l is ex­
tracted, the remaining function is well behaved, with a maximum 
value which is, of course, independent of {pr), and (iii) that the 
normalization brings in no ^-dependent factors. Therefore, the 
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last factor in (20) is bounded by 

«[ bf\ '+&-• (21) 

We choose £ so that p£ —»oo, while | —• 0 as p —»<*> ; this is im­
mediately realized by putting £=l/pn, 0<n<l. The bound, (21), 
then, approaches (a%Cf/yi)£yi. Therefore, the whole of term (20), 
which is the contribution from the small region (re<£), vanishes 
as £71 relative to the main term to be written explicitly later. In 
the region re>%, pre>p£—>x> in the high-energy limit, and so the 
asymptotic forms can be used. Finally, since the region 0 to £ 
contributes negligibly, the modified plane-wave form of 1/7 can 
be used in the whole region 0 <re < co in (13). 

We now justify the neglect of the contributions of the ingoing 
wave components of 1/7 and those of the approximate form (14). 
That is, we compare the contribution to 

x f e rdr^f*OL'ii e i k ' ' r ^ f j , (22) 

of the ingoing waves 

</7 ~> (e~ipr/r) e±iaZ l n r , 

and of the outgoing wave 

fa —» (e+i?r/r) eiaZ l n r . 

(23) 

(24) 

This comparison is most expeditiously handled by first carrying 
out the k' integration in (22). Since the electromagnetic propagator 
leads to outgoing electromagnetic waves, e+ikr/r, the contribution 
from the ingoing electron wave is proportional to 

/"» /' e—ipr \*eikr 

/ drA e
±iaZlnr) -y-i r 7 r - l e-aZr 

r (7 i=F^z) 
—[aZ-iik+p)-]^™2' 

while that from the outgoing wave is proportional to 

(25) 

C00 (e+ipr \* eiJcr 
/ drA eiaZlnr\ f 7 l -

T(yi~iaZ) 

~laZ-i{k~p)~]^~iaZ' 
(26) 

Since (p — k)—>E in the high-energy limit, it is seen that the 
ingoing wave contribution vanishes relative to that of the out­
going wave as ~1/kiK This completes the demonstration of the 
validity of using (14) for fa in the high-energy limit. 

Having demonstrated the validity of the use of the 
modified plane waves, (14), in the high-energy limit, 
the probability of electron emission can now be calcu­
lated in a manner closely analogous to that given above 
for the free-particle case. From (13) and (14): 

1 

2 T T 2 >' 

dk'-
1 

k'*- (k+uyU J 

X\e J r e I ) * ( r / , p ) e - ^ r ^ ~ ^ l n r ^ i k , - r - Q : - ^ t ( r e ) . 

(27) 

I t is now convenient to introduce the Fourier trans­

form15 of the combination exp(—iaZ\nr9)\l/i(xe), 

e-az inry. ( r ^ = / dqe^'t (q). (28) 

The integration over the electron coordinate leads to 
the factor 5(k '+p— q), and the trivial k ' integration 
results, then, in the replacement of k' by (q— p). As 
in the derivation of (17), it follows that in the high-
energy limit 

1 1 1 

and 

so that 

2TT 

kf2~(k+ie)2 2k E-d>q-ie 

ptk'Tn • e~if"n, 

(29) 

(30) 

H' -* — Z J jdrnH- ti-e-**** 

X ef 
dq 

E—iX-q—it 
r / ,p)a-g^(q) . (31) 

The probability of electron emission in the direction 
u is proportional to 

£ \H'\*. 

At first sight, it appears as if the second term in the 
denominator in (31) makes an angle-dependent con­
tribution involving u. However, after adding over all 
orientations of initial and final electron spin, there is 
no direction remaining with which u can couple. Fur­
thermore, it can also be shown by direct calculation 
that there are no cross terms in the polarizations, 6y, 
and that both polarizations are equally weighted. In 

15 The Fourier transform of the quantity exp(—iaZ lnr)fa(r) is 

* ( q H *(*)X-i«) )' 
For the particular case of the K shell, 

9(q)== + W 2fq 

and 

Hq)~-

\X_oiZ-iqy^-iaZ laZ+iql 

^ r ( 7 ! + i - t o Z ) 

J I 

2TT 2 2iq 

xT^[i7l+1+^7\lc£-kly^^ 

where 
q \[aZ-iqy^-^z [ a Z + i g ] ^ - ^ j J ' 

NK = 

[aZ-iqy^-iaZ [aZ+iqy^-iaZ) 

(l+7i)1 / 2(2aZ)^^2 
[2r(2T1- r-l)]1/2 ' 
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other words, in the high-energy limit one may write 

4TT2 

E l#'l2=— E 
Ti,Tf k2 i / 

dTn)n-^e-if-tn 

r»,r/l J 
tfq-

1 

E—a*q—ie 
-D*(Tf,p$)*-t4>(<i) (32) 

where tf, f are two arbitrary, mutually perpendicular, 
unit vectors. This expression (32) immediately demon­
strates that the probability of electron emission in the 
high-energy limit is precisely proportional to that for 
gamma-ray emission without any further angular de­
pendences. This proportionality is equivalent to the 
state that, in this high-energy limit, the conversion co­
efficient is independent of multipole order, and that: 

All particle parameters b— + 1. 

The actual value of the high-energy limit of the 
internal-conversion coefficient can be obtained by 
evaluating the second, the electron, factor in Eq. (32). 
This is carried out most easily by going back into con­
figuration space through 

*(q) 
(2ir)V 

dree-***'*-*"* lnre\pi(re), (33) 

taking & along the z axis, and carrying out the q inte­
gration first. The result for conversion in the shell, i, is 

OVK) 

2k •I-e / dr(gi+ifi)e-iaZ lnr-iB'' (34) 

For the particular case of the K shell this becomes 

la |r(7i+«aZ) 

I* r(2Tl+i) 

(2aZ)*w+1"la |r(<yr-No!Z)|2 

2 J ; - ' - • -% 

EXPERIMENTAL CONSEQUENCES 

There are many directional-correlation experiments 
involving the conversion electrons of mixed-multipole 
transitions reported in the literature. To the extent 
that the results of these papers depend on the use of 
BR Table IV for the interference particle parameters, 
they should be reanalyzed. Here, we consider two 
experimental cases of special interest: Tl2(3 and Tl201, 
which were originally analyzed using Eq. (101) to­
gether with Table IV of BR.16-17 A consistent interpreta­
tion of these experiments could only be obtained by the 
introduction of large penetration10 effects for the l-

16 B. I. Deutch and N. Goldberg, Phys. Rev. 117, 818 (1960). 
17 T. R. Gerholm, B. G. Pettersson, B. Van Nooijen, and Z. 

Grabowski, Nucl. Phys. 24, 177 (1961); P. G. Pettersson, T. R. 
Gerholm, Z. Grabowski, and B. Van Nooijen, Nucl. Phys. 24, 196 
(1961). 

forbidden § —-> \ transition. (Large penetration effects 
correspond to a "large-\" solution, where X is the ratio 
of the penetration and gamma-ray matrix elements.) 
However, it was pointed out by Deutch and by Gerholm 
(private communications), that a simple sign reversal of 
the mixture term might allow a consistent interpreta­
tion of the data in terms of small penetration effects 
("small X"). 

The data of Gerholm, Petterson, Van Nooijen, and 
Grabowski17 on the Tl203 case have been reanalyzed 
using the new sign for the interference effect. The re­
ported experimental results consist of gamma-gamma, 
electron-gamma, and gamma-electron correlation co­
efficients of the 400 kV-279 keV ( f + - * ! + - > ! + ) 
cascade. The measured gamma-ray and conversion-
electron correlations of the 400-keV transitions are 
consistent with each other over a large range of the 
multipole mixing parameter, 5(279), within the experi­
mental errors. Analysis of the data for the retarded 
279-keV transition has also been performed. The par­
ticle parameters are those used by Gerholm et al., 
except for the sign change in b<^Ml,E2~]. Combining 
the correlation results with the iT-conversion coefficient 
data of Herrlander and Graham18 shows that the experi­
mental results are still consistent with a large value 
of X. However, the data are also consistent, within about 
one and a half standard deviations, with a small X value; 
the degree of agreement is improved if the electron-
gamma correlation coefficient is made slightly larger 
than that reported. 

The earlier results of Deutch and Goldberg16 for Tl203 

have also been reanalyzed, using the new values of 
b<[_Ml, E2~\. The correlation results are found to be con­
sistent, within the rather large quoted errors, with the 
work of Herrlander and Graham,18 for both large and 
small values of X. 

The data of Pettersson, Gerholm, Grabowski, and 
Van Nooijen17 on Tl201 have been similarly reanalyzed. 
It does not seem possible to obtain a consistent inter­
pretation of all the measured correlations and conver­
sion coefficients to within the quoted experimental error. 

The other experimental cases have not yet been 
reanalyzed.19 
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